
Brian T. Gold, Jared C. Smolens, Babak Falsafi, and James C. Hoe

The Granularity of Soft-Error Containment
in Shared Memory Multiprocessors
Abstract—Concerns over rising soft-error rates in
processor logic has led to numerous proposals for error
tolerance mechanisms. In this paper, we examine the role of
soft-error containment in a shared memory multiprocessor.
We study a range of design alternatives based on how far
outside the processor core errors are allowed to propagate.
We discuss tradeoffs in recovery complexity and error-free
performance that arise from the choice of containment
granularity.

I. INTRODUCTION

Increasing levels of integration, particularly in the era of bil-
lion-transistor chip multiprocessors (CMPs), have led to con-
cern over rising soft-error rates in otherwise-unprotected
processor logic [4,5,20]. While parity and error-correcting
codes (ECC) can detect and correct many soft errors in caches,
memory, and storage, the complex layout and timing-critical
nature of the processor pipeline leaves it vulnerable to soft
errors [11].

Sparked by the concern over rising soft-error rates, recent
work has proposed numerous soft-error tolerance mechanisms,
which cover a range of implementation and error tolerance
issues. Often, comparing different proposals is a difficult task
because the system goals vary widely across designs (e.g., high
availability vs. minimizing silent data corruption).

One approach to studying the range of existing mechanisms
is to classify them under a common fault model and general
system architecture. In this paper, we study soft errors originat-
ing in the processor core, but make no assumptions as to their
eventual effect on applications or the system (i.e., we assume
silent data corruption can result). We frame our analysis in the
context of a shared memory multiprocessor that uses check-
point and rollback as a recovery mechanism.

We propose a taxonomy for reliable shared memory multi-
processors based on how far outside the processor core the
design permits soft errors to propagate. We study a spectrum of
containment granularities and draw the following conclusions:
• Core containment. Confining errors to the processor core

permits the use of unmodified memory systems (caches and
main memory). However, in-core detection and recovery
requires extensive changes to the complex and timing-sen-
sitive pipeline.

• Cache containment. Allowing errors that originate in the
core to propagate into local, private caches simplifies
recovery and eliminates large-scale changes to the pipeline.
However, frequent checkpoints and changes to the cache-
coherence protocol incur performance overheads and com-
plexity.

• Memory containment. Permitting errors to propagate into
main memory further reduces core and coherence protocol
changes. However, checkpoints must be coordinated across
the system, which interferes with conventional I/O device
interaction.

Paper Outline. This paper is structured as follows. In
Section II, we describe necessary background for our analysis.
In Section III, we discuss three granularities of soft-error con-
tainment and their tradeoffs. Section IV concludes the paper.

II. BACKGROUND

The majority of multiprocessor systems in use today are
based on the shared-memory programming model, whether in
the form of chip multiprocessors (CMPs), symmetric multipro-
cessors (SMPs), or distributed shared-memory multiprocessors
(DSMs). Figure 1 depicts a generic shared-memory multipro-
cessor that consists of several processor cores and caches, a
main memory (DRAM) subsystem, and I/O devices. Although
specific designs differ in the way components connect (e.g.,
shared caches in a CMP or a point-to-point interconnect in a
DSM), the basic connection of processors to a logically-shared
memory and I/O devices is common to all designs.

In this paper, we focus on detecting and recovering from soft
errors within the processor core. Our fault model assumes that
errors originating in components outside the processor core in
Figure 1 are protected by existing techniques. We do not
restrict errors to those detectable or correctable by existing
hardware or software checks. Rather, we assume errors in exe-
cution could result in silent data corruption.

The authors are with the Computer Architecture Lab at Carnegie Mellon
University, Pittsburgh, PA. http://www.ece.cmu.edu/~truss; babak@cmu.edu.

This work was funded in part by NSF awards ACI-0325802 and CCF-
0347560, Intel Corp., the Center for Circuit and System Solutions (C2S2), the
Carnegie Mellon CyLab, and fellowships from the Department of Defense and
the Alfred P. Sloan Foundation.

Fig. 1. The generic shared memory multiprocessor assumed in this paper.
Each processor core has private caches, which are backed by an
interconnect that logically connects devices, main memory, and peripherals.

A. Backwards Error Recovery
In this paper, we evaluate systems with backwards error

recovery (BER) mechanisms that create checkpoints of correct
system state and roll back execution to the checkpoint when an
error is detected. Our BER model assumes that only one check-
point is kept at a time. When recovering, the system is restored
to the previous checkpoint, and when a new checkpoint is cre-
ated, it immediately replaces the previous one. Thus, it is criti-
cal that checkpoints be free of errors; otherwise, the system
cannot recover to an error-free state.

B. Flexible Error Detection
Fingerprinting, a recent proposal for error detection [22],

uses a compressed signature of execution results to compare
dual-modular redundant (DMR) processor pairs. In a basic
implementation, retired instruction results are added to a con-
tinuously-updated hash value that, when compared across
DMR processors, provides sufficient certainty that execution is
error-free.

One benefit of this approach is the flexibility given to when
error detection occurs. Although the fingerprint mechanism
captures execution state when instructions retire, there is no
explicit requirement as to when the signatures are compared
across DMR pairs.

Figure 2 illustrates the relationship between checkpointing
and the fingerprint-based error detection assumed in this paper.
The two processors in a DMR pair generate and compare fin-
gerprints that summarize the execution state. If the fingerprints
match, the recovery point is advanced by creating a new check-
point. Conversely, if the fingerprints differ, recovery initiates
using the previous checkpoint.

Because errors must be detected before advancing the recov-
ery point, the creation of a new checkpoint always follows a
fingerprint comparison. Coupling the checkpointing mecha-
nism with fingerprint comparison enables us to examine
tradeoffs in complexity and performance as a function of how
far we permit errors to propagate outside the processor.

C. Soft-Error Containment
The idea of containing faults originated in large-scale dis-

tributed systems [13], where designs isolate the effects of a
fault to a specific boundary. In the distributed-systems context,
fault containment permits a portion of the system to remain
operational after a fault occurs.

In a shared-memory multiprocessor, fault containment is
particularly critical to system reliability because a fault in one

processor can lead to the entire system failing [26]. Tradition-
ally, containment has been used to minimize the impact of a
permanent failure (e.g., the loss of a processor or memory
component). Recent work has focused on minimizing the
impact of such failures by providing operating system ‘con-
tainers’ which define the processor and memory resources
available to a given process or virtualized operating system
image [14]. This technique is complementary to the mecha-
nisms discussed in this paper, as it targets the impact of hard
errors on the system.

In the context of soft errors, several tradeoffs depend on the
granularity of error containment, such as the portion of the sys-
tem state that must be rolled back and the overhead associated
with error-free checkpoint creation. The error detection and
recovery scheme illustrated in Figure 2 provides a definition
for the error containment boundary at the point of fingerprint
comparison. Before committing side effects outside the con-
tainment boundary, the system initiates fingerprint comparison
and checkpoint creation. By coupling specific events, such as
device accesses, coherence activity, stores to memory, etc., to
checkpoint creation and error detection, the system has a well-
defined containment boundary.

III. CONTAINMENT GRANULARITIES

We examine a range of containment boundaries, illustrated
in Figure 3 using a dashed border. In each case, we discuss the
necessary checkpoint state, when error detection and check-
point creation are required, and the impact on recovery com-
plexity and error-free performance.

A. Processor Core
We first consider a fine-grain boundary that prevents errors

from leaving the processor core itself: core containment. At
this granularity, no error may be committed to architectural
state outside the core—that is, stores to cacheable memory and
uncached accesses to devices cannot exit the core without
being checked.

Some designs go further with these checking requirements,
ensuring that each instruction is checked before retirement to
the architectural register file. A widely-recognized example of
this design point is the IBM z-series processor [21], which uses
lockstepped, redundant pipelines to ensure no soft error propa-
gates to any architectural state. The z-series processor is a cus-
tom design—the redundant pipelines are carefully laid out to
provide low-overhead checking of results. If an error is
detected, the processor raises an exception that forces the
offending instruction to be re-executed.

Recent work has focused on reducing the overhead of com-
pletely replicating the pipeline as in [21]. Instead, a number of
designs propose microarchitecture-based checkers, which exe-
cute a redundant copy of an instruction later in time—enabling
the second execution to leverage much of the work of the first,
speculative execution. Some designs (e.g., [1]) use separate,
simplified checker hardware that compare only the final, in-
order instruction stream. Other proposals (e.g., [16,17,23])
integrate checking within a speculative, out-of-order core and
leverage otherwise-unused resources to execute the redundant

Fig. 2. Error detection and checkpointing in a DMR processor pair. After
the pair successfully compares previous execution, a new checkpoint is
created as the point of recovery, should a soft error occur later.
2

copy. As in the z-series processor, recovery is initiated by rais-
ing an exception on any instruction whose redundant execu-
tions fail to match, thereby preventing errors from entering the
architectural register file or beyond.

We also include proposals for redundant multithreading as
providing core containment, whether within one
core [18,19,27] or across a pair of cores [8,10,25]. In these
designs, one thread of execution runs ahead of the second,
redundant copy, which typically requires fewer pipeline
resources for its execution—memory values and branch out-
comes are forwarded from leading thread to trailing thread.
Detection can be enforced before all register updates [8,10,27]
or before committing side effects outside the core [18]. As pro-
posed in [8,27], rollback recovery can utilize the trailing thread
state as the checkpoint after detecting an error.

Containment within the core will observe more errors than at
coarser levels, where errors may be masked by later computa-
tion. However, with hardware support for recovery within the
pipeline, more frequent recovery will have little or no perfor-
mance overhead.

In all variations of the core-containment granularity, the key
drawback to these designs is the magnitude of changes
required to the complex and timing-critical pipeline. However,
confining errors to such a small boundary avoids system-wide
recovery and changes to the memory-system design.

B. Cache
The next granularity of error containment surrounds the core

and private caches, which we refer to as cache containment.
Here, erroneous results are allowed to propagate into the local
caches, but are stopped from being transferred to main memory
or other logical processors.

Unlike in core containment, where individual instructions
define when error detection and checkpoint creation occur,
cache containment is defined at the level of the cache coher-
ence protocol. Writebacks to main memory and the sharing of
modified data among processors induce detection and check-
point creation [7], because these transactions can expose errors
outside of the containment boundary.

A downside to the cache containment granularity is com-
plexity stemming from the asynchronous nature of cache
coherence protocols. In general, the processor does not know
when a coherence request is about to arrive, or even when a
writeback will be necessary. By involving the coherence proto-
col, this approach requires changes to the cache coherence con-

troller—a complex part of a multiprocessor system that is
already difficult to design correctly.

Several industry examples of cache containment exist,
although none provide hardware-only rollback recovery. Tradi-
tionally, HP (formerly Tandem) NonStop servers paired com-
modity processors in lockstep, checking the pair’s results that
appear on the front-side bus [2]. Other, similar examples of
cache containment include SMP servers from Stratus, Mara-
thon, and Sun (ftSPARC). All of these examples require soft-
ware checkpointing for rollback recovery—the hardware
provides fail-stop processing and passes the failure to software.

Detection outside the pipeline avoids complex modifications
to the processor core; however, when hardware rollback recov-
ery is desired, a checkpoint of architectural registers is neces-
sary. The frequency of coherence traffic enables on-chip
checkpoints with little storage overhead, but requires check-
pointing of cache state. Fortunately, both register and cache
checkpointing has been widely studied in the context of specu-
lative microarchitectures [9,28].

TRUSS [7] is our recent proposal for a reliable shared-mem-
ory multiprocessor. TRUSS utilizes cache containment to pro-
vide software-transparent support for both error detection and
recovery in the processor. In the TRUSS architecture, proces-
sors create checkpoints on every cache coherence event, forc-
ing error detection before committing side-effects to shared
machine state.

Forcing error detection and checkpoint creation at the granu-
larity of coherence protocol transactions avoids the problem of
coordinating checkpoints across the system. Each logical pro-
cessor creates a local checkpoint, with the next checkpoint
occurring at or before the next coherence message, which
removes any form of communication among logical processors
between checkpoints. Thus, cache containment avoids the
problem of coordinating recovery or cascading rollbacks asso-
ciated with conventional, uncoordinated checkpointing
schemes [6,15].

C. Memory
Where creating frequent checkpoints or changing the cache

controller is too costly, the memory containment granularity
offers an alternative. Here, all logical processors and memory
are grouped together in the containment boundary, so that only
operations that cause device accesses (disk, network, etc.)
require detection and recovery.

Fig. 3. Soft-error containment granularities studied: (a) processor core, (b) cache, and (c) memory. In each case, the shaded region represents the
components in which errors are permitted to propagate. Allowing errors to propagate further away from the core increases the state kept in each
checkpoint, but also reduces the changes necessary in the complex and timing-sensitive processor core.
3

The memory-containment granularity is used in HP’s Non-
Stop Advanced Architecture (NSAA) [3]. Unlike previous
NonStop designs, NSAA permits processors to write into a pri-
vate region of main memory and compares results before per-
forming peripheral device accesses. Although not strictly a
shared-memory multiprocessor—NonStop systems use mes-
sage passing for inter-processor communication—the NSAA
approach still fits within the definition of memory contain-
ment.

In the context of a shared-memory multiprocessor, check-
points at the memory-containment granularity consist of both
architectural register state (as in the previous cases) and mem-
ory state. A common approach to creating a memory check-
point is to log old values when new, speculative values are
written [15,24].

The primary challenge at the memory-containment granular-
ity is that of checkpoint coordination. Without coordinating
checkpoint creation, the system can become incoherent upon
recovery if a processor’s modified data is not kept synchro-
nized with the state of the memory checkpoint. Therefore, most
solutions at this granularity target a global system
checkpoint [15,24].

Unlike checkpoint creation in the cache-containment granu-
larity, the system cannot support arbitrarily fine-grained inter-
vals between checkpoints. Coordinating the logical processors
and memory to create a global checkpoint necessarily implies
time-intensive operations such as the flushing of caches or
waiting for coherence activity to complete.

With a limit on how frequently checkpoints can be created,
there is a potential problem for device accesses, which must
wait until the next interval to be sent outside the containment
boundary. One solution [12] is to modify the operating system
to provide a non-blocking pseudo-device driver (PDD) that
permits applications to continue operation while the request is
buffered in memory. Once the next checkpoint interval arrives
and error detection is successful, the PDD releases the device
access outside the containment boundary.

A limitation to the approach in [12] is the reliance on idem-
potent input and output operations, which can be reissued man-
ually or automatically by a higher-level protocol (e.g., TCP).
Although the classes of protocols and devices suitable for such
a system are widely applicable, not all protocols work with this
approach (e.g., UDP).

IV. CONCLUSIONS

Within the context of a shared memory multiprocessor, we
examined the impact of soft-error containment granularity on
recovery complexity and error-free performance. We studied a
range of design alternatives based on how far errors are
allowed to propagate outside the processor core.

REFERENCES
[1] T. M. Austin. DIVA: A reliable substrate for deep submicron microarchi-

tecture design. In Proc. of the 32nd Intl. Symp. on Microarchitecture, No-
vember 1999.

[2] W. Bartlett and B. Ball. Tandem’s approach to fault tolerance. Tandem
Systems Rev., 8:84–95, February 1988.

[3] D. Bernick et al. Nonstop advanced architecture. In Proc. Intl. Conf. on De-

pendable Systems and Networks, 2005, 12–21.
[4] S. Borkar. Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation. IEEE Micro, 25(6):10–
17, November-December 2005.

[5] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
Micro, 23(4):14–19, 2003.

[6] E. N. Elnozahy et al. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[7] B. T. Gold et al. TRUSS: a reliable, scalable server architecture. IEEE Mi-
cro, Nov-Dec 2005.

[8] M. Gomaa et al. Transient-fault recovery for chip multiprocessors. In Pro-
ceedings of the 30th International Symposium on Computer Architecture,
June 2003.

[9] J. F. Martinez et al. Cherry: Checkpointed early resource recycling in out-
of-order microprocessors. In Proc. of 35th IEEE/ACM Intl. Symp. on Mi-
croarch. (MICRO 35), Nov 2002, 3–14.

[10] S. S. Mukherjee et al. Detailed design and evaluation of redundant multi-
threading alternatives. In Proceedings of the 29th International Symposium
on Computer Architecture, May 2002, 99–110.

[11] S. S. Mukherjee et al. A systematic methodology to compute the architec-
tural vulnerability factors for a high-performance microprocessor. In Proc.
of 36th IEEE/ACM Intl. Symp. on Microarch. (MICRO 36), Dec 2003.

[12] J. Nakano et al. ReViveI/O: Efficient handling of I/O in highly-available
rollback-recovery servers. In HPCA, 2006.

[13] V. P. Nelson. Fault-tolerant computing: Fundamental concepts. IEEE Mi-
cro, 23(7):19–25, 1990.

[14] D. Price and A. Tucker. Solaris zones: Operating system support for con-
solidating commercial workloads. In Proc. 18th Large Installation Systems
Administration Conf. (USENIX LISA), 2004.

[15] M. Prvulovic et al. ReVive: cost-effective architectural support for roll-
back recovery in shared memory multiprocessors. In Proc. of 29th Intl.
Symp. on Comp. Arch. (ISCA-29), June 2002.

[16] M. K. Qureshi et al. Microarchitecture-based introspection: A technique
for transient-fault tolerance in microprocessors. In Proc. of 32nd Intl.
Symp. on Comp. Arch. (ISCA-32), June 2005.

[17] J. Ray et al. Dual use of superscalar datapath for transient-fault detection
and recovery. In Proceedings of the 34th International Symposium on Mi-
croarchitecture, December 2001.

[18] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via simulta-
neous multithreading. In Proceedings of the 27th International Symposium
on Computer Architecture, June 2000.

[19] E. Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance
in microprocessors. In Proceedings of the 29th International Symposium on
Fault-Tolerant Computing, June 1999.

[20] P. Shivakumar et al. Modeling the effect of technology trends on the soft
error rate of combinational logic. In Proceedings of the International Con-
ference on Dependable Systems and Networks, June 2002, 389–398.

[21] T. Slegel et al. IBM’s S/390 G5 microprocessor design. IEEE Micro,
19(2):12–23, March/April 1999.

[22] J. C. Smolens et al. Fingerprinting: Bounding soft-error detection latency
and bandwidth. In Proc. of Eleventh Intl. Conf. on Arch. Support for Pro-
gram. Lang. and Op. Syst. (ASPLOS XI), Boston, Massachusetts, Oct.
2004. 224–234.

[23] J. C. Smolens et al. Efficient resource sharing in concurrent error detecting
superscalar microarchitectures. In Proc. of 37th IEEE/ACM Intl. Symp. on
Microarch. (MICRO 37), December 2004.

[24] D. J. Sorin et al. SafetyNet: improving the availability of shareed memory
multiprocessors with global checkpoint/recovery. In Proc. of 29th Intl.
Symp. on Comp. Arch. (ISCA-29), June 2002.

[25] K. Sundaramoorthy et al. Slipstream processors: Improving both perfor-
mance and fault tolerance. In ASPLOS, October 2000.

[26] D. Teodosiu et al. Hardware fault containment in scalable shared-memory
multiprocessors. In Proc. of 24th Intl. Symp. on Comp. Arch. (ISCA-24),
June 1997.

[27] T. N. Vijaykumar et al. Transient-fault recovery using simultaneous mul-
tithreading. In Proceedings of the 29th International Symposium on Com-
puter Architecture, May 2002.

[28] K. C. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Mi-
cro, 16(2), April 1996
4

	I. Introduction
	II. Background
	Fig. 1. The generic shared memory multiprocessor assumed in this paper. Each processor core has private caches, which are backed by an interconnect that logically connects devices, main memory, and peripherals.
	A. Backwards Error Recovery
	B. Flexible Error Detection
	Fig. 2. Error detection and checkpointing in a DMR processor pair. After the pair successfully compares previous execution, a new checkpoint is created as the point of recovery, should a soft error occur later.

	C. Soft-Error Containment

	III. Containment Granularities
	A. Processor Core
	B. Cache
	Fig. 3. Soft-error containment granularities studied: (a) processor core, (b) cache, and (c) memory. In each case, the shaded region represents the components in which errors are permitted to propagate. Allowing errors to propagate further aw...

	C. Memory

	IV. Conclusions
	References

