
Hardware Compilation in Hardware:
Enabling Integration of Reconfigurable

Fabrics and Processors

Benjamin A. Levine

IBM/SRC Fellow
Carnegie Mellon University

Benjamin A. Levine 2

Outline

Motivation for reconfigurable fabrics:
Changing semiconductor technologies.
Limitations of conventional architectures.

Problems with hybrid reconfigurable HW.
Single-executable fabrics and processors.
Hardware compilation in hardware.
Queue- and register-based ISAs.
Results and future work.

Benjamin A. Levine 3

New Process Technologies Give Us…
More transistors more complex designs
- Exploding design and verification costs.
- Custom design increasingly expensive.

Faster transistors slower interconnect
- Meeting timing difficult, especially with long

wires and large global structures.
Smaller transistors difficult fabrication
- Need more careful circuit design and layout.
- Designs must consider manufacturability.

We need more and can afford less
custom design.

Benjamin A. Levine 4

Part of the Solution: REUSE
Reuse design effort on all levels!

Component reuse:
- Design using repeating, tiled blocks.
- Use design regularity to multiply design effort.

Chip reuse:
- Create chips that can be used in many
products over many product generations.

Software Reuse:
- Implement systems using programmable
devices and reuse software for new
systems. Software should be scalable and portable.

Benjamin A. Levine 5

Component Reuse Example - FPGA

Xilinx Virtex Die
•Fabric of identical CLBs
•Repeated interconnect

Photos: Xilinx Corporation

Benjamin A. Levine 6

Limitations on Chip Reuse

Conventional chips exhibit tradeoff
between adaptability and performance.

If you need high-performance, you
must limit adaptability (right?).

Performance
Adaptability

Application-
Specific IC

(ASIC)

DSP General-
Purpose CPU

Benjamin A. Levine 7

Chip Reuse Requires Both!

Adaptability

To enable
more chip
reuse, we need
both high
performance
and high
adaptability.

Pe
rf

o
rm

an
ce

Benjamin A. Levine 8

Reconfigurable Computing
Use programmable hardware that lets
you reconfigure a fabric of logic and
interconnect to give high performance
for a specific application and
adaptability for different applications.

FPGA

Application-Specific
Configuration 1

FPGA

Application-Specific
Configuration 2

FPGA

Benjamin A. Levine 9

Reconfigurable Computing Fabrics

Enable reuse:
Component Level
- Most RC architectures can be built from

small repeating blocks or tiles.

Chip Level
- Reuse hardware for many products.

Software Level
- Software tied to specific hardware

instance. No scalability or portability.

Benjamin A. Levine 10

Pipelined Reconfigurable Fabric

A programmable, pipelined
data path containing:

- Processing elements
- Local interconnect
- Pass Registers
- Unbounded Depth:
Physical hardware time-
multiplexed at run-time
to emulate pipeline of any
depth.

Helps enable SW reuse.

CMU
CUSTOM:

PipeRench Fabric

STANDARD CELLS:
Control & Interface Logic

Configuration Cache
Data Store Memory

Benjamin A. Levine 11

Reconfigurable Fabric Benefits for DSM

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

Uses local interconnect
and does not require large
global structures.
Enables Reuse:

Reusable design elements -
PEs, interconnect, memory.
Reuse fabrics on many chips.
Reuse chips for many
applications by reconfiguring.

Tiled structure
advantageous for
manufacturing, testing,
verification, redundancy.

Benjamin A. Levine 12

Problems With Reconfigurable Fabrics

No computationally complete
programming model.

Inefficient for applications with lots of
control flow.

Usual solution is a “Hybrid Architecture”
- reconfigurable fabric combined with
general purpose CPU.

Benjamin A. Levine 13

Hybrid Architecture I

Reconfigurable fabric as
past of coprocessor
board in standard
workstation.

Benjamin A. Levine 14

Hybrid Architecture II

Memory
Reconfigurable

Fabric

CPU

Reconfigurable fabric as part of system on a chip.

I.e., Xilinx Virtex II Pro.

Benjamin A. Levine 15

Problem With Hybrid Architectures

Executables are heterogeneous
Serial instruction sequence for the
processor.
Spatial configuration information for
the fabric (placement and routing)

“Executable”

Processor
“Serial”
Code
(SW)

Fabric
“Spatial”

Config
(HW)

Interface Interface

Benjamin A. Levine 16

Problems with Heterogeneity
Now two programming tasks.
Designing interface software and
hardware is hard.
To set a standard platform requires:

Fixed Spatial Architecture (Fabric)
Fixed Serial Architecture (CPU)
Fixed Interfaces

Executables tied to one platform
Limits portability
Limits performance scaling

Benjamin A. Levine 17

A Better Way?
Have a single executable.
Execute it on the processor.
Generate spatial configuration for
fabric in HW at runtime:
“Hardware compilation in
hardware”
Pass control to reconfigurable fabric.
Return to serial execution when
complete.

Benjamin A. Levine 18

Single-Executable Hybrid Architecture

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Reconfigurable
Fabric

.EXE

.EXE Config

Instruction
Flow

Data
Flow

Sequential
Executable

Section(s) of
Executable

Spatial
Configuration

Slide in abstract

Benjamin A. Levine 19

Example Code Fragment

Sequential
Code

Parallelizable
Loop Body

Sequential
Code

if (x > 10) x = 10;
x = x * 4;
for (i = 0; i < x; i +=4) {

a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i] = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}
Z = x ** 4;
If (Z == 0) Z = 100;

Benjamin A. Levine 20

Pass Single Executable to Processor
Instruction
Flow

Data
Flow

Sequential
Processor

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable
Fabric

Hardware
Compilation

Unit

Shared Memory and
I/O Resources

Benjamin A. Levine 21

Run Sequential Code
Instruction
Flow

Data
Flow

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable
Fabric

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Benjamin A. Levine 22

Start First Loop Iteration In Processor
Instruction
Flow

Data
Flow

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable
Fabric

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Benjamin A. Levine 23

Code Passed to HCU While Running
Instruction
Flow

Data
Flow

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

addddddddddddddsda
sdadasd Reconfigurable

Fabric

Benjamin A. Levine 24

HCU Creates Fabric Configuration

Sequential
Processor

Shared Memory and
I/O Resources

Instruction
Flow

Data
Flow

Hardware
Compilation

Unit

Reconfigurable
Fabric

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Config
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf

Benjamin A. Levine 25

HCU Done After One Loop Iteration

Sequential
Processor

Shared Memory and
I/O Resources

Instruction
Flow

Data
Flow

Hardware
Compilation

Unit

Reconfigurable
Fabric

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Config

addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd

Benjamin A. Levine 26

Pass Control to Fabric

Reconfigurable
Fabric

Instruction
Flow

Data
Flow

Hardware
Compilation

Unit

Reconfigurable
Fabric

Control Handoff

Sequential
Processor

Shared Memory and
I/O Resources

Benjamin A. Levine 27

Run Many Loop Iterations in Fabric
Instruction
Flow

Data
Flow

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Reconfigurable
Fabric

Benjamin A. Levine 28

Pass Control Back to Processor
Instruction
Flow

Data
Flow

Sequential
Processor
Sequential
Processor

Hardware
Compilation

Unit

Reconfigurable
Fabric

Control Handoff

Shared Memory and
I/O Resources

Benjamin A. Levine 29

Run Remaining Sequential Code
Instruction
Flow

Data
Flow

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable
Fabric

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Benjamin A. Levine 30

So How Does the HCU Work?

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Reconfigurable
Fabric

Benjamin A. Levine 31

Goal: Code to Fabric Configuration…
LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

for (i = 0; i < x; i +=4) {
a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i] = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}

Spatial Information:
- Placement of Operations
- Routing of Operands

Benjamin A. Levine 32

…and Processor Instructions…

load [i]
load [i+1]
load [i+2]
…
add
sub
…
sub
sub
store
store

for (i = 0; i < x; i +=4) {
a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i] = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}

Temporal Information:
- Sequence of Operations
- Specification of Operands

Benjamin A. Levine 33

…in a Single Executable!
for (i = 0; i < x; i +=4) {

a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i] = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}

?

load [i]
load [i+1]
load [i+2]
…
add
sub
…
sub
sub
store
store

LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

?

Need one representation that
encapsulates operator location and
data flow information, in addition
to valid sequence information.

Benjamin A. Levine 34

DFG to Configuration is Easy…
Data Flow Graph (DFG)
used by compiler….

…could be used to create
fabric configuration.

LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

LD

+

+

ST

LD

-

+

ST

LD

+

-

ST

LD

-

-

ST

Benjamin A. Levine 35

… Except for Traditional Register ISA

RISC code for DFG:
ld $r1, 0($r0)

ld $r2, 1($r0)

add $r3,$r1,$r2

sub $r4,$r1,$r2

ld $r1, 2($r0)

ld $r2, 3($r0)

add $r5,$r1,$r2

sub $r6,$r1,$r2

add $r1,$r3,$r5

add $r2,$r4,$r6

st $r1, 0($r7)

st $r2, 1($r7)

sub $r1,$r3,$r5

sub $r2,$r4,$r6

st $r1, 0($r7)

st $r2, 1($r7)

•Register file obscured dependencies
•Re-use of registers
•Total live variables < # registers

•Independent instructions are distant

•No info about length of dependencies

•The compiler obfuscates information
about the DFG

Benjamin A. Levine 36

ISA Requirements
No fixed resources.
No limit to size of fabric design we can
represent.
Some way to express locality.
Maintain sequential semantics for processor.
Easy to generate spatial representation for
fabric.

QUEUE MACHINES!

Benjamin A. Levine 37

Queue Machine

1+2=3

1+2=3

Like a stack machine, but..
replaces stack with queue.

Stack : Read from top, write to top.

1
2
4
5

add

1
2
4
5

add

Stack Machine Queue Machine

1
2

1
24

5

3 4
5
33

Queue: Read from head, write to tail.

3

33

Benjamin A. Levine 38

Advantages of Queue and Stack ISAs

No register file size limitations:
no limit to # of live variables
no limit to size of fabric configurations.
No register spill code.

Implicit operand designation:
Data dependencies determined only by
pattern of operations.
Easier to follow dependency chains.

Benjamin A. Levine 39

Queue Machine ISA
Queue ISA is better than Stack ISA because:

Can convert any DFG to leveled planar DFG;
leveled planar = runs on a queue machine.
Leveled planar DFG matches pipelined HW.
Allows simple fabric implementation
– no crossing limits required interconnect.
Sequential semantic of Queue ISA matches
row-based fabric configuration.

QUEUE ISA Enables
Hardware Compilation in Hardware

Benjamin A. Levine 40

Example of Queue DFG generation
Compressed
Leveled
Planar DFG

Leveled
Planar DFG Original DFG Leveled DFG

P Pass= Swap=S

3 2 1 0

5 4

7 6

10 9 8

3 2 1 0

5 4

7 6

10 9 8

P P

P P

3 2 1 0

5 4

7 6

10 9

8

P P

P P

PPP S

PP S

3 2 1 0

5 4

7

6

10 9 8

P P

P

PS

P S

Benjamin A. Levine 41

Embed DFG in Instruction Sequence

3 2 1 0

5 4

7

6

10 9 8

P P

P

PS

P S

Sequence has
sequential semantic
and runs on
processor.
Known properties of
leveled planar graph
and instruction
order convey spatial
information.

op0
op1
op22
op32
pass
op4
op52
pass
pass 2
swap
op72
pass
op62
swap
pass
op8
op9
op10

Benjamin A. Levine 42

So How Does the HCU Work?

Sequential
Processor

Shared Memory and
I/O Resources

Hardware
Compilation

Unit

Reconfigurable
Fabric

Instruction Sequence

•Queue ISA

•Embedded DFGs

Queue semantics and
leveled planar DFG
structure enable fabric
generation

Benjamin A. Levine 43

Completed Work - Algorithms

Efficient compile-time heuristics using
results from graph theory to allow
conversion of any arbitrary DFG to a
leveled planar DFG.
Simple run-time algorithms that can
be implemented in hardware for
creation of fabric configuration after
one sequential pass through the code.

Benjamin A. Levine 44

Completed Work – Infrastructure
Developed software tools for
representing and manipulating DFGs
and fabrics.
Developed models for physical
characteristics of different fabrics.
Implemented automatic generation of
single-queue executable DFGs from
arbitrary DFG.
Implemented automatic generation of
interconnect limited DFGs.

Benjamin A. Levine 45

Problem - Queue Code Overhead

Benchmark Ops Depth Ops Depth

dct 122 18 537 49

fft 88 7 909 41

haar16 124 6 918 17

rc6 74 23 330 42

idea 303 160 1462 235

popcount 31 5 229 24

Orig Data
Flow Graph

Leveled
Planar Graph

Benjamin A. Levine 46

Ongoing and Future Work
Evaluate improved ISAs:

Combine queue and register ISAs.
Modify basic queue ISA.
Improve compilation heuristics.

Need to reduce code size overhead.
Implement HCU algorithms in HW.
Quantify how ISA choices impact
physical characteristics of fabric.
Evaluate overall system
performance.

Benjamin A. Levine 47

Summary

We need design reuse at all levels to
cope with DSM complications.
Reconfigurable fabrics can help allow
design reuse, but heterogeneous
executables present obstacle.
Queue ISA and DFG structure allow
“hardware compilation in hardware”
and thus single executable hybrid
architectures are possible.

Benjamin A. Levine 48

Conclusions
Single-executable hybrid architectures:

are a feasible solution to technology challenges.
retain advantages of reconfigurable computing.
avoid disadvantages of conventional hybrids.

Careful ISA design is required to:
enable hardware compilation in hardware.
balance code efficiency and HW complexity.

	Hardware Compilation in Hardware: Enabling Integration of Reconfigurable Fabrics and Processors
	Outline
	New Process Technologies Give Us…
	Part of the Solution: REUSE
	Component Reuse Example - FPGA
	Limitations on Chip Reuse
	Chip Reuse Requires Both!
	Reconfigurable Computing
	Reconfigurable Computing Fabrics
	Pipelined Reconfigurable Fabric
	Reconfigurable Fabric Benefits for DSM
	Problems With Reconfigurable Fabrics
	Hybrid Architecture I
	Hybrid Architecture II
	Problem With Hybrid Architectures
	Problems with Heterogeneity
	A Better Way?
	Single-Executable Hybrid Architecture
	Example Code Fragment
	Pass Single Executable to Processor
	Run Sequential Code
	Start First Loop Iteration In Processor
	Code Passed to HCU While Running
	HCU Creates Fabric Configuration
	HCU Done After One Loop Iteration
	Pass Control to Fabric
	Run Many Loop Iterations in Fabric
	Pass Control Back to Processor
	Run Remaining Sequential Code
	So How Does the HCU Work?
	Goal: Code to Fabric Configuration…
	…and Processor Instructions…
	…in a Single Executable!
	DFG to Configuration is Easy…
	… Except for Traditional Register ISA
	ISA Requirements
	Queue Machine
	Advantages of Queue and Stack ISAs
	Queue Machine ISA
	Example of Queue DFG generation
	Embed DFG in Instruction Sequence
	So How Does the HCU Work?
	Completed Work - Algorithms
	Completed Work – Infrastructure
	Problem - Queue Code Overhead
	Ongoing and Future Work
	Summary
	Conclusions

