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Abstract—We present an adaptive graph filtering approach to
semi-supervised classification. Adaptive graph filters combine de-
cisions from multiple graph filters using a weighting function that
is optimized in a semi-supervised manner. We also demonstrate the
multiresolution property of adaptive graph filters by connecting
them to the diffusion wavelets. In our experiments, we apply
the adaptive graph filters to the classification of online blogs
and damage identification in indirect bridge structural health
monitoring.

I. INTRODUCTION

With the growing demand in analysis of signal generated
by various networks, signals with complex structures arise that
require novel processing techniques. Recently, signal process-
ing on graphs has emerged as a new approach to analyze
signals with irregular structure that reside on graphs [1]–
[4]. Among many applications of this theory, we consider
signal classification, which models each signal as nodes of a
representation graph, and their labels as a graph signal [4].
Given a subset of initial labels, unknown labels are estimated
by propagating known ones along the edges of the graph using
graph filters.

In this paper, we propose an adaptive graph filter that extends
the application of graph filters to signal classification. Our
technique uses an adaptive weighting algorithm that combines
results from different graph filters into a global decision. We
show that the proposed technique possesses multiresolution
properties similar to diffusion wavelets [5]. We also demon-
strate applications of adaptive graph filters to the classification
of online blogs and damage indentification in indirect bridge
structural health monitoring.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce the background material nec-
essary for the rest of the paper. We formulate the problem of
signal classification and introduce the discrete signal processing
on graphs theory that provides the foundation for the proposed
adaptive graph filtering technique.

Classification. The purpose of classification is to assign each
signal to one of the given classes [6]. Let X = {x(i) ∈ Rd}Ni=1

be the given dataset with N = L+U elements. The first L ele-
ments form the labeled dataset L = {x(i) ∈ X}Li=1, for which
the ground-truth labels Y = {y(i) ∈ {1, 2, . . . , C}}Li=1

Notations

X = {x(i)} input dataset i = 1, . . . , N

L = {x(i)} labeled dataset i = 1, . . . , L

U = {x(i)} unlabeled dataset i = L+ 1, . . . , N

Y = {y(i)} ground-truth labels for L i = 1, . . . , L

Ŷ = {ŷ(i)} estimated labels for U i = L+ 1, . . . , N

q(i) ground-truth vector i = 1, . . . , L
Q ground-truth matrix L× C

q̂(i) confidence vector i = L+ 1, . . . , N

TABLE I: Notation used in this paper

are given. The other U elements form the unlabeled dataset
U = {x(i) ∈ X}Ni=L+1. Hence, X = L ∪ U .

A classifier system accepts the entire dataset X and the
ground-truth labels Y as inputs, and produces the estimated
labels Ŷ = {ŷ(i) ∈ {1, 2, . . . , C}}Ni=L+1 for the unlabeled
dataset U (see Table I).

We formulate the classification problem as a mapping of the
input signal to each class with a certain probability. We regard
the label as a posterior probability vector q̂ ∈ RC , where the
cth component, q̂c, is the probability that a signal belongs to
the cth class. Since q̂ expresses a confidence of an assigned
label, we name it a confidence vector. The confidence vector
for a labeled signal i = 1, 2, . . . , L, is the ground-truth vector,
q ∈ RC , with 0s everywhere except 1 in position c indicating
membership in class c. The ground-truth matrix Q of size L×C
collects all L ground-truth vectors as its rows, that is,

Q =
[
q(1) q(2) . . . q(L)

]T
.

Discrete Signal Processing on Graphs. Discrete signal
processing on graphs is an extension of the traditional signal
processing theory to signals with complex structure residing on
irregular domains [4]. The dataset is represented by a graph
G = (V, P ), where V = {vi}Ni=1 is the set of nodes that
represents signals and P ∈ CN×N is an adjacency matrix of
the graph called a graph shift. We extend the definition of graph
signals from [4] from one-dimensional to D-dimensional signal
as follows: a graph signal s is a map on the set of nodes

s : V → CN×D,

where D is the dimension of the graph signal at each node.
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A linear shift-invariant system, or, a graph filter, is defined
as

H = h(P ) =

K∑
k=0

hkP
k, (1)

with hk ∈ C, k = 0, 1, . . . , K. A graph filter H ∈ CN×N

applied to a graph signal s ∈ CN×D produces an output, which
is again a graph signal,

Hs = h(P )s.

Discrete signal processing on graphs then defines other
fundamental signal processing concepts including the graph
Fourier transform, frequency, spectrum, spectral decomposi-
tion, and impulse and frequency responses.

III. ADAPTIVE GRAPH FILTERING

In this section, we introduce adaptive graph filters. We
also show their multiresolution properties by establishing a
connection to diffusion wavelets.

Graph Filtering as Semi-Supervised Classification. Let
G = (X , P ) be a graph with X = {x(i)}Ni=1 a given datasest
and let P ∈ RN×N be a graph shift defined as

Pi,j =
exp (−ρ(x

(i),x(j))
σ )∑N

i=1 exp (
−ρ(x(i),x(j))

σ )
, (2)

where ρ is a local distance measurement, such as the `2 norm
or the cosine distance, and σ is a scaling coefficient which
scales the local distance. The graph shift defined here is the
Hermitian transpose of the transition matrix of the graph. P
thus has a probabilistic interpretation: constructed as in (2),
Pi,j gives the probability of transition from the jth node to the
ith one in one step [7].

Now we define an adaptive graph filter

H = h(P ) =

K∑
k=1

hkP
k. (3)

This adaptive graph filter is defined similarly to (1), except
that its coefficients, hk, depend on the data and are selected
adaptively. We assign h0 = 0, since P 0 does not contribute to
the propagation of the labels in the classification problem as
will be shown later.

Let the graph signal be the confidence matrix of all the
signals on the graph, called prior confidence matrix, that is,
the following map: s : X → RN×C , defined as

Q̂pr =

[
Q

0u×C

]
.

In other words, the first L rows of Q̂pr are the confidence
matrix Q representing the labeled dataset, while the other U
rows are all zeros representing the unlabeled dataset. The prior
confidence matrix thus starts with the knowledge on the labeled
dataset (the ground truth) and without any knowledge on the
unlabeled dataset.

By applying an adaptive graph filter (3) to the prior confi-
dence matrix Q̂pr, the posterior confidence matrix is

Q̂ps = HQ̂pr, (4)

where the ith row is the confidence vector q̂(i) for the ith node.
The coefficients hk of the adaptive filter (3) are then found

as follows. Rewrite (4) as

Q̂ps
(a)
=

K∑
k=1

hkP
kQ̂pr =

K∑
k=1

hkQ̂k, (5)

where (a) follows from (3) and Q̂k is the N × C confidence
matrix for the kth graph shift defined as Q̂k = P kQ̂pr. For each
i, the desired confidence vector q̂(i) (ith row of Q̂ps) is thus a
weighted linear combination of corresponding rows from each
graph shift Q̂k. The optimal filter coefficients are designed to
fit the confidence vectors of the labeled signals from all the
graph shifts to the ground truth and to minimize the labeling
uncertainty of the unlabeled signals. We introduce the labeling
uncertainty measure [8], [9] as

M(q̂) = H(q̂) (χd>T + λ(d)χd≤T ), (6)

where χI is the indicator function of an interval I , d = |q̂(1)−
q̂(2)| with q̂(1), q̂(2) the first and second largest element in q̂,
respectively, T is the threshold, and λ(d) = 1 + 5(d/T − 1)2

is a penalty function that is large when the first and second
largest elements are close. The optimal filter coefficients are
then given by the solution to the minimization problem

ĥ = argmin
h
{α

L∑
i=1

‖q(i) − Q̂(i)h‖

+ (1− α)‖h− γ‖}, (7)

where h =
[
h1 . . . hK

]T
with the constraint ||h||1= 1;

α = L/(L + U) is the labeling ratio; matrix Q̂(i) =[
q̂
(i)
1 q̂

(i)
2 . . . q̂

(i)
K

]
is an C ×K confidence matrix of the

ith signal that collects the graph shifts’ individual confidence
vectors; and γ =

[
γ1 γ2 . . . γK

]
collects the discrimina-

tive powers of each graph shift,

γk =
e−(β/U)

∑N
i=l+1 M(q̂

(i)
k )∑K

j=1 e
−(β/U)

∑N
i=l+1 M(q̂

(i)
j )

.

Here, β is the decay coefficient that controls the distribution
of the discriminant power from all the graph shifts. The first
term in (7) represents the contribution from all labeled signals.
The second term in (7) represents the contribution from all
unlabeled signals; to obtain it, we fit weights to the confidences
from all the graph shifts . We use the labeling ratio to balance
these two terms. Since this is a convex optimization problem, it
is numerically efficient to solve. After weighting, we compute
the global decision as ŷ(i) = argmaxc q̂

(i)
c , where q̂(i) =

Q̂(i)ĥ (see Algorithm 1). For more details, see [9].
Relation to Diffusion Functions. Diffusion functions are

the graph-based semi-supervised classifiers [10]. The classifier
operates by propagating known labels using the transition
matrix a finite number of times. Given a transition matrix W
and a prior confidence matrix Q̂pr, the posterior confidence
matrix Q̂ps is obtained by Q̂∗

ps = Q̂∗
prW

t, where ∗ denotes
the Hermitian transpose and t is the transition time. If the filter
coefficient h is a Kronecker delta impulse at position t, then
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Algorithm 1 Adaptive graph filter

Input X input dataset
Q̂pr prior confidence matrix

Output Q̂ps posterior confidence matrix

Parameters Pi,j graph shift
hk filter coefficients

Function AGF(X , Q̂pr)
Pi,j = (2) graph shift construction
h = (7) filter coefficient optimization
for k = 1 : K do filtering

Q̂k = PkQ̂pr

Q̂ps =
∑K

k=1 hkQ̂k weighting
return Q̂ps

h = δt, the adaptive graph filter coincides with the diffusion
function. Hence, diffusion functions form a subset of the
adaptive graph filters that have only one non-zero coefficient.
In practice, it can be hard to determine the required transition
time; as a consequence, the performances of diffusion functions
can be susceptible to initial conditions. In contrast, the adaptive
graph filter learns the contribution from each transition time by
using (7).

Relation to Diffusion Wavelets. Diffusion wavelets are a
multiscale framework for the analysis of signals with complex
structure [5]. They can be seen as an extension of the classical
wavelet theory, where, the diffusion wavelet basis is learned
from the geometry of the signal structure in a data-adaptive
way. A diffusion wavelet basis is constructed by dilation using
the dyadic powers of the transition matrix, the idea being
that they propagate local relationships to global relationships
throughout the graph.

Given a graph with the transition matrix T , the transition
matrix at the jth resolution level is T 2j , j = 1, 2, . . .. Since
the second singular value of the transition matrix is less than 1
to keep the graph connected, only the first singular value is 1.
Consequently, if the transition matrix is raised to a high power,
all the singular values disappear except for the first one,

λ2
j

i → 0, i = 2, 3, . . . , N as j →∞.

When j = 1, the transition matrix T measures local pairwise
similarities; increasing the power j gradually decreases the rank
of the transition matrix T 2j and causes local information of the
graph to be missed since the resolution on the graph changes
from finest to the coarsest. Thus, by changing j, we can both
perform a multiresolution analysis as well as doing it in a
computationally efficient manner.

The adaptive graph filter in (3) is formed as a linear
combination of graph shifts P raised to power k. When k
is large, P k become a low-rank matrix describing the global
information of the graph. Since the graph filter P is defined
as the Hermitian transpose of the transition matrix T in (2),
P k works for the adaptive graph filter just as T 2j does for
diffusion wavelets. Each k corresponds to a different resolution
on the graph, and thus, adaptive graph filter actually performs
multiresolution classification on the graph. It weighs the clas-
sification results from each resolution to produce the global

result. The filter coefficients represent the discriminative power
of each resolution.

IV. EXPERIMENTAL RESULTS

In this section, we apply adaptive graph filtering to classi-
fication of online blogs and damage identification in indirect
bridge structural health monitoring.

A. Classification of Online Blogs

Dataset. We consider 1224 online political blogs that we
wish to classify as conservative or liberal based on their con-
text [11]. The graphs corresponding to each blog are obtained
by tracing hyperlink references between blogs.

Experimental Setup. We perform a binary clasification, and
vary the labeling ratio as 0.5%, 1%, 2%, 5% and 10%; in
other words, we label 6, 12, 24, 60, 120 blogs, respectively.
We considered two methods for which nodes to label initially:
random selection, and selection of blogs with most hyperlinks.
We ensure we have the same number of signals from both
classes in the labeling dataset and compare the performances of
the diffusion functions (DF) and adaptive graph filters (AGF).
We choose the transition time t = 2, filter length K = 10
and the decay coefficient β = 1, and perform a 30-fold cross-
validation.

Results. Fig. 1 shows the dependence of classification ac-
curacy on the labeling ratio for the two selection mechanisms.
Both show similar trends: adaptive graph filter works consis-
tently better than diffusion functions. Another interesting obser-
vation is that when labeling ratio is low, initial labeling with
most hyperlinks provides better accuracy, but when labeling
ratio is sufficiently high, initial labeling with most hyperlinks
has no advantage over initial labeling with random selection.
The reason is that when labeling ratio is low, nodes with higher
degree propagate labels to more nodes, but when labeling ratio
is high, a large number of labeled nodes has the same effect.

(a) Random selection. (b) Most hyperlinks.

Fig. 1: Accuracy as a function of the labeling ratio.

B. Damage Detection in Bridge Structure Monitoring

Dataset. We built a lab-scale bridge-vehicle dynamic system
and put a sensor on a vehicle, and let it move across the
bridge. We capture vibration characteristics of the bridge from
the vibration of the traversing vehicle through the acceleration
signal. We collected 30 acceleration signals for each of 13
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V S AGF DF SVM

1 1 87.98 83.70 57.97
2 89.55 85.78 70.42
3 89.91 86.25 74.29
4 93.87 88.08 74.82
5 77.64 74.87 70.68
6 85.24 82.43 67.13
7 66.23 65.31 59.48
8 67.11 66.52 56.53

2 1 80.99 78.17 49.75
2 70.32 67.30 53.64
3 86.09 82.50 67.96
4 82.86 79.57 61.52
5 81.22 77.92 62.75
6 81.73 80.17 66.89
7 85.48 82.87 65.09
8 82.57 80.32 48.57

TABLE II: Accuracy comparison of Vehicles (V) 1 and 2,
with Speeds (S) 1, 2, . . . , 8, and labeling ratio of 10%.

different bridge conditions, 8 different speeds and 2 different
vehicles, for a total of 6240 acceleration signals [8], [12].

Experimental Setup. Given a specific vehicle driven at a
specific speed, we want to classify 13 bridge conditions, in
particular with a low labeling ratio. We have 16 vehicle-speed
cases for each of which there are 30 acceleration signals per
13 bridge conditions, and vary the labeling ratio as 10%, 30%,
50%, 70% and 90%; the final accuracy is the average over the
13 scenarios.

We ensure we have make the same number of signals from
both classes in the labeled dataset. To reduce dimensionality of
the raw acceleration signals, we conduct principal component
analysis on all the signals and preverve 95% energy [6].
We then compare the performances of kernel support vector
machine (SVM), which is a standard classifier that works
through maximizing the margins of different classes [6], the
diffusion functions and the adaptive graph filter. We construct
a k = 4 regular graph (each vertex connects to 4 neighbors).
We choose the local measurement ρ to be the cosine distance,
scaling coefficient σ = (1/N2)

∑
i,j ρ(x

(i), (x(j))), transition
time t = 8, filter length K = 30, the decay coefficient β = 1,
and the penalty threshold T = 0.02, and perform a 30-fold
cross-validation.

Results. Table II compares the performance of different
classifiers with the low labeling ratio of 10%. We use V for
vehicle and S for speed. In our experiments, kernel support
vector machine performs poorly, diffusion function produce
better accuracy, while the adaptive graph filters yields the
highest accuracy.

Fig. 2 shows the dependence of classification accuracy on
the labeling ratio for 2 vehicles averaged across 8 speeds. Both
figures show similar trends; as the labeling ratio decreases,
accuracy of SVM drops sharply; performances of diffusion
function and adaptive graph filter stay relatively flat even
at very low labeling ratios; and adaptive graph filter works
consistently better than diffusion functions.

(a) Vehicle 1. (b) Vehicle 2.

Fig. 2: Accuracy as a function of the labeling ratio.

V. CONCLUSIONS

We presented an adaptive graph filtering technique for data
classification based on a semi-supervised optimization algo-
rithm that uses both labeled and unlabeled signals to learn
the filter coefficients. Adaptive graph filters combine decisions
from multiple graph filters to form a global decision. We also
discussed the connection between adaptive graph filters and
diffusion wavelets, and demonstrated their application to data
classification and indirect bridge structural health monitoring.
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