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Outline

Motivation for reconfigurable fabrics:
Changing semiconductor technologies.
Limitations of conventional architectures.

Problems with hybrid reconfigurable HW.
Single-executable fabrics and processors.
Hardware compilation in hardware.
Queue- and register-based ISAs.
Results and future work.
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New Process Technologies Give Us…
More transistors more complex designs
- Exploding design and verification costs.
- Custom design increasingly expensive.

Faster transistors slower interconnect
- Meeting timing difficult, especially with long 

wires and large global structures.
Smaller transistors difficult fabrication
- Need more careful circuit design and layout.
- Designs must consider manufacturability.

We need more and can afford less 
custom design.



Benjamin A. Levine 4

Part of the Solution: REUSE
Reuse design effort on all levels!

Component reuse:
- Design using repeating, tiled blocks. 
- Use design regularity to multiply design effort.

Chip reuse:
- Create chips that can be used in many 
products over many product generations.

Software Reuse:
- Implement systems using programmable
devices and reuse software for new 
systems. Software should be scalable and portable.
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Component Reuse Example - FPGA

Xilinx Virtex Die
•Fabric of identical CLBs
•Repeated interconnect

Photos: Xilinx Corporation
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Limitations on Chip Reuse

Conventional chips exhibit tradeoff
between adaptability and performance.

If you need high-performance, you
must limit adaptability (right?).

Performance
Adaptability

Application-
Specific IC

(ASIC)

DSP General-
Purpose CPU
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Chip Reuse Requires Both!

Adaptability

To enable 
more chip 
reuse, we need 
both high 
performance 
and high 
adaptability.

Pe
rf

o
rm
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ce
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Reconfigurable Computing 
Use programmable hardware that lets 
you reconfigure a fabric of logic and 
interconnect to give high performance
for a specific application and 
adaptability for different applications.

FPGA

Application-Specific 
Configuration 1

FPGA

Application-Specific 
Configuration 2

FPGA
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Reconfigurable Computing Fabrics

Enable reuse:
Component Level
- Most RC architectures can be built from 

small repeating blocks or tiles.

Chip Level
- Reuse hardware for many products.

Software Level
- Software tied to specific hardware 

instance. No scalability or portability.
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Pipelined Reconfigurable Fabric

A programmable, pipelined
data path containing:

- Processing elements
- Local interconnect
- Pass Registers
- Unbounded Depth:
Physical hardware time-
multiplexed at run-time
to emulate pipeline of any 
depth.

Helps enable SW reuse.

CMU
CUSTOM:

PipeRench Fabric

STANDARD CELLS:
Control & Interface Logic

Configuration Cache
Data Store Memory
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Reconfigurable Fabric Benefits for DSM

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

PE15 PE14 PE13 PE0

Interconnect

Uses local interconnect 
and does not require large 
global structures.
Enables Reuse:

Reusable design elements -
PEs, interconnect, memory.
Reuse fabrics on many chips.
Reuse chips for many 
applications by reconfiguring.

Tiled structure 
advantageous for 
manufacturing, testing, 
verification, redundancy.
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Problems With Reconfigurable Fabrics

No computationally complete 
programming model. 

Inefficient for applications with lots of 
control flow. 

Usual solution is a “Hybrid Architecture”
- reconfigurable fabric combined with 
general purpose CPU.
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Hybrid Architecture I

Reconfigurable fabric as 
past of coprocessor 
board in standard 
workstation.
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Hybrid Architecture II

Memory
Reconfigurable 

Fabric

CPU 

Reconfigurable fabric as part of system on a chip.

I.e., Xilinx Virtex II Pro.
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Problem With Hybrid Architectures

Executables are heterogeneous
Serial instruction sequence for the 
processor.
Spatial configuration information for 
the fabric (placement and routing)

“Executable”

Processor
“Serial”
Code
(SW)

Fabric
“Spatial”

Config
(HW)

Interface Interface
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Problems with Heterogeneity
Now two programming tasks.
Designing interface software and 
hardware is hard.
To set a standard platform requires:

Fixed Spatial Architecture (Fabric)
Fixed Serial Architecture (CPU)
Fixed Interfaces

Executables tied to one platform
Limits portability
Limits performance scaling
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A Better Way?
Have a single executable.
Execute it on the processor.
Generate spatial configuration for 
fabric in HW at runtime: 
“Hardware compilation in 
hardware”
Pass control to reconfigurable fabric.
Return to serial execution when 
complete.
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Single-Executable Hybrid Architecture

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit

Reconfigurable 
Fabric

.EXE

.EXE Config

Instruction 
Flow

Data 
Flow

Sequential 
Executable

Section(s)  of 
Executable

Spatial 
Configuration

Slide in abstract
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Example Code Fragment

Sequential 
Code

Parallelizable 
Loop Body

Sequential 
Code

if (x > 10) x = 10;
x = x * 4;
for (i = 0; i < x; i +=4) {

a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i]   = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}
Z = x ** 4;
If (Z == 0) Z = 100;
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Pass Single Executable to Processor 
Instruction 
Flow

Data 
Flow

Sequential
Processor

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable 
Fabric

Hardware
Compilation 

Unit

Shared Memory and 
I/O Resources
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Run Sequential Code
Instruction 
Flow

Data 
Flow

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable 
Fabric

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit
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Start First Loop Iteration In Processor
Instruction 
Flow

Data 
Flow

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

Reconfigurable 
Fabric

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit
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Code Passed to HCU While Running 
Instruction 
Flow

Data 
Flow

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
Sdadasdasdasdasdadadfsd
Sdfdasdasdasdasdsd

addddddddddddddsda
sdadasd Reconfigurable 

Fabric
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HCU Creates Fabric Configuration

Sequential
Processor

Shared Memory and 
I/O Resources

Instruction 
Flow

Data 
Flow

Hardware
Compilation 

Unit

Reconfigurable 
Fabric

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
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Config
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Sddsadasdfsdf
Sdasdasdasdassssdafsdf
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HCU Done After One Loop Iteration

Sequential
Processor

Shared Memory and 
I/O Resources

Instruction 
Flow

Data 
Flow

Hardware
Compilation 

Unit

Reconfigurable 
Fabric

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
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Pass Control to Fabric

Reconfigurable 
Fabric

Instruction 
Flow

Data 
Flow

Hardware
Compilation 

Unit

Reconfigurable 
Fabric

Control Handoff

Sequential
Processor

Shared Memory and 
I/O Resources
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Run Many Loop Iterations in Fabric
Instruction 
Flow

Data 
Flow

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit

Reconfigurable 
Fabric
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Pass Control Back to Processor
Instruction 
Flow

Data 
Flow

Sequential
Processor
Sequential
Processor

Hardware
Compilation 

Unit

Reconfigurable 
Fabric

Control Handoff

Shared Memory and 
I/O Resources
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Run Remaining Sequential Code
Instruction 
Flow

Data 
Flow

Sadas
addddddddddddddsda
sdadasd
Sdsdasdfsdf
Sddsadasdfsdf
Sdasdasdasdassssdafsdf
Sdsadasdasdasdasdasfsdf
Sdfsd
Sdfsd
Sdadasdasdasfsd
Sdfaddddadasdsasd
Sdfsd
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Reconfigurable 
Fabric

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit
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So How Does the HCU Work?

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit

Reconfigurable 
Fabric
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Goal: Code to Fabric Configuration…
LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

for (i = 0; i < x; i +=4) {
a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i]   = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}

Spatial Information: 
- Placement of Operations
- Routing of Operands
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…and Processor Instructions…

load [i]
load [i+1]
load [i+2]
…
add
sub
…
sub
sub
store
store

for (i = 0; i < x; i +=4) {
a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i]   = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}

Temporal Information: 
- Sequence of Operations
- Specification of Operands
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…in a Single Executable!
for (i = 0; i < x; i +=4) {

a = A[i]; b=A[i+1];
c = A[i+2]; d = A[i+3];
e = a + b; f = a - b;
g = c + d; h = c - d;
w = e + g; x = f + h;
y = e - g; z = f - h;
B[i]   = w; B[i+1] = x;
B[i+2] = y; B[i+3] = z;

}

?

load [i]
load [i+1]
load [i+2]
…
add
sub
…
sub
sub
store
store

LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

?

Need one representation that 
encapsulates operator location and 
data flow information, in addition 
to valid sequence information.
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DFG to Configuration is Easy…
Data Flow Graph (DFG) 
used by compiler….

…could be used to create 
fabric configuration.

LD

Interconnect

LDLD

-

Interconnect

+-

LD

+

-

Interconnect

-++

STSTSTST

LD

+

+

ST

LD

-

+

ST

LD

+

-

ST

LD

-

-

ST



Benjamin A. Levine 35

… Except for Traditional Register ISA

RISC code for DFG:
ld $r1, 0($r0)

ld $r2, 1($r0)

add $r3,$r1,$r2

sub $r4,$r1,$r2 

ld $r1, 2($r0)

ld $r2, 3($r0)

add $r5,$r1,$r2

sub $r6,$r1,$r2 

add $r1,$r3,$r5

add $r2,$r4,$r6

st $r1, 0($r7)

st $r2, 1($r7)

sub $r1,$r3,$r5

sub $r2,$r4,$r6

st $r1, 0($r7)

st $r2, 1($r7)

•Register file obscured dependencies
•Re-use of registers
•Total live variables < # registers

•Independent instructions are distant

•No info about length of dependencies

•The compiler obfuscates information
about the DFG
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ISA Requirements
No fixed resources.
No limit to size of fabric design we can 
represent.
Some way to express locality.
Maintain sequential semantics for processor.
Easy to generate spatial representation for 
fabric.

QUEUE MACHINES!
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Queue Machine

1+2=3

1+2=3

Like a stack machine, but..
replaces stack with queue.

Stack : Read from top, write to top.

1
2
4
5

add

1
2
4
5

add

Stack Machine Queue Machine

1
2

1
24

5

3 4
5
33

Queue: Read from head, write to tail.

3

33
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Advantages of Queue and Stack ISAs

No register file size limitations:
no limit to # of live variables 
no limit to size of fabric configurations.
No register spill code.

Implicit operand designation:
Data dependencies determined only by 
pattern of operations.
Easier to follow dependency chains.
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Queue Machine ISA
Queue ISA is better than Stack ISA because:

Can convert any DFG to leveled planar DFG;
leveled planar = runs on a queue machine.
Leveled planar DFG matches pipelined HW.
Allows simple fabric implementation 
– no crossing limits required interconnect.
Sequential semantic of Queue ISA matches 
row-based fabric configuration.

QUEUE ISA Enables 
Hardware Compilation in Hardware



Benjamin A. Levine 40

Example of Queue DFG generation
Compressed
Leveled 
Planar DFG

Leveled
Planar DFG Original DFG Leveled DFG

P Pass= Swap=S

3 2 1 0

5 4

7 6

10 9 8

3 2 1 0

5 4

7 6

10 9 8

P P

P P

3 2 1 0

5 4

7 6

10 9

8

P P

P P

PPP S

PP S

3 2 1 0

5 4

7

6

10 9 8

P P

P

PS

P S
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Embed DFG in Instruction Sequence

3 2 1 0

5 4

7

6

10 9 8

P P

P

PS

P S

Sequence has 
sequential semantic 
and runs on 
processor.
Known properties of 
leveled planar graph 
and instruction 
order convey spatial 
information.

op0
op1
op22
op32
pass
op4
op52
pass
pass 2
swap
op72
pass
op62
swap
pass
op8
op9
op10
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So How Does the HCU Work?

Sequential
Processor

Shared Memory and 
I/O Resources

Hardware
Compilation 

Unit

Reconfigurable 
Fabric

Instruction Sequence

•Queue ISA

•Embedded DFGs

Queue semantics  and
leveled planar DFG
structure enable fabric 
generation
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Completed Work - Algorithms

Efficient compile-time heuristics using 
results from graph theory to allow 
conversion of any arbitrary DFG to a 
leveled planar DFG.
Simple run-time algorithms that can 
be implemented in hardware for 
creation of fabric configuration after 
one sequential pass through the code.
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Completed Work – Infrastructure
Developed software tools for 
representing and manipulating DFGs 
and fabrics.
Developed models for physical 
characteristics of different fabrics.
Implemented automatic generation of 
single-queue executable DFGs from 
arbitrary DFG.
Implemented automatic generation of 
interconnect limited DFGs.
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Problem - Queue Code Overhead

Benchmark Ops Depth Ops Depth

dct 122 18 537 49

fft 88 7 909 41

haar16 124 6 918 17

rc6 74 23 330 42

idea 303 160 1462 235

popcount 31 5 229 24

Orig Data 
Flow Graph

Leveled
Planar Graph
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Ongoing and Future Work
Evaluate improved ISAs:

Combine queue and register ISAs.
Modify basic queue ISA.
Improve compilation heuristics.

Need to reduce code size overhead.
Implement HCU algorithms in HW.
Quantify how ISA choices impact 
physical characteristics of fabric.
Evaluate overall system 
performance.
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Summary

We need design reuse at all levels to 
cope with DSM complications.
Reconfigurable fabrics can help allow 
design reuse, but heterogeneous 
executables present obstacle.
Queue ISA and DFG structure allow 
“hardware compilation in hardware”
and thus single executable hybrid 
architectures are possible.
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Conclusions
Single-executable hybrid architectures:

are a feasible solution to technology challenges. 
retain advantages of reconfigurable computing.
avoid disadvantages of conventional hybrids.

Careful ISA design is required to:
enable hardware compilation in hardware.
balance code efficiency and HW complexity.


	Hardware Compilation in Hardware: Enabling Integration of Reconfigurable Fabrics and Processors
	Outline
	New Process Technologies Give Us…
	Part of the Solution: REUSE
	Component Reuse Example -  FPGA
	Limitations on Chip Reuse
	Chip Reuse Requires Both!
	Reconfigurable Computing
	Reconfigurable Computing Fabrics
	Pipelined Reconfigurable Fabric
	Reconfigurable Fabric Benefits for DSM
	Problems With Reconfigurable Fabrics
	Hybrid Architecture I
	Hybrid Architecture II
	Problem With Hybrid Architectures
	Problems with Heterogeneity
	A Better Way?
	Single-Executable Hybrid Architecture
	Example Code Fragment
	Pass Single Executable to Processor
	Run Sequential Code
	Start First Loop Iteration In Processor
	Code Passed to HCU While Running
	HCU Creates Fabric Configuration
	HCU Done After One Loop Iteration
	Pass Control to Fabric
	Run Many Loop Iterations in Fabric
	Pass Control Back to Processor
	Run Remaining Sequential Code
	So How Does the HCU Work?
	Goal: Code to Fabric Configuration…
	…and Processor Instructions…
	…in a Single Executable!
	DFG to Configuration is Easy…
	… Except for Traditional Register ISA
	ISA Requirements
	Queue Machine
	Advantages of Queue and Stack ISAs
	Queue Machine ISA
	Example of Queue DFG generation
	Embed DFG in Instruction Sequence
	So How Does the HCU Work?
	Completed Work - Algorithms
	Completed Work – Infrastructure
	Problem - Queue Code Overhead
	Ongoing and Future Work
	Summary
	Conclusions

