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Anderson, Eric William (Ph.D., Computer Science)

Integrated Scheduling and Beam Steering for Spatial Reuse

Thesis directed by Associate Professor Douglas Sicker and Associate Professor Dirk Grunwald

This document describes an approach to integrating antenna selection and control into a time-

division MAC scheduling process. I argue that through such integration it is possible to achieve

greater spatial reuse and interference mitigation than by solving the two problems separately.

Without coupling between the MAC scheduling and physical antenna configuration processes, a

“chicken-and-egg” problem exists: If antenna decisions are made before scheduling, they cannot be

optimized for the communication that will actually occur. If, on the other hand, the scheduling de-

cisions are made first, the scheduler cannot know what the actual interference and communications

properties of the network will be.

This dissertation presents algorithms for optimal spatial reuse TDMA scheduling with recon-

figurable antennas. I present and solve the joint beam steering and scheduling problem for spatial

reuse TDMA and describe an implemented system based on the algorithms developed. The algo-

rithms described achieve up to a 600% speedup over TDMA in the experiments performed. This is

based on using an optimization decomposition approach to arrive at a working distributed protocol

which is equivalent to the original problem statement while also producing optimal solutions in an

amount of time that is at worst linear in the size of the input. This is, to the best of my knowl-

edge, the first actually implemented STDMA scheduling system based on dual decomposition. This

dissertation identifies and briefly address some of the challenges that arise in taking such a system

from theory to reality.
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Chapter 1

Introduction

The thesis of this dissertation is that integrating physical-layer antenna control with MAC-

layer scheduling allows reduced interference and greater spatial reuse in dense wireless networks.

Without such integration, a “chicken-and-egg”problem exists: If antenna decisions are made before

scheduling, they cannot be optimized for the communication that will actually occur. If, on the

other hand, the scheduling decisions are made first, the scheduler cannot know what the actual

interference and communications properties of the network will be. In the current state of the art,

minimal consideration is given to this integration: The few studies that consider scheduling in the

context of steerable antennas optimize the antennas involved in each link for that link in isolation,

without considering any other links, actual or possible.

I find significant gains by integrating scheduling with antenna reconfiguration. This work

does not have the level of direct comparative evaluation I would like, but the available comparisons

are quite promising. A simulation analysis of the algorithm developed in this dissertation shows

a speedup relative to simple TDMA of up to 600%. In many of these cases, simple TDMA is

the highest-reuse schedule that can be shown to be safe without knowing the gains from antenna

configuration. Small-scale empirical studies performed on the WART testbed show that that simple

techniques such as greedy approaches to antenna steering and scheduling result in substantial

interference between neighboring links.
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1.1 Summary of Results

This dissertation develops a distributed scheduling mechanism for spatial reuse in TDMA

networks with reconfigurable antennas. There are three primary contributions: (1) A set of algo-

rithms for integrated beam steering and scheduling with a mathematically sound foundation, (2)

an implemented, deployed, and tested MAC system based on those algorithms, and (3) a general

decomposition framework for this and related problems. This is the first implemented system for

optimization decomposition-based wireless scheduling, though there is a significant body of theory,

and Lagrangian coupling between the MAC and higher layers has recently been implemented by

others. This work develops a dual-decomposition approach to the underlying problem of identifying

optimal activation sets of concurrent links, including the configuration of those links.

1.2 Rationale

There are significant gains to be had from integrating scheduling with antenna reconfigura-

tion. Many spatial-reuse scheduling algorithms have been proposed (see 2.2), but in general they

do not allow for antenna configuration changes. That is, they regard the received power from any

given transmitter at any other receiver as either fixed or as a simple function of the transmitted

power level. Consequently, if such a scheduling process is used for stations that do have dynamic

antennas of some sort, the best the algorithm can do is to assume one of the possible configurations

and schedule as though that were the only option. If an antenna reconfiguration process – however

well-designed – occurs after the scheduling process, it may improve the quality of the selected links,

but it cannot enable additional links. Conversely, if antenna configuration were to occur before the

scheduling process, it could at best make decisions to improve the average quality of all possible

combinations of links, but it would have no basis for choosing which subset to prioritize when there

are conflicting options. Some level of coupling between the two processes is necessary in order

to achieve the network’s full potential capacity. A small number of studies have considered the

combination of reconfigurable antennas and spatial reuse scheduling (see 2.3), but they have not



3

examined the integration question: One paper assumes perfect beam forming (no interference at

all) [Cain 03], and the others assume that each node always steers directly at its communicating

partner.

1.2.1 Example Scenario

Consider the following simplified scenario, shown in 1.1a: Stations A, B, C, and D are ar-

ranged in a square. The station in the lower right (D) corner has traffic for the station in the upper

left (A), and the station in the upper right (B) has traffic for the station in the lower left (C).

This is assuming truly uni-directional communication; any responses, including acknowledgements,

from the receiver to the sender would be part of a separate data flow. Suppose that each station

has a steerable antenna with an idealized “pie wedge” pattern like that shown in 1.2. Assume that

the main lobe width is slightly greater than π
2 , and the peak to null ratio (main lobe to back lobe

ratio) is 20 dB. Assume also that the difference in path loss between all pairs of stations is ≤ 5 dB.

Suppose that some minimum signal to interference and noise ratio (SINR) is required for both of

the links (D → A and B → C). Let this value, SINRmin be ≥ 10 dB.

Assume reasonable but separate algorithms for link scheduling and antenna configuration.

Suppose that the antenna configuration phase occurs first: At configuration time, each node does

know which other (single) node it will be communicating with, but has no information about which

other nodes or links are going be active. One optimal configuration decision would be for each node

to point its main lobe directly at the node with which it will be communicating, as depicted in 1.1b.

With this antenna configuration, the two links are mutually exclusive. Every node includes every

other node in its main lobe, and so the directional antennas do nothing to mitigate interference.

The received power of link D → A is PTxD ∗2∗main lobe gain ∗LossDA. The received (interfering)

power of link B → C at A is PTxB ∗ 2 ∗ main lobe gain ∗ LossBA, so the SIR is (in log units)

PTxD − PTxB − (LossDA − LossBA). Assume that the transmit power at B (PTxB) equals the

transmit power at D (PTxD). Then, the SIR is ≤ (LossDA − LossBA), which we here assume is

at most 5 dB (and is perhaps more likely -5 dB). Thus, link D → A cannot achieve its necessary
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SINR while B → C is operating. By the same argument B → C is also precluded by D → A. If

PTxB 6= PTxD, one of the two links has its SINR reduced by the difference, so it remains impossible

to operate both links simultaneously. The scheduling algorithm therefore is forced to schedule the

two links for different time slots. The minimally-integrated steering described in 2.3 is equivalent to

schedule-unaware antenna configuration in this scenario: The difference between the two is that if

any station were participating in multiple potential links, the antenna would be oriented correctly

for each link when that link is considered. In this scenario, every station participates in only one

potential link, so the difference is moot.

Suppose instead that the scheduling phase occurs before the antenna configuration phase.

Assume that the scheduler cannot know how good the best antenna configuration will be, and that

it must produce a feasible schedule. The scheduler must then make some conservative estimate

of what benefits antenna reconfiguration will deliver, and schedule accordingly. Without violating

the assumption that the two processes are separate, the scheduler’s estimate cannot be expected to

do better than the antenna configuration described above. The scheduler then cannot expect that

B → C and D → A can be made mutually compatible, and again must schedule them for different

time slots. Once that scheduling decision has been made, the configuration phase cannot do any

better than what was described in the previous paragraph.

A jointly-optimized beam pattern is shown in 1.1c. The antennas are configured to minimize

the gain for B → A and D → C interference. With this configuration, the links are not mutu-

ally exclusive: The SIR for D → A is PTxD − PTxB − (LossDA − LossBA) + 2(main lobe gain −

back lobe gain). By our earlier assumptions, that reduces to 2(main lobe gain − back lobe gain)±

5 = 2(20)±5 dB. As long as the transmit power PTxD can be set to at least 40−SINRmin−5 = 25

dB higher than the noise floor, the link can achieve an SINR of ≥ SINRmin. By a parallel ar-

gument, C → B can also meet the SINR requirement. Because this configuration makes these

links compatible, they can both be scheduled in a single time slot, approximately doubling the

throughput.

In a scenario this simple, the level of antenna-scheduler integration required to achieve the
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improved result is minimal: During antenna configuration, it suffices to know that the scheduler

would like to schedule C → B and D → A together if possible. Since those are the only links

in the scenario, that seems obvious. If, however, there are even a modest number of possible link

combinations, the antenna configuration cannot be simultaneously optimized for all of them. In

this case, even if the antenna configuration process has full knowledge of the possible links and

their properties, it has almost no information about what subset is useful to optimize. Suppose

the “x” scenario is a subset of a larger network, shown in 1.1d. When the greyed-out stations and

links are considered, there is no reason to believe that an antenna configuration process, isolated

from the scheduler, would arrive at the configuration shown. The links involving stations 1, 2, and

3 would likely have interference problems, and the links connecting 4, 5, and 6 to A and C would

likely have poor signal strength. There are any number of reasons why the black links might be

the most important to schedule at a given moment, but that information would generally not be

available to an isolated beam-forming process.

The scenario described is a simplification of reality, primarily in that the antenna pattern

is discrete and the link SINR requirements are given as a simple cutoff rather than a continuous

function. These simplifications are made for illustrative purposes only, and comparable situations

occur without them.

In the preceding scenario, the integrated decision process achieves twice the perfor-

mance of any non-integrated process, where performance is measured in terms of the number

of time slots required to service the given demand. Note that the decision processes discussed do

not assume any particular algorithm; rather they represent the best∗ decisions possible given the

assumed objectives and available information for each category of process. They are thus upper

bounds on the performance that can be expected from any algorithms having the type of integra-

tion described. It is clear that situations exist in which more thorough integration can provide

∗ In the case of this artificial pie wedge antenna pattern, there are continuous ranges of angles that have exactly
the same gain and therefore there is an infinite set of equally optimal configurations. “Best” in this case means that
the chosen configuration is one of the optimal choices. With any real antenna gain pattern, one would expect a
finite number of positions achieving any particular gain, and thus a finite number of optimal choices – usually one.
In general, the single position in any given lobe having the highest gain occurs near the center.
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substantial performance improvements.

1.2.2 Empirical Study

To understand the effects of this phenomenon on a real network, we conducted an empirical

study using a wide-area phased array testbed of seven nodes† . Considering all feasible two-link

transmission sets (e.g. {A → B, C → D} with each link using its independent best (greedy)

antenna patterns, we find significant inter-link interference. The distribution of observed signal

to interference ratios (SIRs) is shown in figure 1.3. The reference lines mark 10.5 and 26.5 dB,

which are theoretical signal to noise (SNR) thresholds‡ to achieve a bit error rate (BER) of 10−6

using two common modulation schemes, BPSK and 64 QAM [Freeman 97]. Pairwise interference

is sufficient to preclude BPSK and 64 QAM at this BER in 28% and 74% of cases, respectively.
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Figure 1.3: Interference between neighboring links when greedy antenna patterns are used. Ref-
erence lines show theoretical SNR values for 10−6 BER with BPSK (10.5 dB) and 64-QAM (26.5
dB) modulation schemes.

This study also included sender-to-sender signal propagation. This is not directly relevant

† This work in particular was done in cooperation with Caleb Phillips.
‡ These SNR thresholds are roughly comparable with SIR numbers, if the interfering signal is close to Gaussian

noise and other sources of noise and interference are negligible.
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to TDMA networks but is highly significant for CSMA systems. Figure 1.4 shows an empirical

CDF of the power received from any link’s transmitter at the transmitter of another link, when

both links are using greedy antenna configuration. Note that the cut-off at -95 dBm reflects the

minimum signal strength our equipment was able to detect; the actual values could be anything

≤ −95 dBm. The reference line at -90 dBm indicates a plausible threshold for carrier detection§ .
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Figure 1.4: Sender-to-sender signal strength on neighboring links when greedy antenna patterns
are used.

These sender-sender conflicts could – but in general do not – correspond to interference at the

receiver side. This disconnect between the channel as sensed by the transmitter and the channel

as experience by the receiver is one of the major reasons why I chose to explore TDM-style MACs

rather than CSMA in this work.

1.3 Overview of Research

The purpose of this dissertation is to propose and evaluate algorithms for integrated schedul-

ing and physical-layer beam selection, and to characterize the range of options for such integration.

§ The lowest threshold mandated by the IEEE 802.11a,b,g specifications is -82 dBm [IEEE 99, §17.3.10.5] but
many devices implement adaptive and/or tunable energy detection thresholds
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Section 1.3.1 gives a brief statement of the problem. This is developed more fully in chapter 4.

1.3.1 The Joint Beam Selection and Scheduling Problem

The joint beam selection and scheduling problem is a proposed formalization of the problem

this research is investigating. It is intended to make the objectives and assumptions more concrete.

What follows is a “template” definition: Different solution approaches will formalize the objectives

and constraints differently, but all are addressing the problem outlined here.

Joint Beam Selection and Scheduling (JBSS):

Assume:

• A set of stations, each of which has some possibly infinite set of possible physical-layer config-

urations.

• A propagation environment with characteristics specific to each combination of sender, sender

configuration, receiver and receiver configuration.

• A one-hop link demand ≥ 0 for each (sender, receiver set) tuple. There are multiple ways of

conceptualizing demand, among them: An infinite workload with relative priorities, a fixed set

of resources which must be provided (e.g.rates which must be supported), a function mapping

vectors of flow rates to aggregate utility, or a best-effort injection rate. This work will generally

consider the first type.

Compute a joint schedule consisting of:

• A sequence of time slots having definite lengths.

• An assignment of which nodes may transmit to which other nodes during each slot.

• An assignment of a physical-layer radio configuration to each node for each slot.

Such that:

• The set of communications scheduled for any single slot has acceptable intra-set interference.
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• The set of communications scheduled for any single slot meets any other applicable feasibility

requirements, such as ensuring that nodes participate in only one concurrent link for each radio

interface.

• The given demand is serviced appropriately, for the definition in use.

1.3.2 Purpose

This dissertation describes an approach to solving the antenna configuration and scheduling

problems together, so that the antenna and scheduling decisions are appropriate for each other.

I had originally considered two distinct approaches to integrating the two: Combined decision

space in which a single decision process is run over the combined space of schedules and configura-

tions, and iterative refinement, in which the two problems are considered in alternating phases.

In practice, however, the approach developed is both: the process developed iteratively solves for

antenna and scheduling components, but they are coupled in a way that the overall properties are

well-defined with regard to the combined problem.

This research addresses to some extend the systems aspects of the problem as well as the

mathematics. This means two things: First, the algorithms proposed are implemented in a deployed,

running system, which is deployed on the test bed described in Appendix C on page 216. Second,

“real world” aspects of the system are considered.

1.4 Definitions

This section provides definitions for terms that are used ambiguously in the literature. Within

this document, the terms in Table 1.1 on the next page are used with the definitions given.

1.5 Organization

This dissertation is organized as follows: Chapter 2 discusses relevant prior work. Spatial-

reuse scheduling with directional antennas is surveyed exhaustively, and salient work in related
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Term Definition

Configurable antenna Any of the following:

Switched-beam antenna(s)
An antenna or set of antennas providing a finite set of gain
patterns from which the user can select one at a time.

Steerable antenna

An antenna having a pattern that is fixed except for rota-
tion, and can be rotated continuously in the azimuth and/or
elevation planes. (An antenna that can be rotated only in
discrete increments is effectively a switched-beam antenna)

Beam-forming antenna

An antenna having a pattern that can be varied continu-
ously in real-time to optimize some signal property. Espe-
cially an antenna that uses pilot tones to maximize the SIR
for one or more pre-determined stations.

Table 1.1: Definitions used in this document.
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areas is discussed. In particular, spatial reuse generally (sections 2.1 and 2.2) and optimization

decomposition (section 2.8 on page 40) are discussed significantly. Chapters 3 and 4 present the

mathematical formulations and decomposition. Chapter 5 addresses systems aspects of the math-

ematical formulation. Finally, performance evaluation is presented in Chapter 6.

There are three appendices addressing research methods. Appendix A discusses modeling

antenna effects in real environments, and Appendix B presents simulation methods based on the

models developed in Appendix A. Appendix C discusses the Wide Area Radio Testbed which was

built to support this work and other phased array antenna research. Finally, Appendix D gives the

AMPL models for the optimization problems.



Chapter 2

Related Work

This dissertation builds on several areas of research in computer science, radio engineering,

and mathematical optimization. The two most immediately related bodies of work are those on

transmission scheduling and networking with directional antennas.

2.1 TDMA and Spatial Reuse

One of the most basic medium access protocol ideas is Time Division Multiple Access (TDMA).

The core notion is that time is divided into slots, and each slot is assigned exclusively to one trans-

mitter [Hultberg 65, Aein 65]. Generally, consecutive slots are grouped into frames and every

station with data to transmit is assigned one or more slots with each frame. This assignment

is referred to as a schedule. In most cases, the schedule is fixed across a span of many frames

[Schwartz 66, Wittman 67].

Time-Division Multiplexing (TDM) of logically separate data streams between the same

physical nodes dates back to telegraphy. TDMA differs in that physically-separate stations share

a common medium on a time-division basis. The earliest use of TDMA of which the author is

aware is in the point-to-multipoint context of ground-to-satellite communication. In this context,

many earth stations are attempting to communicate with a single orbiting satellite – or with each

other, using the satellite as a repeater – and so the satellite’s radio interface is the primary scarce

resource. This is largely the same situation faced by base station-based terrestrial networks, such

as cellular telephony, WiFi, and WiMax, so long as a single base station and its associated clients
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are considered in isolation.

Multipoint-to-multipoint communication is fundamentally different in that no single station is

necessarily a bottleneck. Usable spectrum across the set of potential receivers is the primary scarce

resource. So long as the receivers have sufficient separation – meaning difference in attenuation

of signals from any given transmitter – it is possible for multiple concurrent transmissions to

occur without the need for frequency or code division. Spatial-reuse TDMA (STDMA), originally

proposed by Nelson and Kleinrock, is an extension to TDMA in which multiple transmitters can

be assigned to any given time slot [Nelson 85]. Spatial reuse is fundamentally different from time,

frequency, or code division multiple access in that it represents an increase in channel capacity,

or perhaps a broader definition of the channel, while the others are all techniques for subdividing

a fixed channel capacity.

It is generally unreasonable for all nodes which have data to communicate to transmit si-

multaneously. Theoretically, any combination of links is possible: If each link is regarded as a

Gaussian channel, and all unwanted transmissions arriving at a receiver are assumed to be additive

noise, each channel will have a non-zero information capacity. However, many combinations are very

poor. Consider a set of links L1 having aggregate information capacity C1. Let Cl =
1
2 log(1 +

Pl

Nl
)

be the capacity of any link l, where Pl and Nl are the power constraint and noise variance of link

l [Cover 91]. Then C1 =
∑

l∈LCl. Consider adding an additional link k. The received power from

link k’s transmission at the receiver of every link l increases the noise variance Nl by some increment

Nkl. This causes a loss of capacity due to interference Ikl =
1
2 log(1 +

Pl

Nl
)− 1

2 log(1 +
Pl

Nl+Nkl
). The

links in L1 experience a total loss of capacity due to interference IkL1
=
∑

l∈L1
Ikl. Let L2 be the

set of links L1
⋃
{k} formed by adding k. Let Ck be the information capacity of k, given the noise

from all the other links in L2. The aggregate capacity of L2, C2, is given by C2 = C1 + Ck − IkL1
.

Note that IkL1
can easily be greater than Ck, in which case adding link k results in a reduction in

capacity. Note also that as the number of links in L1 increases, IkL1
increases because it is summed

over more links, and Ck decreases because the noise variance Nk is also summed over more links.

Figure 2.1 shows the effect of spatial reuse in a Gaussian channel and a very simplified scenario
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Figure 2.1: Aggregate capacity of interference-limited Gaussian channels.
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in which every link creates the same level of Additive White Gaussian Noise (AWGN) interference

for every other link. The scenario is artificial, but it illustrates a few key points: First, even looking

at an ideal upper bound with no real-world implementation limitations, there is a diminishing

return as the number of links grows, and the maximum capacity can be reached with a relatively

small number of links. Second, the ratio of any given transmitter’s power received at the intended

destination (signal) to that received at other destinations (interference) determines the maximum

aggregate capacity possible. Put differently, the capacity of a set of concurrently-transmitting links

depends on the level of RF separation between the links. Guo et al. present an analytical model of

minimal inter-transmitter spacing for re-use [Guo 03]. When real-world limitations, such as limited

modulation options, packet error rate requirements, or minimum flow rates are included, many

concurrent link groups become not just inefficient but impossible.

2.2 Transmission Scheduling for STDMA

The problem of transmission scheduling or link scheduling is to choose a sequence of

link sets such that the links in each set can operate concurrently with acceptably low interference,

and the overall sequence meets some predetermined objective. For the purposes of this dissertation,

I am concerned with explicit, pre-computed schedules assigning nodes or links to specific time

slots. This is in contrast to on-demand contention resolution procedures (including CSMA) which

are sometimes described as scheduling. The primary difference between scheduling for ordinary

TDMA and STDMA is the complexity of choosing concurrent link sets. Without spatial re-use, the

set of such sets is given: Every transmitter (or link) with data to send is a set. With spatial re-use,

the possible link sets are the power set of the set of links, so for m links, there are 2m possible link

sets. Depending on the node degree distribution, for a strongly-connected network with n nodes,

n ≤ m ≤ n2, so the asymptotic complexity of the number of possible link sets is between O(2n)

and O(2n
2

). In general, identifying the best sets is NP-hard, and determining whether a given set

of end-to-end flow rates is feasible is NP-complete. Arikan gives a reduction from CLIQUE to the

~f -feasibility problem in [Arikan 84]. The scheduling problem without interference, however, can
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be solved in polynomial time [Hajek 88]. Ephremides shows that optimally scheduling broadcasts,

as opposed to links, is still NP-hard [Ephremides 90]. Sharma et al. show that for a simplified K-hop

exclusion interference model (where Hajek effectively studied the K = 1 case), optimal scheduling

is NP-hard for K > 1 [Sharma 06].

It is worth noting that spatial-reuse scheduling can be done with frequency or code divi-

sion as well as time division. Although the problems have very similar conceptual structure, they

have different implementations [Wittman 67, Ramanathan 97]. This dissertation is focused on time

division because it is easier to implement and understand a system which changes antenna charac-

teristics between time slots than one which simultaneously has controllably different characteristics

for different frequency bands or different codes. It is conceivable that a phased-array antenna with

broadband sampling of every element and digital beam-forming as described in [Godara 04] could

duplicate the samples, filter the copies by frequency band or code, and perform separate frequency-

domain beam-forming for each stream. Such functions are beyond the capabilities of the hardware

employed in this research, and FDMA and CDMA will not be addressed further.

There have been several STDMA-like suggestions in which there is no global scheduling

process, but local time-division rules allow spatial reuse: A virtual-circuit establishment algorithm

for something very much like STDMA was suggested in [Pond 89]. The interference model is

minimal, but no two stations which can communicate with each other can assign themselves the

same slot. In [Das 07] the authors propose local-neighborhood priority queueing: The station with

the longest queue within a (presumed) interference region gets the channel. This is deemed to be safe

only because a prior admission-control layer prevents end-user stations from injecting traffic above

their (feasible) allowed rates. A similar technique is explored in [Warrier 08, Warrier 09], which use

multiple-priority CSMA/CA to achieve a similar effect. Both of the preceding are implementations

of differential backlog based backpressure (π0) from [Tassiulas 92]. Another contention-

resolution process for spatial reuse is given in [Bao 03].

There are three main tasks in creating a spatial re-use schedule:
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(1) Identifying good sets of concurrently-useable links. This accounts for the vast majority of

the computational difficulty, and is the main source of difference between STDMA schedul-

ing approaches. This is also the aspect which is primarily responsible for the interaction

between scheduling and antenna configuration.

(2) Choosing how much time to allocate to each set. This can be 0, and probably will be for

almost all sets. So long as the overall utility of the network is defined as a linear function

of the various flow rates achieved, this reduces to a linear programming problem.

(3) Choosing the order in which link sets are activated. This is closely-related to scheduling

as understood in the wired network and operating system contexts. It has a significant

impact on the quality of service (QoS) properties of a network [Zhu 98, Fattah 02, Liao 02,

Wallin 03, Kozat 04, Luo 04, Salonidis 04, Salonidis 05, Rangnekar 06, Zou 06a, Zou 06b,

Djukic 07b, Djukic 08, Zhang 08] but little on the long-run aggregate throughput. This

interacts with antenna configuration only to the extent that some orders may involve more

reconfigurations that others. [Liu 01] shows that very fine-grained scheduling can increase

performance by letting users claim time slots when their conditions are favorable. A game-

theoretic analysis of how often users should test the channel and when they should choose

to claim it is given in [Zheng 07].

(4) Choosing the duration of time allocations. Abstractly, 1 interval of 1 second every 10

seconds 1 ms every 10 ms have the same capacity, but they have very different latency

and responsiveness. Due to the effect of delay on TCP and similar congestion control

mechanisms, even the capacity – as actually realized – will differ.

The first task is at the core of the work in this dissertation. The way one regards interference

largely determines the options for addressing task. A boolean approach assumes that for each

link there is some threshold of interference below which the link is usable and above which it is

not. This effectively corresponds to assuming a fixed signal modulation and some packet error

rate beyond which the link isn’t worth using. Under a binary model of interference, the best
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sets of links are the maximal sets, that is those which activate as many links as possible without

violating any link’s interference constraints. Boolean conflict models can further be subdivided into

ones which consider only pairwise interference and those which consider cumulative interference.

A continuous approach, on the other hand, regards throughput (or goodput) as a continuous

function of the signal strength and interference level. This corresponds to assuming that a link can

choose modulation and coding schemes to take advantage of whatever SINR is available, as in the

Gaussian channel information capacity discussion above. Many real systems (such as the 802.11

phy layers) fall in between these two cases, having a finite set of modulation and coding options

to choose from. Figure 2.2 shows a classification tree of the interference models used in scheduling

research.

2.2.1 Pairwise link conflict models

Pairwise conflict models consider interference between pairs of links. A pairwise conflict exists

between two links if they cannot both operate simultaneously, assuming that no other transmissions

are occurring. Conflict determinations are generally based on the strengths of the intended and

interfering signals, or on empirical evidence of interference-based packet loss. In some of the simpler

models, conflicts are assumed based on geographic position or minimum path length. When actual

propagated signal strength is measured, conflict can be defined in terms of pure SINR or in terms

of protocol-specific behaviors. In general, define a SINR requirement for a link ij as:

received signal from i at j

noise at j + interference at j
≥ threshold γ1

Let Pi denote the transmit power of node i, Lb(i, j) denote the path loss between nodes i and

j, Nj denote the receiver noise figure at node j, and γ1 denote the requisite SINR (see table 3.1 on

page 65). Simplifying for links ij and kl, the preceding inequality becomes:
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Figure 2.2: Classification tree of interference models used in spatial-reuse scheduling.
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Pi

Lb(i,j)

Nj +
Pk

Lb(k,j)

≥ γ1 (2.1)

Pk

Lb(k,l)

Nl +
Pi

Lb(i,l)

≥ γ1 (2.2)

Some studies add additional pairwise constraints based on CSMA/CA or 802.11 specifically.

These generally require that the received power of one transmission at the other transmitter

be below the threshold required to trigger backoff. Similar requirements relating to RTS/CTS

mechanisms may also be considered.

The primary advantage to pairwise conflict models is computational simplicity. Because they

are computed over the set of link pairs, having cardinality 1
2m

2, where m is the number of links,

these models do not incur the exponential computational complexity discussed at the beginning of

Section 2.2. Because 1
2n ≤ m ≤ 1

2n
2, where n is the number of nodes, the size of the link-pair set

is between O(n2) and O(n4). This in turn means that it is frequently feasible to enumerate all of

the links and conflicts and use normal graph algorithms to partition the set into conflict-free sets.

The disadvantage is that the cumulative interference from multiple links is not considered. To

the extent that interfering signals can be modelled as independent Gaussian processes, interference

is additive. Consider the spatial re-use model in Figure 2.1. The leveling-off in information capacity

reflects the additive effect of interference. A model which lacks this effect will predict that link

groups can grow arbitrarily large while maintaining a linear growth in capacity. Interfering signals

are not necessarily actually independent Gaussian processes, but that has been shown to be a good

model for at least M-QAM and spread-spectrum CDMA, as discussed in Rappaport, appendix E

[Rappaport 01] and Freeman, section 13.7 [Freeman 97].

Pairwise link-conflict models are used in the following papers:

• Scheduling: [Behzad 07], [Chen 06] (the distributed algorithm), [Chlamtac 87], [Das 07]

(which uses a 3-hop neighborhood pairwise model), [Djukic 07a], [Djukic 07b],

[Koutsonikolas 07], [Kodialam 03], [Kodialam 05], [Sharma 07], [Luo 00],[Salem 05],
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[Kozat 04], [Rhee 06, Rhee 09], [Pond 89] and [Lal 04a] (which use a 1-hop neighborhood

model), and [Bao 01]. The performance bounds of greedy pairwise algorithms are discussed

in [Wu 07].

• Channel assignment:

[Alicherry 05] [Kodialam 05] [Ramachandran 06] [Villegas 05] [Mishra 05] [Mishra 06a]

[Mishra 06b].

• Routing:

[Alicherry 05] [Awerbuch 04] [auf der Heide 02] [Kodialam 03] [Kodialam 05] [Wan 01].

• Topology control: [Huang 02] [Li 05b] [Ramanathan 00] [Wattenhofer 03].

• Analysis: [Garetto 05], [Kyasanur 05b]. For the assumption of “primary” – pairwise and

non-interference-aware – conflict, [Brzezinski 08] provides a characterization of the topolo-

gies in which greedy distributed algorithms can be optimal.

Early graph-based algorithms using only local information were proposed by Ephremides

and Truong [Ephremides 90]. Shor and Robertazzi extended the same ideas to be traffic-sensitive,

that is, to consider link load [Shor 93]. The well-known RAND algorithm for node (rather than

edge) scheduling uses a k-hop interference model for k = 2 [Ramanathan 97, Ramanathan 99].

An equivalent distributed protocol, DRAND, is presented in [Rhee 06, Rhee 09]. Ju and Cai

propose two theoretically interesting approaches to topology-transparent STDMA scheduling

[Ju 98, Ju 99, Cai 03]. They rely on simplified graph models of propagation and interference:

Nodes are either neighbors or they are not, and a conflict occurs if and only if two neighbors at-

tempt to communicate (other than with each other) in the same time slot on the same channel.

The algorithms proposed use the maximum degree of the graph and group-theoretic techniques to

produce a schedule such that every node is assigned at least one slot which is not assigned to

any neighbor. This guarantee is immune to graph changes so long as the maximum degree does

not increase, but the performance cost of this topology-independence is unknown as the authors do
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not compare their results with topology-aware techniques. Their work is based on [Chlamtac 94]

and [Ju 98], which share similar properties. This work is extended in [Oikonomou 04] to consider

letting nodes probabilistically “steal” time slots not assigned to them.

Genetic algorithm-based scheduling is proposed in [Chakraborty 04]. It is interesting in that

the author introduces feasibility-preserving mutation and crossover operations specific to STDMA

scheduling, and in that the algorithm converges on a solution in a modest number of generations.

Unfortunately, the paper uses a very simplistic graph-based model of interference, and the per-

formance results are not compared against any other techniques, so it is difficult to draw any

conclusions.

An empirical comparison of graph-based (pairwise-conflict) and interference-based (cumulative-

conflict) scheduling is given in [Grönkvist 01]. Behzad revisits this in [Behzad 03]. Balasun-

daram provides a survey of uses of graph-theoretic algorithms in networking, including wireless, in

[Balasundaram 06].

2.2.2 Aggregate Interference Models

Aggregate interference models consider the combined effect of interference from all active

links on all active links. This is significantly closer to reality than pairwise conflicts, but also much

more computationally difficult. Where L denotes a set of concurrently active links, let (i, j) ∈ L

be the transmitter and receiver of a given link. Using the notation of [Björklund 03], an aggregate

interference constraint for (i, j) would be of the form:

SINR(i, j) =
Pi

Lb(i, j)(Nrj +
∑

k 6=i,j|(k,l)∈L

Pk

Lb(k,j))
≥ γ1 (2.3)

This is essentially equivalent to equation (2.1), except that the path-loss term Lb(i, j) has been

reorganized to the denominator, and that the single interference term Pk

Lb(k,j) is replaced with a

summation over all transmitting nodes which are not i or j.

This is the interference model used in most of the recent STDMA scheduling literature. Brar

gives an algorithm GreedyPhysical, which appears to be identical to Grönkvist’s centralized
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algorithm, and proves an approximation factor ≪ O(n logn).

Interestingly, Gore combines the pairwise-conflict model with aggregate-interference-based

criteria [Gore 07]. In particular, it uses a graph-coloring algorithm in which new links are given the

“first conflict-free color.”

2.2.3 Continuous Link Quality

A continuous model of link quality as a function of interference is the most realistic and

general, but also the most complicated. As discussed in Section 2.1, the information-theoretic

channel capacity is a continuous function of the signal power limit and noise. If the modulation

scheme and power level are fixed, the bit error rate (BER) will be a function from the interference

level to the open interval (0,1). In practice, for any given modulation scheme, there will be a

minimum SINR below which real hardware and protocols fail to recognize the existence of a link

and so the effective BER is 1. On the other hand, there is no SINR high enough for the BER

to actually reach 0. In addition to throughput increasing as a result of diminishing BER on a

given modulation, better SINR generally allows more aggressive modulation (more bits per symbol

and/or more symbols per second), and so the practically-achievable throughput approximates the

theoretical capacity.

It is reasonable to regard scheduling as an optimization problem. Regardless of whether

or not one uses an algorithm that is directly rooted in mathematical programming, it is a useful

conceptual framework. The goal is to maximize (or minimize) some objective without violating

some set of constraints. Using a continuous model of link quality rather than a quality threshold

necessarily makes the interference model part of the objective rather than (or as well as) part of

the constraints. This implies the existence of a function M(·) mapping the vector of link qualities

~q to a vector of capacities or rates ~c, and a utility function U(·) mapping vectors of rates to real

numbers. M is given by the properties of any particular communication system, and U reflects the

design objectives of the network. There is no unique correct utility function, but “efficient-but-fair”

allocation tends to require a sub-linear function of rate, such as the logarithmic function show in
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equation 2.4 [Boche 05, Chiang 05a, Soldati 06].

U(~c) =
∑

i

log(ci) (2.4)

A linear utility function (corresponding to Kaldor-Hicks efficiency) will produce the maximum

aggregate throughput, but can easily produce starvation. Consider two links such that increasing

the power or time allocated to either necessarily diminishes the throughput of the other. Under

a linear utility function, unless the marginal rate of substitution between the two links is exactly

one, the highest utility outcome will be to assign all of the resources to whichever link has a higher

rate per unit of resources. Conversely, a strictly fair utility function (corresponding to Pareto

efficiency) such as max-min fairness will slow the entire network to the rate of the slowest link,

because it will assign marginal resources to the slowest link, no matter how minor the gain to

that link or how great the loss to the other links. Radunonvić refers to this as the “solidarity”

property and observes that it exists any time the capacity region is such that flow rates are fungible

[Radunović 04b]. This occurs when the limiting factor on multiple flows is a shared resource (e.g.,

a shared wired link or shared RF spectrum) which can be flexibly re-assigned. It does not occur

when different flows have different bottlenecks, and so reducing the resources allocated to one

does not benefit others. Good discussions of fairness and utility in rate allocation in general are

found in [Kelly 98, Massoulie 02, La 02, Briscoe 07, Zukerman 08]; wireless networks specifically

are discussed in [Huang 01, Tan 05, Eryilmaz 06, Boche 07].

Note that a number of proposals use an explicit U(~r) objective, but still use a simpler inter-

ference model (e.g., [Chen 06] is based on pair-wise conflicts). The work in [Eryilmaz 06] discusses

the integration of back-pressure scheduling [Tassiulas 92] with congestion control and routing

in the context of wireless dynamics. This is in principle open to sophisticated interference models

in that the process of identifying compatible activation sets is left open, as is the mechanism for

finding rate vectors meeting the stated objectives. Eryilmaz and Srikant note in particular that

they do not consider distributed scheduling.

Some work exists on routing and TDMA scheduling in wide-band channels using a contin-
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uous quality model [Radunović 04a]. The information capacity of a wide-band AWGN channel is

a linear function of the SINR, rather than logarithmic as is the case for narrowband channels.

Combined with the assumption of continuously-variable coding, this leads to properties distinctly

different from the other systems considered.

Two papers by Zhu and Corson discuss the protocol aspects of STDMA scheduling [Zhu 01b,

Zhu 01a].

2.3 STDMA with Antenna Considerations

This is the set of research closest to this dissertation. None of these closely integrate the

antenna configuration with the scheduling process, nor give serious consideration to decisions in

that space.

2.3.1 Opportunistic Antenna Reconfiguration

A minimal level of integration is to perform scheduling with no assumption of antenna re-

configurability, and have a separate process configure the antennas for whatever sets of nodes end

up being active together.

Jorswieck gives analytical models of the potential value of opportunistic beamforming as a

function of the distribution of the stations given [Jorswieck 07]. This does not explicitly address

scheduling, but it establishes desirable properties for a set of stations to have.

2.3.2 Scheduling Based on Assumed Antenna Capabilities

One set of papers assumes idealized high-level effects of using directional antennas, rather

than deal with the actual RF gains of specific antenna configurations. Such approaches are com-

putationally much easier, but the assumptions are often incorrect. Cain et al. assume that their

antennas have an effectively perfect directionality (“very narrow or zero beamwidth”) and there-

fore there will be no interference [Cain 03]. They then apply a graph-coloring based scheduling

algorithm based on that by Ma and Lloyd [Ma 98], with only the constraint that each node may
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have only one link active at a given time. (See also [Liu 98, Lloyd 02] for more discussion of the

scheduling protocol).

Sundaresan et al. present a scheduling approach for adaptive arrays based on their “degrees

of freedom” (DoF) [Sundaresan 06]. For a K-element array, it is possible to define K − 1 positions

having distinct relative power levels, so it is said to have K − 1 degrees of freedom. If one DoF is

used to specify the main beam direction (look direction) for the communicating partner, that leaves

K − 2 DoF which can be allocated to suppressing interference [Godara 04, section 2.4]. If there

is no requirement of a look direction, all K − 1 DoF can be allocated to creating nulls, but then

there is no assurance that the intended communication partner will have good (or even any) gain.

The Sundaresan algorithms are based on a pairwise interference model, with the extension that

each node is assumed to be able to “null out”K − 1 interfering links. This model is a substantial

simplification: K − 1 DoF only allows the gain to be independently controlled in K − 1 only for

very specific sets of directions: The directions must induce mutually orthogonal antenna vectors

for the arrays in question [Wirth 01, section 10.1], which is equivalent to saying that each direction

must lie on a zero (absolute null) of all of the antenna patterns the array would produce if it were

beamforming toward any of the other directions. For general directions, it is possible to reduce

or increase the gain in K − 1 directions, but the magnitude of the change may or may not be

significant. Additionally, in the presence of multi-path propagation, any given interference source

may produce signals arriving from several discrete directions and/or spread across a continuous

range of directions.

ROMA is based on the assumption that interference can be predicted using simple spatial

rules [Bao 02b]. Specifically, it is assumed that side-lobes are inconsequential, that each node can

form (and use) to some K main lobes concurrently, and that main-lobe gain is effectively zero

at an angular distance of one half-power beamwidth from the center of the lobe. Based on these

assumptions, a geometric model is used to produce pairwise conflict information. A related protocol,

but without directional antenna support, is presented in [Coupechoux 05].

The TDMA MAC proposed in [Deopura 07] is very much like ROMA. A graph of pair-wise
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conflict between links is produced based on geometrical assumptions about the coverage area of

each antenna pattern. The antenna patterns for any given link are assumed to be given (simplistic

per-link antenna optimization).

The collision-free MAC in [Lin 04] uses a very light-weight scheduling algorithm in which

interference in entirely ignored. The set of all possible links is pruned to make a planar graph, and

then partitioned so that every node has at most one communication partner during each interval.

Nodes are thus able to steer (or otherwise configure) their antennas for the appropriate link, but

there is no particular assurance that the set of simultaneously-active links will be compatible from

an interference perspective.

2.3.3 Scheduling Based on Per-Link Antenna Optimization

These papers assume that the antennas involved in each link are configured for that link in

isolation. This is the case described in the introduction (section 1.2).

Sundaresan et al. present a scheduling and conflict model based on pairwise link conflicts.

They present a framework which allows conflicts (and resource constraints) to be identified in

different ways for different antenna technologies, and then uses consistent representations and al-

gorithms across all of them [Sundaresan 04, Sundaresan 07]. Graph-based algorithms are used to

identify non-conflicting groups of links. The conflict-identification phase assumes per-link antenna

configuration for steerable/switched antennas, but allows pairs of links to be configured jointly for

adaptive antennas.

2.3.3.1 Grönkvist Algorithm Extensions

A series of papers, mostly by Marvin Sánchez Garache and Karin Dyberg, have examined

using smart antennas with variants of the Grönkvist algorithm. They all share the same basic

approach to antenna-scheduling integration, although they consider a wide variety of other factors.

The first of these is [Sánchez 99]. This considers spatial TDMA with the centralized Grönkvist algo-

rithm and 4-element circular array antennas on all the nodes. The original algorithm is enhanced by
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pre-configuring the antennas in each link to achieve maximum gain to their communicating partners

(Equation (3) in that paper), and using those patterns in determining link-set admissibility.

A more thorough evaluation of the same algorithm is given in [Dyberg 02a] and its correspond-

ing methodology report, [Dyberg 02b]. That work examines the effects of varying the beam-forming

strategy, the number of antenna elements, and the terrain. The beam-forming options considered

were: Sender and receiver use isotropic antennas; sender uses isotropic antenna, receiver uses adap-

tive beamforming; sender uses beam steering and receiver uses adaptive beamforming; and sender

and receiver both use beam steering. Note that adaptive beamforming by the sender is not con-

sidered, and the effects of adaptive beamforming are not fed back into the STDMA algorithm.

Both of these reflect the fact that receiver beamforming for actual reference signals (wanted and

interference) is relatively easy, but beamforming for hypothetical scenarios is not. The adaptive

algorithm used (in section 5.5.2) is based on minimizing the error between observed beamformer

output and pre-determined reference signal.

Sánchez introduces a cross-layer routing and scheduling approach for STDMA with smart

antennas in [Sánchez 02c] and [Sánchez 02b]. The STDMA algorithm and the interaction between

scheduling and antenna configuration are not described in detail but appear to be the same as in

the previous work. The novelty in this work is the routing-scheduling interaction, which provides

one model for non-formal cross-layer optimization: The joint routing and scheduling is based on

a two-pass interleaving. In the first pass, one set of routes r1 is computed on the graph of all

possible links, and then a schedule is created based on the traffic load resulting from those routes.

In the second pass, a new set of routes r2 is computed on the graph of links defined by the first-

pass schedule, and then a second schedule is computed based on the new traffic loads. Whichever

route/schedule combination has the best predicted performance is the one actually used. In his Li-

centiate thesis, Sánchez presents the same algorithm in more detail, along with CSMA/CA analysis

and deployment-scenario evaluation similar to that of Dyberg [Sánchez 02a].

The dissertation [Garache 08] presents extensive analysis on (Generalized) STDMA, includ-

ing: Integration with routing, effects of variable modulation rates, and the effects of varying beam
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widths. The integration with beam forming is essentially the same as in the previous papers:

Each link is configured in isolation, and the gain resulting from these configurations are used in

the scheduling process. (Figure 5.5 in [Garache 08]). The algorithm is extended to incorporate

power control (Figure 6.3) and variable modulation (Figure 8.1). Optimization-based scheduling –

including power control and rate selection, but not antenna configuration – is compared with

the heuristic algorithms. The effect of antenna configuration (Fml in equations 7.11, 7.18, and

others) is taken as a fixed input to the scheduling process. The optimization process used is that of

[Johansson 06]. Much of the same information is given in condensed form in [Sánchez 07]. The op-

timization work, which the authors refer to as Joint Routing, Resource Allocation, and Scheduling

(JRRAS) is also presented in [Xiao 04, Soldati 04, Soldati 08].

2.4 Scheduling Integrated with Other Network Properties

There is a variety of research on “scheduling-plus-x,” where x is some other controllable

property of the network. This section may overlap somewhat with the discussion of cross-layer

optimization generally in section 2.8.

2.4.1 Lower Layers

After explicitly combining scheduling with antenna control, the most nearly-related work is

that which combines scheduling with other physical-layer controls. Channel (or code, or subcarrier)

assignment and transmit power control seem to be the most widely-researched aspects of physical-

layer reconfiguration.

2.4.1.1 Channel Assignment

Channel assignment and scheduling are very closely-related problems: A frequency band, time

slice, or code assignment can be regarded as defining a “logical channel,” such that two activities

interact if and only if they occur in the same logical channel. Then, the generic assignment problem

consists of selecting sets of transmissions which can proceed concurrently. In fact, several techniques
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have been designed to be channelization-aspect-agnostic [Chlamtac 87, Ramanathan 99, Luo 04].

The abstraction is not perfect: Frequency- and code-division channels are less orthogonal than

time-division ones. Frequency bands and codes must generally be assigned from a finite pool in

fixed quanta, while time can often be divided more flexibly. A node which is active in a given

time slot can generally observe others, while the same cannot be said of frequencies. For precisely

the same reason, a frequency-division channelization may allow truly continuous operation while

time-division does not [Wittman 67].

Because of these similarities, the mechanisms for slot-plus-channel assignment are essentially

the same as those for pure slot assignment (scheduling). Examples of time-and-frequency scheduling

are [Lin 07], [Liu 07], [Deb 08], and [Wang 08].

2.4.1.2 Power Control

A large number of papers discuss integrating scheduling with power control. This is fun-

damentally different from integration with beam steering because the effects of power control are

linear and uniform, making it a much simpler problem. It is, however, possible that similar con-

ceptual approaches may be useful. For example, [Madan 05, Madan 06] iterates between successive

adjustments to the scheduling process and the physical-layer (power) control process, which is one

of the strategies this work discusses for beam selection. Other papers which may be addressed in

the dissertation but do not require further discussion for now include: [Behzad 07], [Cruz 02],

[ElBatt 02a], [Jarqúın 02], [Kozat 04], [Miao 06], [Radunović 03], [Radunović 04a], [Soldati 06],

[Soldati 08], [Moscibroda 06], [Somarriba 03], [Somarriba 07], [Sommariba 04], and [Yu 04].

2.4.2 Higher Layers

There is a significant body of work on integrating scheduling with routing and/or congestion

control. There are conceptual parallels in the approaches to cross-layer coupling, but the problems

are distinctly different from those I consider here. My work assumes that routing is given – the

per-link loads have already been established – but it could reasonably be integrated with existing
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joint scheduling and routing approaches.

Some examples of joining scheduling with higher-layer concerns are listed here, but they will

not be discussed further. Routing:

[Bonuccelli 04], [Chen 06], [Chen 05], [Eryilmaz 06], [Kodialam 03], [Lin 07], [Radunović 03],

[Radunović 04a], [Radunović 04a], [Sánchez 02c, Sánchez 02b], [Sommariba 04], [Wang 08], [Yu 04].

Congestion and admission control: [Chen 06], [Chen 05], [Eryilmaz 06], [Lin 06b], [Sharma 07],

[Soldati 06], [Soldati 08].

2.5 Reconfigurable Antennas in Un-Scheduled Networks

This section addresses salient work in using reconfigurable antennas without a scheduling

process. This is primarily concerned with random-access MAC protocols such as CSMA/CA.

2.5.1 Random Access One-Hop

Ward and Compton propose a mechanism for adaptive antenna use in random-access one-

hop networks in which CSMA is infeasible because the client nodes cannot all hear each other

[Ward 92]. Their approach, like that subsequently adopted by [Singh 05], is based on the base

station reactively beamforming toward received signals, thereby strengthening the power capture

effect and reducing the likelihood that a collision will result in packet loss. The authors propose an

“acquisition preamble,” which is in practice very similar to the PLCP preamble used in 802.11, to

help the base station recognize and quickly beamform for incoming packets. Directional antennas

for 802.11 hot spots are considered in [Otyakmaz 04].

“Interference Mitigation in WLAN networks using client-based smart antennas” [Desautel 02]

is actually MAC-agnostic. It discusses a low cost two-element beamformer intended for use in

WLAN clients. The paper evaluates its interference rejection capabilities based on different channel

models.
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2.5.2 Random Access Packet Relay

The use of steerable antennas as a means of avoiding interference, particularly jamming, in

multi-hop networks was proposed by Sussman in [Sussman 80]. The Rapidly Deployable Radio

Network (RDRN) [Evans 99] is an early prototype system. The RDRN is neither scheduled nor

random-access; the architecture is based on dedicated point-to-point links between all stations.

The combination of beam steering (with multiple independent beams at each station) and channel

assignment is used to achieve spatial reuse.

Comparison of switched-beam and adaptive beamforming, assuming CSMA/CA with RTS-

CTS: [Radhakrishnan 02]. Longer version: [Lal 04b].

The original article on the capacity improvement from using directional antennas [Zander 90]

follows the reasoning of [Takagi 84]. Zander argues that the optimal connectivity increases linearly

with the antenna gain and the expected forward progress per hop increases as roughly the square

root of the gain.

It has been shown that, under the assumption of no traffic locality, the expected end-to-end

capacity of a multihop packet relay network grows sub-linearly in the number of nodes, meaning that

per-node capacity approaches 0 as the number of nodes goes to infinity [Gupta 00]. Two recent

articles evaluate the effect of directional antennas on the asymptotic capacity of relay networks

[Yi 03, Peraki 03]. Yi et al. show a constant improvement in capacity O( 1
β2 ), where β is the beam

width. The constants change depending on whether one is considering a random or worst-case

topology. As a constant-factor improvement, these results don’t change the asymptotic result.

Peraki et al. show an asymptotic improvement, but only with the assumption that nodes can send

and decode multiple concurrent beams, as long as their communicating partners are not co-linear.

The total improvement is from Θ
(√

n/ logn
)
to Θ

(√
n log n

)
. With the additional assumption

that nodes can generate arbitrarily precise beams (but with bounded power), the limit becomes

Θ
(√

n log
3

2 n
)

[Peraki 03, section 4.4]. With unbounded power density and arbitrarily precise

beams, the capacity grows linearly with the network size, but each node must be able to generate
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at least Θ
(
n

1

3

)
resolvable beams.

2.5.3 MAC Protocols for Directional Antennas

An early proposal for integrating steerable or sectored antennas with CSMA/CA is given in

[Ko 00]. The authors compare the use of directional and omnidirectional antennas for the RTS-CTS

exchange, with the goal of establishing only the necessary region of exclusion for other nodes. The

findings support the use of directional RTS and omnidirectional CTS.

The WACnet MAC is essentially direction-aware CSMA/CA [Bandyopadhyay 01]. Com-

municating nodes beamform towards each other, and nodes not involved null-steer toward active

transmitters based on RTS/CTS messages. Assuming that null-steering is successful, those nodes

are then free to send or receiver their own data.

Smart-ALOHA is a CSMA-based MAC for adaptive array antennas. It relies on the receiv-

ing node being able to compute DoA information for incoming signals based on a short pream-

ble tone (via the MUSIC algorithm for example), and on senders having accurate cached in-

formation about the direction in which to beam-form for potential receivers [Singh 05]. Smart-

ALOHA has the advantage of simplicity, but requires capabilities not present in low-end recon-

figurable antennas. This paper also contains a good summary of prior MACs for directional

antennas, including those presented in [Bao 02b], [Bellofiore 02c], [Choudhury 02], [Elbatt 02b],

[Fahmy 02],[Bandyopadhyay 01], [Choudhury 06], and [Choudhury 05].

2.6 Networking with Fixed Directional Antennas

DMesh [Das 06] is designed for 802.11 with multi-radio nodes and fixed directional antennas.

Directional antennas are used in pairs for point-to-point links. Every link is greedily assigned a

channel on creation, and then reassignment is done periodically. The order of channel reassignment

is not stated. A link is preferentially given a conflict-free channel, or else the least heavily loaded

of the channels on which there is a conflict. The authors define both measurement-based (M-DCA)

and geometry-based (C-DCA and A-DCA) criteria for identifying conflicts. Interestingly, all of the
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Implementation
Analog beamforming
Digital beamforming

Flexibility
Switched beam
Steerable
Adaptive

Purpose
Transmit beamforming
Receive beamforming
Joint Tx & Rx beamforming

Table 2.1: Directional Antenna Categorization (modified from [Li 05a])

explicitly-coordinated conflict avoidance (A-DCA, C-DCA, and the omni-directional OCA) schemes

significantly out-performed the measurement-based scheme. Routing is a (slightly) modified form

of OLSR.

2.6.1 Directional Antennas in Mesh Networks

A survey of issues in the use of steerable antennas in CSMA-based multihop networks is

given in [Li 05a]. The paper provides a useful typology of steerable antennas, which I reproduce as

Table 2.1.

Vilzmann evaluates the effects of very simple beam-forming strategies on pairwise commu-

nication among randomly-placed nodes [Vilzmann 05]. Their analysis includes estimates of the

expected SIR for links, as other links are added. Specifically, they consider the impact on each

link when the n least-interfering other links are active, as a function of n.

Jaikaeo evaluates various beam-steering strategies in the context of multicast with a CSMA-

based MAC [Jaikaeo 03]. The paper compares directional and omnidirectional patterns at the

sender and receiver, with and without ACKs. For almost all metrics, directional reception with di-

rectional transmission (DRTD) and directional reception with omnidirectional transmission (DROT),

without ACKs, were the best configurations. For every measure except delay, the two were very

close to each other in performance, and significantly better than any other options.

The paper [Rashid-Farrokhi 98a, Rashid-Farrokhi 98b] presents an integrated algorithm for

beamforming and power control, so that the adaptive array base station and (fixed set of) omnidi-
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rectional clients are optimized as a single system.

2.7 Related Problems

2.7.1 Channel Assignment

This subsection discusses papers which consider channel assignment outside the context of

time scheduling.

Channel and code assignment are analogous problems which arise in frequency division

and code division systems. Subcarrier allocation is similar to channel assignment and occurs in

OFDM systems[Hottinen 06]. Bao presents a distributed code assignment algorithm in [Bao 02a].

The paper [Kyasanur 05a] gives a general discussion of ways to make mesh networking

more physical-layer aware. The main mechanisms discussed are multi-channel routing and

spatial backoff. In multi-channel routing, the link-layer protocol tries to assign nearby links

to different channels, and the routing protocol tries to select paths with high channel diver-

sity. Spatial backoff is more directly related to co-channel spatial reuse. The core idea is for

nodes to adapt their CSMA/CA carrier-sensing threshold and modulation scheme to optimize

aggregate throughput. Kyasanur also addresses multi-channel networking in several other pa-

pers: [Kyasanur 05b, Chereddi 06, Kyasanur 06a, Kyasanur 06b].

2.7.2 Steerable Antennas Generally

An excellent overview on the applications of adaptive antenna systems is provided in

[Godara 97a, Godara 97b]. Bellofiore et al. discuss the use of smart antennas in mesh networks from

the perspective of the antenna designer [Bellofiore 02c, Bellofiore 02a, Bellofiore 02b]. In particu-

lar, they derive conclusions about the types of antenna patterns and signal processing capabilities

which contribute to system capacity. Their analysis assumes a specific 802.11-like MAC, but likely

extends to other protocols.

Babich et al. investigate the performance of several directionality-aware MAC techniques,
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using more rigorous RF modeling than is common [Babich 06]. Major findings are that on the

receiver side, directional antennas perform significantly worse than adaptive arrays, and that the

process of identifying the direction of arrival (DOA) of an interfering signal and steering a null

at it is very error-prone. Both of these effects are related to the multipath and angular spread

characteristics of the channel.

Sakr and Todd discuss random access SDMA for a single base station [Sakr 00]. This work

is oriented toward exploiting spatial diversity at a single base station for multiple concurrent

up-links, not disjoint links in a wide area. This is also the model generally employed in cellular

telephony (see section 2.7.3.) An 802.11-compatible MAC for multi-beam base station SDMA is

presented in [Wang 07]. Their system assumes a multi-radio base station with either a sectored

antenna or suitable smart antenna serving 802.11 (DCF) clients with omni-directional antennas.

The work mainly consists of developing 802.11-compatible mechanisms to induce clients to do time-

division duplexing (TDD) because the base station cannot be expected to receive and transmit at

the same time, even in different sectors.

Shad et al. present algorithms for TDMA-SDMA in a similar context [Shad 01]. As with

STDMA, optimal scheduling is shown to be NP-complete by reduction to graph coloring (which

reduces to 3-SAT.) Lower-complexity algorithms with reasonable performance are presented. An-

other set of algorithms for scheduling in cellular SDMA, incorporating support for bit-rate selection,

is presented in [Kim 05]. Kuehner et al. discuss “dynamic slot allocation,” which is near real-time

scheduling, in the cellular SDMA context [Kuehner 01].

Macedo and Sousa evaluate the impact of physical-layer parameters, especially the modula-

tion scheme, on SDMA capacity in an indoor environment [Macedo 98]. They assume a sectored-

antenna base-station with a variable number of ports and a relatively simple “first fit” scheduling

algorithm. Their findings suggest the capture threshold as a key determinant of spatial reuse, and

they propose an alternative OFDM designed to reduce this threshold in high-multipath environ-

ments.

Intra-cell SDMA is fundamentally different from inter-cell or non-cellular (e.g., mesh) spatial
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Figure 2.3: Complexity of cellular and general spatial reuse

reuse. In the intra-cell case, all of the co-channel concurrent links share a common endpoint,

which has several significant implications: 1) For n concurrent links, the number of channels of

interest varies as O(n), not O(n2). 2) The number of concurrent links is bounded by the spatial-

division capabilities of the base station, not the by the size of the network. 3) All of the necessary

channel information is inherently available at a single location. In particular, knowing the spatial

channel covariance matrices for all clients vis-a-vis the single antenna array provides a basis for both

choosing a spatially-separable set of stations and forming an optimal set of beams for those stations

[Kuehner 01, Galvan-Tejada 01, Zhang 01, Koutsopoulos 03, Jorswieck 07]. The synchronization

and communication requirements make aggregating the channel information in the general case

difficult if not infeasible. Figure 2.3 shows an example for n = 3 links. Note that the inter-client

channels are not of interest in the cellular case as long as the system uses time or frequency division

duplexing so the situation in which one client is transmitting while another is receiving on the same

frequency does not occur.

One interference-aware (or collision-aware) routing approach is given in [Roy 03]. It is ef-

fectively a link metric in which the cost of a link is based on the number of currently active

neighbors known to be the coverage area of the nodes involved, as configured for that link. Other

approaches to using directional antennas to improve routing are discussed in [Saha 03, Saha 04],

and [Choudhury 05].
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2.7.3 Cellular Telephony

Much of the early work on using steerable or smart antennas to manage interference is in

the area of cellular telephony. The problems are similar to those faced in wireless networking, with

a few key distinctions. The cellular research generally assumes smart antennas (and behavior) at

the base station with simple handsets nodes [Swales 90]. In some cases, each cell is assumed to be

making entirely local decisions, while in other cases base stations coordinate to reduce inter-cell

interference. In neither case, however, is there inter-cell communication. Much of the empirical

(e.g. [Li 97]) and analytical ([Naguib 94, Petrus 98, Ho 98, Matsumoto 97, Asakura 99]) research

on the effectiveness of smart, switched, and multibeam antennas was also done in this context. Of

particular interest, [Winters 94, Winters 99] compares simple steering with adaptive beamforming.

Much of the beam-forming work in cellular systems falls into the category of single-station

SDMA, where the goal is to allow that station to support multiple concurrent up- or down-links.

For example, [Razavilar 00] addresses the possible increase in capacity (decrease in blocking) from

adding SDMA to frequency division.

“Multicell time-division beam scanning” is proposed in [Zander 92]. Time-division beam scan-

ning is TDMA in which the base station switches its beam configuration to optimize communication

with the station active during any given slot. There may be, but do not need to be, multiple beams

for SDMA as well. The authors develop estimates of the level of inter-cell interference as a function

of beam width and the number of stations served per time slot.

Another approach to using directional antennas to mitigate inter-cell interference is Quasi-

Static Resource Allocation with Interference Avoidance (QRA-IA) [Chawla 99]. This is designed

for a cellular architecture, but with an emphasis on data networks, not telephony. The authors

emphasize managing downlink interference because downlink traffic tends to dominate in end-user

data networks. The essence of QRA-IA is to divide the TDMA frame into sub-frames and have

every base station not transmit in any given direction for one sub-frame out of every frame.

Client terminals then identify the sub-frame or sub-frames in which they experience the least
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interference, because their direction is being spared by whichever base station typically causes the

most interference. By selectively scheduling clients to receive data in their preferred sub-frame,

they experience diminished interference.

A centralized approach with a similar motivation is given in [Veronesi 04, Veronesi 06]. The

main novel technique is nulls preallocation: Each base station identifies the stations in adjacent

cells for which it creates the most interference, and reserves some of its beam-forming degrees

of freedom for steering nulls at those stations. Base stations all broadcast their lists of nulled-

out stations to adjacent cells, and then every station uses its neighbors null lists in making local

beam-steering and slot allocation decisions.

2.8 Cross-Layer Optimization in Networking

This section will discuss cross-layer optimization in general, and especially focus on the “lay-

ering as optimization decomposition” school of thought. It is critical to note that “optimization” is

a very ambiguous term in computer science. Its meanings range from “making something better”

to “finding the best possible solution to some problem which is sufficiently well-defined to allow an

absolute measure of goodness.” “Optimization” is also used to refer to the application of mathe-

matical programming, regardless of whether this produces an optimal solution to the underlying

problem.

Similarly, “cross-layer optimization” can refer to any technique which violates traditional

layering abstractions to improve performance, e.g., [Clark 90] and [Baldo 08], or to approaches

which are optimal in some sense but are not based on mathematical programming [Ghaderi 09].

2.8.1 Layering as Optimization Decomposition

The central notion of “Layering as Optimization Decomposition” is that the components of a

network can be regarded as combining algorithmically and not just mechanically. Historically, there

have been well-defined and proven algorithms for the various tasks involved in a network. There has

been a much weaker understanding of the function of the network as a whole and the significance of
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dividing that function into particular sub-tasks. To the extent that these tasks can be described as

optimization problems – whether or not they were originally formulated that way – their combined

effects can be modeled as a composition of optimization sub-problems. This perspective makes it

possible to reverse-engineer the objectives and constraints which effectively describe an existing

system [Chiang 05a, Chiang 06b, Chiang 06a]. These address wireless scheduling specifically, and

develop the broader notion of network layers as computational elements coupled together to

solve some global objective, whether by design or by accident. Of particular import for scheduling

is work by Tan, Palomar, and Chiang which shows that many non-convex functions of interest,

such as interference-limited Shannon capacity, are log-convex when transfered to the logarithmic

domain, and therefore admit equivalent convex formulations [Tan 07, Tan 09].

In the forward direction, cross-layer (or multi-layer) designs can be formulated based on

optimization decomposition. Once the overall objective and the fundamental constraints are enu-

merated, established decomposition techniques can often be used break the problem down into

manageable components [Chiang 07]. Solving a mathematical program is, intuitively, a serial com-

putation process. Many decomposition techniques make sense as a way of reducing the total

amount of computation – that the original task is replaced by multiple new tasks is conceptually

incidental. Networking is intuitively distributed; we take it as given that computation occurs at

physically disparate locations and the notion of layered architectures is deeply internalized among

both researchers and practitioners. What is interesting is that the lines along which the optimiza-

tion problem is decomposed often map to the ways in which the networking task can be divided.

Additionally, the optimization formalism and the associated conceptual tools often suggest decom-

positions which may not be apparent from the underlying problem. The first explicit treatment of

utility maximization and corresponding dual problems in networking of which I am aware is Kelly’s

work on rate adaptation [Kelly 98].
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2.8.2 Introduction to Mathematical Program Decomposition Techniques

Excellent reviews of price-directive and resource-directive decomposition methods are given in

[Rockafellar 93] and [Molina 79], respectively. A good text on optimization decomposition generally

is [Conejo 06]. A tutorial on cross-layer optimization in wireless networking specifically is given in

[Lin 06a].

Optimization decomposition is not limited to linear programs, but they make an easy context

for illustrative examples. Consider an LP in standard form:

min cTx

s.t Ax = b

x ≥ 0

(2.5)

Decompositions are generally based on exploiting special structure in the constraint matrix A. As

shown below, aij is the coefficient of variable i in constraint j.

{
x1 · · · xn

}




a11 · · · an1
...

. . .
...

a1m · · · anm



=




b1
...

bm




A constraint matrix with block-diagonal structure is trivially decomposable. Each block

represents an independent problem. The computational complexity of linear programming is a

non-trivial problem (see [Megiddo 87], [Bertsimas 97], and [Todd 02]), but the best worst-case

complexity is O(n3.5L), where n is the number of variables and L is the length of the input in bits.

Consequently, splitting one n-variable program into r programs of n
r
-variables each would not only

allow a parallel solution but also reduce the total work by a factor of r2.5. Consider the example

below, where the empty places represent 0 values:
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A =




a11 a21

a12 a22

a33 a43

a34 a44

a55 a65

a56 a66




Ax =



a11 a21

a12 a22






x1

x2


+



a33 a43

a34 a44






x3

x4


+



a55 a65

a56 a66






x5

x6




cTx =

[
c1 c2

]


x1

x2


+

[
c3 c4

]


x3

x4


+

[
c5 c6

]


x5

x6




In this case, the original problem becomes (2.6). This trivial decomposition is possible because

every constraint and every variable involves only one block in matrix A. The objective functional

involves variables from all blocks, but they are simply added, and min is distributive over addition.

min cT1···2x1···2 min cT3···4x3···4 min cT5···6x5···6

s.t A1···2x1···2 = b1···2 s.t A3···4x3···4 = b3···4 s.t A5···6x5···6 = b5···6

x1···2 ≥ 0 x3···4 ≥ 0 x5···6 ≥ 0

(2.6)

The more normal case, which motivates most decomposition research, is that a problem

provides almost-block-diagonal structure. When the coefficient matrix is block-diagonal except for

a small number of rows or columns with non-zeros corresponding to multiple blocks, these are

termed complicating constraints or complicating variables, respectively.
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Complicating constraint Complicating variable

A =




ai1 · · · aj1 ak1 · · · al1 am1 · · · an1

block 1

block 2

block 3




A =




a1i
...

a1j

block 1

a1k
...

a1l

block 2

a1m
...

a1n

block 3




(2.7)

The goal of decomposition techniques is to transform a problem with a difficult structure into

several problems – or occasionally one – with an easier structure. Table 2.2 on the following page

shows the applicability of various common decomposition techniques to various scenarios.

2.8.2.1 Dantzig-Wolfe Decomposition

The prototypical decomposition scheme is the (primal) Dantzig-Wolfe method [Dantzig 60].

A very brief illustration, closely taken from [Dantzig 63, section 23.1], is given here. Denote a

two-block “complicating constraint(s)” problem as follows: Note first that minx c1x1 + · · ·+ cnxn is

equivalent to maxx0
s.t. P0x0+c1x1+ · · ·+cnxn = 0 where P0 is unit. X and Y denote the variables

occurring in the first and second blocks, A1 and A2 denote the coefficients corresponding to those

blocks, and b1 and b2 are the constraint right-hand-sides (RHSs) for the constraints in those blocks.

Ā1 and Ā2 are the coefficients of the complicating constraints for the variables X and Y , and b̄ is

the RHS.
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max x0

s.t. A1X = b1

A2Y = b2

P0x0 +Ā1X +Ā2Y = b̄

X, Y ≥ 0

(2.8)

Regard the LP (2.8) as solving maxx0
P0x0+Ā1X+Ā2Y = b̄, subject to additional constraints:

L1 : A1X = b1

L2 : A2Y = b2

So long as the set denoted by L1 is convex and bounded, any point X satisfying L1 can be written

as a convex combination of the extreme points satisfying L1, by Minkowski’s theorem. Note also

that the reverse holds: Any such convex combination of extreme points is in the set, and also that

any convex combination of any points in the set – extreme or not – is also another point in the set.

Therefore, given the finite set of extreme points {X1, X2, . . . , XK}, the constraint L1 : A1X = b1

is exactly equivalent to:

X =
K∑

i=1

λiXi (2.9)

K∑

i=1

λi = 1 (2.10)

λ ≥ 0; (2.11)

Constraint (2.9) states that X is a linear combination of extreme points; (2.10) and (2.11)

require that combination to be convex. If the sum of any subset of multipliers were to fall outside

the range (0, 1), that would specify a point outside the convex hull of the points Xi. The constraint

L2 can be similarly replaced. Let µ designate its multipliers. X can be replaced with
∑K

i=1 λiXi

and Y can be replaced with
∑L

i=1 µiYi throughout the program, leading to the linear program given

in (2.12), which is equivalent to the original program (2.8).
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max x0

s.t. P0x0 +
∑K

i=1 λi(Ā1Xi) +
∑L

j=1 µj(Ā2Yj) = b̄

∑K
i=1 λi = 1

∑L
j=1 µj = 1

λ, µ ≥ 0

(2.12)

This can be rewritten slightly using the following definitions: Si , Ā1Xi, Tj , Ā2Yj to a

canonical form known as the extremal problem or full master problem, shown in (2.13).

max x0

s.t. P0x0 +
∑K

i=1 Siλi +
∑L

j=1 Tjµj = b̄

∑K
i=1 λi = 1

∑L
j=1 µj = 1

λ, µ ≥ 0

(2.13)

The constraint blocks A1X = b1 and A2Y = b2 do not appear in this master problem.

Rather, they are accounted for implicitly by the sets {X1, . . . , XK} and {Y1, . . . , YL}. The sub-

problems of generating the extremal points effectively replace those blocks of constraints.

2.8.2.2 Delayed Column Generation

Observe that the initial problem (2.8) was a single program with two blocks which would

be independent if not for a (hopefully small) set of complicating constraints. The decomposition

described thus far produces three separate programs: A program with no dependencies for finding

the extreme points of L1; a separate program, also with no dependencies, for finding the extreme

points of L2; and a much-simplified master program which depends on the results of both. This

decomposition is a success except that L1 and L2 may have very many extreme points. (In the

problem of link scheduling, as formulated by myself and others [Björklund 03, Yu 04, Johansson 06],

every feasible subset of the set of links is an extreme point. This implies that the number of extreme
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points is potentially O(2n) where n is the number of links in the network.) When there are a large

number of extreme points, merely enumerating them can be impractical, and solving an LP with

that many variables can be effectively impossible.

As mentioned earlier, any set of points from a convex region define a convex hull fully con-

tained by that region. If that set of points is the complete set of extreme points of the original region

(and that region is a polytope, which any linearly-constrained system is), then the two regions are

identical. If the set of points in question is a proper subset of the original extremal points, then

their convex hull will be a proper subset of the original region, but will extend to its limit at some

vertices and faces.

The essence of column generation is to identify a set of extreme points significantly smaller

than the whole set, but still large enough that their convex hull includes the optimum of the original

region. The process is also referred to as delayed column generation, because these extreme

points are not found a priori but rather iteratively generated until the set is shown to be sufficient.

Note that “column,” “variable,” and “extreme point” are effectively interchangeable terms in this

context: Every extreme point of L1 is an Xi with a corresponding multiplier variable λi and a

corresponding column in the constraint coefficient matrix of the master problem. Likewise L2, Yi

and µi.

Dantzig describes a procedure for generating new columns, and removing (“pricing out”) ex-

isting ones, based on the simplex method of solving the master problem [Dantzig 60]. The criterion

by which one would select one of the existing columns to bring into the basis also characterizes a

desirable new column to generate. Considering the first subproblem L1: Let s
0 = −

[
0, δi, · · · , δk

]

be a row vector which identifies S1, . . . , Sk in the simplex basis of the master problem [Dantzig 60,

eq. (18)]. Let π0 denote the first row of the simplex multipliers (pricing vector) associated with

solving the master problem with the same set X1···k. The column i having the lowest relative cost

π0Si − s0 is the best (vis-a-vis X) to enter the basis. Correspondingly, the best new column is

S∗ = Ā1X
∗, where X∗ is the solution to (2.14). This is the column-generation subproblem for

variables X or constraint L1:
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min
X

(π0Ā1)X

s.t. A1X = b1

(2.14)

The best new column vis-a-vis Y , T ∗ is found analogously. This process also provides a

stopping condition: The relative cost – also referred to as “reduced cost” – is an upper bound

on how much the master problem objective can be improved by adding the column S∗ or T ∗ to

the problem. If the lowest relative cost π0S∗ − s0 (or π0T ∗ − t0) is 0 or greater, then there is

no feasible column (extreme point) which could be added to the master problem to improve its

solution, which is to say that the current solution is optimal. The master problem solved over the

subset of extreme points is referred to as the restricted master problem. It looks exactly like

the full master problem (2.13) on page 47, except that the sets {X1, . . . , XK} and {Y1, . . . , YL} are

different.

The discussion of decomposition thus far has assumed that the goal is to exploit block-

diagonal structure. As mentioned earlier, in section 2.8.2 on page 42, a magic decomposition of

an n-variable problem into r completely separate n
r
-variable problems could reduce the overall

complexity by O(r2.5), assuming Karmarkar’s worst-case complexity in all cases. When there are

complicating constraints or variables, the decomposition is not perfect. The subproblems presented

above do have n
r
variables (if the blocks happen to be of equal size), but they must be solved

repeatedly, and the restricted master problem has some minimal complexity remaining.

Decomposition need not involve block-diagonal structure. The Dantzig-Wolfe procedure is ef-

fectively performing two decomposition steps at once: First separating the complicating constraints

from the easy part, and second dividing the easy part into one sub-problem per block. The same

“complicating part / easy part” decomposition can be applied regardless of why the “easy part” is

easy. In many cases, there is some other special structure to the problem which lets the easy part

be solved using algorithms other than general-purpose linear program (or integer linear program)

solving. The first actual application of column generation was given by Gilmore and Gomory, who

applied it to the Cutting Stock problem [Gilmore 61]. They solve their specific subproblem as a
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knapsack problem.

2.8.2.3 Lagrangian Relaxation

This subsection provides a very minimal introduction to Lagrangian relaxation (LR). For a

more thorough discussion, see [Rockafellar 93] and [Conejo 06, sections 4.2, 4.4, and 5.3]. This

introduction borrows heavily from both of those works.

Consider a mathematical program, potentially linear but often non-linear, of the form in

(2.15) below. Lagrangian relaxation is a process for constructing and solving a dual problem for a

general non-linear primal problem. If the primal problem is convex, and the primal and dual are

both feasible, the Lagrangian dual problem exhibits strong duality, meaning that the optimal

objective values of the two problems are the same. This is the same duality property that linear

programs exhibit.

min
x

f(x)

s.t. a(x) = 0

b(x) ≤ 0

c(x) = 0
}

Complicating constraints

d(x) ≤ 0

(2.15)

If problem (2.15) were unconstrained, the optimality of any given point x could be checked

by verifying that x was a global minimum of f(x). Because f(x) is assumed to be convex, checking

that x is a local minimum would suffice. The first- and second-derivative tests give criteria for

evaluating non-degenerate points: The gradient (which is simply the Jacobian for the case of a

function f : Rn → R) ∇f(x) must equal 0, and the Hessian (the matrix of all second-order partial

derivatives) H(f) must be positive definite.

The Karush-Kuhn-Tucker (KKT) optimality conditions are a generalization of the same cri-

teria to the case of constrained optimality. Ignore for the moment the (so far artificial) distinction

between the complicating constraints and others, and assume there are only two vectors of con-
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straints: h(x) = 0 and g(x) ≤ 0. The first-order KKT conditions are:

Stationarity:

∇f(x) +
l∑

j=1

λj∇hj(x) +
m∑

i=1

µi∇gi(x) = 0 (2.16)

Primal feasibility:

gi(x) ≤ 0 (2.17)

hj(x) = 0 (2.18)

Dual feasibility:

µi ≥ 0 (2.19)

Complementary slackness:

µi gi(x) = 0 (2.20)

The stationarity condition, equation (2.16), states that the gradients of equality constraints

∇hi(x), the gradients of the (active) inequality constraints∇gj(x), and the gradient of the objective

function ∇f(x) are linearly independent. Phrased differently, at the optimal point, the vector

sum of the (scaled) gradients of the active constraints is exactly the inverse of the gradient of

the objective function. The multipliers (λ and µ) are termed the Lagrange multipliers. The

interpretation of the Lagrange multipliers as dual values is consistent with our intuition from linear

program duality: Consider an infinitesimal relaxation of constraint hj at the optimal point, x∗t.

The change in x, ∆x = x∗t+1 − x∗t projected onto ∇hj(x) has a magnitude of ǫ. Assuming that

no other constraint is relaxed, and therefore the projection of ∆x onto the other gradients is 0, the

projection onto on ∇f(x) has magnitude λj , which is exactly what is expected.

The Lagrangian function, or just Lagrangian, L is defined as equation (2.21) on the

next page. Note that λTh(x) =
∑l

j=1 λjhj(x), and that L considers the objective and constraint
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functions directly, rather than their gradients.

L(x, λ, µ) , f(x) + λTh(x) + µT g(x) (2.21)

In general, Lagrangian relaxation is based on relaxing (or “dualizing”) only the complicating

constraints. Returning to the problem given in (2.15), the Lagrangian is (2.22).

L(x, λ, µ) , f(x) + λT c(x) + µTd(x) (2.22)

Using the Lagrangian, the dual function of problem (2.15), written φ(λ, µ), is (2.23):

φ(λ, µ) ,





min
x
L(x, λ, µ)

s.t. a(x) = 0

b(x) ≤ 0

(2.23)

Two problems follow from the dual function. First, the relaxed primary problem (RPP)

consists of minimizing the dual function for a fixed multiplier estimate (λ̄, µ̄), (equation (2.24)).

Second, the dual problem is defined as (2.25) below:

min
x
L(x, λ̄, µ̄)

s.t. a(x) = 0

b(x) ≤ 0

(2.24)

Finding the Lagrangian dual problem (DP) (2.25) depends on solving for φ(·) analytically.

max
λ,µ

φ(λ, µ)

s.t. µ ≥ 0

(2.25)

In general, the DP need not be solved directly. The phase 1 Lagrangian relaxation algorithm

iterates between solving the RPP (often in further-decomposed form) and incrementally updating

the multipliers. The multipliers can be updated by a variety of techniques which will not be

discussed in detail here. One such approach is based on finding a subgradient of the dual function
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at each iteration. One such subgradient is given by the extent to which the (dualized) constraints

are not satisfied. At time t, let st be a subgradient given by equation (2.26):

st =



c(xt)

d(xt)


 (2.26)

Then, where ‖·‖ denotes the ℓ2 norm and kt is the step size at time t, the update procedure

is given by (2.27):



λ

µ




t+1

←



λ

µ




t

+ kt
st

‖st‖ (2.27)

2.8.2.4 Additional Lagrangian Relaxation Decomposition Variants

Two techniques mentioned in table 2.2 on page 45 are variants on Lagrangian relaxation:

Augmented Lagrangian decomposition is based on adding a quadratic penalty term to the La-

grangian function to reduce or eliminate the duality gap when the primal function is non-convex

[Rockafellar 74].

Optimality-condition decomposition (OCD) is a method for efficient solution of Lagrangian

relaxation problems with multiple complicating constraints [Conejo 02]. The core insight is to retain

the complicating constraints in the decomposed relaxed primal problems (DPPs) so that at every

iteration of the DPPs, sensitivity information from each subproblem can be used to update the

multipliers on every other subproblem. Consider the minimization problem (2.28) below:

min
x1,x2

f(x1, x2)

s.t. h1(x1, x2) = 0

h2(x1, x2) = 0

c1(x1 ) = 0

c2( x2) = 0

(2.28)
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A standard LR decomposition dualizes h1(·) and h2(·) into the objective function, giving the

relaxed primal problem (2.29) below:

min
x1,x2

f(x1, x2) + λ̄T
1 h1(x1, x2) + λ̄T

2 h2(x1, x2)

s.t. c1(x1 ) = 0

c2( x2) = 0

(2.29)

The RPP (2.29) is separable by x1 and x2. A normal LR approach would be to solve it as

two DPPs, one for each set of variables. The DPP for x1 treats the current best estimate of x2 –

denoted x̄2 – as a constant and solves for x1. The DPP for x2 works similarly. The problems then

are (2.30) below:

min
x1

f(x1, x̄2) + λ̄T
1 h1(x1, x̄2) + λ̄T

2 h2(x1, x̄2)

s.t. c1(x1) = 0

(2.30a)

min
x2

f(x̄1, x2) + λ̄T
1 h1(x̄1, x2) + λ̄T

2 h2(x̄1, x2)

s.t. c2(x2) = 0

(2.30b)

The decomposition in (2.30) allows the problem to be evaluated separately in terms of x1

and x2. Each subproblem is solved to optimality, and then a subgradient is computed as in equa-

tion (2.26) on the previous page:

s =



h1(x1, x2)

h2(x1, x2)




The optimality condition decomposition method avoids solving each DPP to completion and

then separately updating the multipliers by partially retaining the complicating constraints in the

DPPs. Because they are part of the DPPs, every update step within the solution of each DPP

produces a subgradient vector for the complicating constraints. The OCD DPPs for (2.30) could

be (2.31) below:
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min
x1

f(x1, x̄2) + λ̄T
1 h1(x1, x̄2)

s.t. c1(x1) = 0

h2(x1, x̄2) = 0

(2.31a)

min
x2

f(x̄1, x2) + λ̄T
2 h2(x̄1, x2)

s.t. c2(x2) = 0

h1(x̄1, x2) = 0

(2.31b)

After each iteration of the subproblem, a subgradient may be found in the usual way, using

the values of x1 and x2 from (2.31a) and (2.31b), respectively. The updated multipliers are then

the estimates input to the next iteration. I do not consider the OCD method for my algorithms for

purely practical reasons: It requires modifying the internals of the solver(s) used for the subproblems

at a rather deep level.

2.8.2.5 Benders Decomposition

One major decomposition technique that is specifically oriented toward the “complicating

variables”case is Benders decomposition. Benders decomposition and Dantzig-Wolfe decomposition

are dual to each other. Consider the minimization problem (2.32) below.

min
x,y

f(x, y)

s.t. c(x) ≤ 0

d(x, y) ≤ 0

(2.32)

The decision variables are divided into subsets x and y, where x are the complicating variables.

That is to say, if the variables x are assumed to be fixed to some estimate x̄, the resulting problem

(2.33) is further decomposable, or otherwise significantly easier to solve.

min
y

f(x̄, y)

s.t. d(x̄, y) ≤ 0

(2.33)
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To exploit this problem structure, an auxiliary function α(x) is defined in (2.34) to consider

the complicating variables.

α(x) ,





min
y

f(x, y)

s.t. d(x, y) ≤ 0

(2.34)

The original problem can then be written in terms of α(x) as problem (2.35):

min
x

α(x)

s.t. c(x) ≤ 0

(2.35)

Using the above definitions, the Benders decomposition procedure can be stated. Let t be

the number of the current iteration, let xt and yt be the values of x and y found in iteration t,

and let λt be the dual values associated with the constraints x = xt in the subproblem iteration t.

Initialization consists of choosing a feasible initial estimate x = x0 satisfying c(x0) ≤ 0. The algo-

rithm then consists of iteratively solving the subproblem and master problem until a convergence

test is satisfied.

The Benders decomposition subproblem is given by (2.36) below:

min
y

f(x, y)

s.t. d(x, y) ≤ 0

x = xt

(2.36)

The outputs of the subproblem at iteration t are: The y values yt; the dual price vector

λt, which is the price of the constraints x = xt; and the objective value f(xt, yt). Note that xt

was initialized to a value satisfying c(xt) ≤ 0, and all updates to xt will maintain the property.

Consequently, the constraint x = xt dominates the constraint c(x) ≤ 0. This means that the

subproblem (2.36) is strictly more constrained than the original problem (2.32). Consequently

every solution to the subproblem is also a feasible solution to the original problem and f(xt, yt)

constitutes an upper bound ztup on the optimal solution z∗.
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The Benders decomposition master problem is given by (2.37) below. The new variable

α is a scalar and not the function α(·). The constant λi
k or xik denotes the k-th element of the λ

or x vector found in iteration i.

min
x,α

α

α ≥ f(xi, yi) +
∑n

k=1 λ
i
k(xk − xik) ∀i = 1, . . . , t− 1

c(x) ≤ 0

(2.37)

The outputs of the master problem at iteration t are xt and αt. Note that the master problem

is a relaxation of the original problem, and so the solution value αt provides a lower bound ztdown

on the optimal solution to the original problem. Combined with the upper bound obtained from

the subproblem, this makes it possible to compute the optimality gap in equation (2.38):

|ztup − ztdown|
|ztdown|

(2.38)

If the gap after subproblem iteration t is ≤ ǫ, computation terminates.

2.8.2.6 Geometric Programming

Geometric programming is not strictly a decomposition technique, but it gives rise to a trans-

formation technique which facilitates subsequent decomposition. Geometric programs (GPs) are

a class of optimization problem which exploits a special structure in the objective and constraint

functions, like the better known linear programs, quadratic programs, cone programs, and semidef-

inite programs, among others. The fundamental property of interest is that GPs involve sets and

functions which have a convexity property defined using the weighted geometric mean, rather

than the usual weighted arithmetic mean.

A familiar definition of a convex set is that, given any two points in that set, all points on

the line segment between those points are also in the set. A more formal definition of x “being on
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the line segment between points” x1 and x2 is:

x = θx1 + (1− θ)x2

0 ≤ θ ≤ 1

This gives exactly that x is a weighted arithmetic mean of x1 and x2. Fundamental results in

convex geometry such as Carathéodory’s theorem and Jensen’s inequality are similarly defined. An

analogous definition is that all x on the arc of weighted geometric means between x1 and x2 are in

the set:

x = xθ1x
(1−θ)
2

0 ≤ θ ≤ 1

Functions and sets which are convex under this definition are the elements of geometric pro-

gramming. For a general introduction, the reader is referred to the seminal work on GP [Duffin 67]

and subsequent texts [Ecker 80, Boyd 04b, Chiang 05b, Boyd 07].

A property of particular practical interest is that many geometrically convex functions and

sets can be bijectively mapped to functions and sets which are convex in the conventional sense. This

transformation provides a means of identifying a convex equivalent for some seemingly non-convex

problems, as well as allowing GPs to be solved using general-purpose convex programming tech-

niques. This technique is applicable for posynomial functions which define either a minimization

objective or the left-hand side of a ≤ inequality constraint, and monomial functions which define

the left-hand side of an equality constraint. This transformation will be explained briefly, mostly

following the notation of [Boyd 04a, Boyd 07]: Consider the following program, where each doubly-

indexed function, e.g.f02(), g21(), is a monomial function of x, e.g. f01(x) ≡ c01x
a011
1 x

a012
2 x

a013
3 · · · ,

where the coefficients c01 ∈ R++ and a011, a012, · · · ∈ R.
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min
x

f0(x) ≡ f01(x) + f02(x) + · · ·

s.t. f1(x) ≡ f11(x) + f12(x) + · · · ≤ 1

f2(x) ≡ f21(x) + f22(x) + · · · ≤ 1

g1(x) ≡ f31(x) = 1

g2(x) ≡ f41(x) = 1

For every variable xi, we introduce a new variable yi = log(xi). Now, f(x) = f(ey). Taking

the natural log of the left- and right-hand sides of the objective and each constraint and distributing

through, each monomial function is replaced with:

f̃01(y) ≡ ea011y1+a012y2+a013y3+···+log(c01 )

Using the above definition, the complete program is replaced with the following, which is

referred to as the convex form of the geometric program:

min
y

f̃0(y) ≡ log
(
f̃01(y) + f̃02(y) + · · ·

)

s.t. f̃1(y) ≡ log
(
f̃11(y) + f̃12(y) + · · ·

)
≤ 0

f̃2(y) ≡ log
(
f̃21(y) + f̃22(y) + · · ·

)
≤ 0

g̃1(y) ≡ log
(
f̃31(y)

)
= 0

g̃2(y) ≡ log
(
f̃41(y)

)
= 0

Note that log
(
f̃31(y)

)
is just a311y1 + a312y2 + a313y3 + · · · + log(c31) and similarly for any

other equality constraints. It is important to note that the original (posynomial form) equality

constraints must be monomial functions, as these produce affine functions after the transformation.

This transformation is of particular bearing on this dissertation because several important

functions in wireless communication, such as signal to interference and noise ratio (SINR) and

Shannon capacity, are non-convex but can be expressed as (generalized) geometric programs. This

fact has been used in a number of algorithms for wireless network power control [Foschini 93,
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Julian 02, Kandukuri 02, Tan 07, Tan 09], and is used in the convexity analysis in this dissertation

in section 4.2 on page 78.

2.8.3 Optimization-Based Scheduling

Almost all work in optimization-based scheduling involves, at least implicitly, the notion of the

capacity region as a convex hull of basic rate vectors. The idea is implicit in Arikan’s formulation

of ~f -feasibility [Arikan 83, Arikan 84], but I will follow the discussion of [Toumpis 00, Toumpis 03].

The combination of physics and protocol requirements allows some set of transmission schemes,

where a transmission scheme is a description of which nodes are transmitting what information to

which other nodes, and how, at a given instant. The rate of information flow associated with each

scheme can be described by a rate matrix. The rate matrix is a square matrix R = rij , where rij

is defined by equation (2.39).

rij =





r if node j receives information from node i at rate r,

−r if node j transmits information to node i at rate r,

0 otherwise.

(2.39)

The same information often denoted by a rate vector, where each scalar element of the

vector is the rate on some directional link ij. Toumpis and Goldsmith refer to the rates achievable

by any given transmission scheme as a basic rate matrix. Assume that over some duration, the

network is in scheme 1 with rate matrix R1 for a fraction of time α, and in scheme 2 with rate

matrix R2 for a fraction of time (1− α). (The assumption that the two fractions sum to 1 implies

that switching delay between schemes is negligible.) The cumulative rate is αR1 + (1− α)R2. By

extension, for k schemes given time αk each such that
∑

k αk = 1, α ≥ 0, the cumulative rate is

∑
k αkRk. Therefore, the capacity region – the set of feasible rate matrices (or vectors) – is exactly

the convex hull of basic rate matrices (or vectors). Note that the vertices (extrema points) of the

hull are all basic, but not all basic rate matrices are necessarily vertices.

As the convex hull of any set of points is a convex polytope, the feasible rate region is
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continuous and bounded by a set of linear constraints. This means that, given the set of extremal

basic rate vectors, and assuming the overall network utility is a function of the flow rates, the

scheduling problem is only as complex as the chosen utility function. The complications, both noted

by Arikan, are that the number of basic extremal points can be exponentially large, and identifying

those extremal points is NP-hard under any reasonable interference model.

Consequently, all of the optimization-based scheduling approaches of which I am aware de-

compose the problem into: (1) A relatively simple master problem which is responsible for allocating

time between basic rate vectors (transmission sets) to maximize the overall utility, and (2) one or

more subproblems which identify an approximation of the extremal basic rate vectors.

2.8.4 Examples of Decomposition in Wireless Networking

Xiao et al. present the Simultaneous Routing and Resource Allocation (SRRA) problem,

which is a joint optimization approach to routing and something resembling scheduling [Xiao 04].

The authors make – and acknowledge – the simplifying assumption that link capacities can be

determined completely by sender-local decisions. While this abstracted view of network and physical

constraints does not correspond with any real system, it enables a very clean and logical development

of techniques central to multi-layer optimization in networks. Xiao’s paper presents hierarchical

dual decomposition using subgradient solution methods, and the coupling of routing and scheduling

by per-node capacity prices.

[Xiao 04] is of excellent tutorial value because it discusses convex optimization and decom-

position in general, and presents a problem crossing many traditional layers and involving several

nested decompositions using different techniques. The scheduling and resource allocation compo-

nent makes some significantly unrealistic assumptions in order to simplify the problem, which limits

the usefulness of their specific solution. Another useful overview is [Lin 06a], although its coverage

of scheduling is limited.

Following [Chiang 05a], [Yuan 05] provides a decomposition-based approach to routing, power

control and network coding. One interesting contribution is that the paper compares a convex-
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optimization approach to power control (based on approximating rate in the log domain as in

[Chiang 05a]) with a game-theoretic equilibrium approach.

Björklund introduced the first optimization formulation of wireless scheduling of which I am

aware: a linear program for STDMA link scheduling based on a Dantzig-Wolfe decomposition and

column generation (section 2.8.2.2 on page 47) [Björklund 03]. The initial problem is to, over the

set of all possible sets of concurrently-active links, determine how much time to assign to each such

set. This program is formulated as identifying the shortest list of sets such that each set meets

the physical SINR requirements of the underlying technology, and the combination of all the sets

activates each link for long enough to meet its traffic requirements. This formulation is used as the

basis for the work in this dissertation as well.

[Madan 05] uses an optimization-driven approach to choosing which links to activate, and

then finds the minimum power levels to maintain an acceptable SINR on each link. The optimization

formulation is a MILP to minimize the maximum sum of cross-link gain on active links.

2.9 Summary

Sections 2.1 and 2.2 are intended to provide a conceptual framework for the problem of spatial-

reuse TDMA scheduling. Particularly important is the way groups of transmissions interfere with

each other, and how those interactions are modelled. The model has an almost determining impact

on the design of any scheduling system. The simple models underestimate interference, but admit

low-complexity solutions, while the most accurate models lead to substantial algorithmic challenges.

Section 2.3 presents the prior work most directly related to this dissertation: STDMA schedul-

ing with some form of antenna consideration. Several such approaches exist, but I argue that the

coupling between scheduling decisions and antenna decisions is still largely unexplored. In par-

ticular, all of the existing schemes either use assumed suboptimal antenna configurations when

making scheduling decisions (which is a conservative approximation), or make those decisions with-

out knowing whether an antenna configuration that makes the schedule feasible actually exists (an

aggressive approximation), or both. It is easy to identify scenarios, such as the X configuration
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from figure 1.1a on page 4, in which these limitations produce substantially suboptimal results.

Section 2.4 discusses the integration of scheduling with factors other than antenna configu-

ration. Integration with higher layers in the traditional stack (e.g. routing and congestion control)

seems to be an essentially orthogonal problem. Integration with other low-level parameters, like

power and rate control, is more similar to the problem at hand. The problems turn out to have

substantial differences preventing techniques designed for one from being directly applicable to the

others. The problems of power and rate control have nice properties which antenna configuration

lacks: A change in the power level of any transmitter has a simple consistent effect on all receivers.

If the transmit power increases by factor c, the signal strength of the intended transmission will

increase by c, and the interference created by that transmission at every other receiver will increase

by c. A change in the rate (modulation scheme) on any given link has no expected effect on any

other link. Neither of these is at all true for antenna changes.

Sections 2.5 through 2.7 discuss less closely-related work having to do with resource assign-

ment or antenna issues in contexts other than spatial-reuse TDMA. Lastly, section 2.8 reviews the

mathematical programming optimization decomposition techniques which underlie much of this

research.



Chapter 3

Problem and Formulation

This chapter presents an optimization-based algorithm and analysis for joint scheduling

and antenna configuration. It is based on the link-assignment scheduling approach presented in

[Björklund 03], and this work will use that notation, which is explained in table 3.1. This work con-

siders link scheduling, rather than node scheduling, because antenna configuration is dependent

on both the sender and the receiver.

3.1 Problem Definition

Informally, the problem is to identify multiple sets of links, with antenna configurations

for each node, such that (a) every link in a given set can be active concurrently, and (b) the

combination of all sets includes every link on which there is a traffic demand. Demands consist of

quanta of information to move on each link, and the objective is to minimize the amount of time

(i.e., the length of the schedule) required to meet those demands.

The size and complexity of the problem make direct solution computationally infeasible: The

number of possible configurations is exponential in both the number of nodes and the number of

antenna options per node. Further, the complete formulation is a mixed-integer non-linear program

(MINLP) of degree 3.

3.1.1 Formulation
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symbol context interpretation

A * The set of all links

N * The set of all nodes

LA * The set of all concurrently-feasible link sets

Lt
A * The generated subset of LA at time t

L0
A RMP The generated subset of LA

xl RMP Number of slots assigned to link set l ∈ LA

Sijl RMP Link (i, j) is active in link set l

qij RMP Demand (in slots) for link ij

Sij CLAP Activation of link ij (in current set)

Mij CLAP Constant s.t. ineq. (4.6) holds when Sij = 0

Vi CLAP Node i is active (in current link set)

Pi CLAP Transmit power of node i

γ1 CLAP Desired SINR threshold

Nr CLAP Receiver noise level

Dij CLAP Directivity of node i in the direction of node j

Lb(i, j) CLAP Path loss from node i to node j

Gikp CLAP Gain for node i using pattern p, toward node k

Bjp CLAP Beam (antenna, pattern, . . .) p used at node j

Table 3.1: Notation
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[JBSS-MP]

min
∑

l∈LA

xl (3.1)

s.t.
∑

l∈LA

Sijlxl ≥ qij ∀i,j (3.2)

∑

j:(i,j)∈A
Sijl +

∑

j:(j,i)∈A
Sjil ≤ 1 ∀i,l (3.3)

PilDijlDjil

Lb(i, j)Nr
Sijl +

γ1(1 +Mijl)(1− Sijl) ≥

γ1


1 +

∑

k∈N\{i,j}

PklDkjlDjkl

Lb(k, j)Nr
Vkl








∀i,j,l (3.4)

Sijl ≤ Vil ∀i,j,l (3.5)

∑

p∈P
Bjpl = 1 ∀j,l (3.6)

Dik =
∑

p∈P
GikpBipl ∀i,k,l (3.7)

xl ≥ 0 ∀l∈LA
(3.8)

Sijl, Bjpl ∈ {0, 1} (3.9)

The objective, (3.1), is to minimize the number of activated link sets. For each link set l

in the universe of possible concurrent link sets LA, xl is a variable indicating the amount of time

for which l is active. Constraint (3.2) specifies that the schedule must “cover” the demand. Sijl

is a boolean variable indicating whether link ij is active in link set l, and qij is the demand for

link ij, measured in time. The constraint therefore requires that the total time for which link sets

containing ij are activated is sufficient. Constraint (3.3) specifies that in any given link set l, every

node j may be active in at most one link. This precludes duplex operation, as well as transmitting

to or receiving from multiple partners.

Constraint (3.4) specifies that minimum SINR requirements are met, taking antenna config-

uration into account. The formulation of this constraint is patterned after Björklund, and can be
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somewhat unintuitive. See [Björklund 06, Chapter 3, eq. (3.12), and Appendix B].

PilDijlDjil

Lb(i, j)Nr
Sijl + γ1(1 +Mijl)(1− Sijl) ≥ γ1


1 +

∑

k∈N\{i,j}

PklDkjlDjkl

Lb(k, j)Nr
Vkl


∀i,j,l (3.10)

Signal term Dummy term Interference + noise term

Ignoring the “dummy” term, the constraint specifies that if the link ij is used, the received

signal strength must exceed the combined interference and noise level at j by factor γ1. Note that

the signal term is a product of 0-1 variable Sijl, and the dummy term is a product of (1−Sijl). The

effect of the dummy term is to ensure that the constraint is satisfied when Sijl = 0. This means

that the constraint is effectively a no-op when the link ij is not selected. For any given ij, when

Sijl = 1, the constraint reduces to inequality (3.11). Considering a given link in a given link set l,

the l subscripts are removed for clarity.

PiDijDji

Lb(i, j)Nr
Sij ≥ γ1


1 +

∑

k∈N\{i,j}

PkDkjDjk

Lb(k, j)Nr
Vk


 (3.11)

The left-hand side gives the received SNR linear units: Pi is node i’s transmit power. Dij

and Dji are the directional gain of node i toward node j and vice-versa. Lb(i, j) is the path loss

between nodes i and j, and Nr is the receiver noise figure. The noise figure is regarded as a constant.

Note that while this formulation uses a single Nr for all nodes, having a different noise figure for

each receiver does not change the complexity of the solution. The right-hand side is the sum of

the contribution above the noise floor of received interfering signals plus 1. The 0-1 variable Vk

specifies that node k is (or may be) transmitting in the given time slot.

Constraint (3.5) couples the decision variables Sijl and Vil so that if any link i, j is selected,

the variable Vil reflects that i is transmitting. The V variable is used in (3.4) to identify sources

of interference. The 0-1 variable Bjpl indicates whether node j uses beam pattern p in link set

l. Constraint (3.6) specifies that in any given link set each node must select exactly one beam

pattern. Constraint (3.7) couples the otherwise free directional gain variables Djil and Djkl to the

choice of antenna beam Bjpl. Constraints (3.8) and (3.9) specify positivity and 0-1 requirements

for variables.
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3.1.2 Extensions

The joint beam steering and scheduling problem generalizes several other joint scheduling

problems. In particular, transmit power and receiver sensitivity control are achieved by relaxing

constraint (3.6) to allow fractional antenna gain as below, which is mathematically equivalent:

∑

p∈P
Bjpl ≤ 1 ∀j,l

Additionally, selection from a finite set of modulation schemes is achieved by considering

multiple “logical” links for each physical link, with a different γ1,r for each rate r and adding a rate

constant Rr to constraint (3.2) as follows:

∑

l∈LA

SijlrRrxl ≥ qij ∀i,j

Neither extension is considered further in this dissertation, but both are consistent with

the decompositions presented. Adding rate selection is computationally similar to increasing the

number of links, while adding power control does not increase the complexity at all.

3.2 Computational Complexity

The master problem (JBSS-MP) is complete, but computationally intractable. First, the

program is mixed-integer cubic, meaning that the objective and/or constraints involve polynomials

of degree 3 and a mixture of free and integer variables. There are a number of computational

techniques for efficiently solving convex programs having degrees 1 or 2 (referred to as linear and

quadratic programs), but cubic programs are as complex as non-linear programs in general. There

is no obvious way to reformulate the cubic terms (DijlDjilSijl and DkjlDjklVkl) away as they are

the fundamental determinants of SINR and are all real decision variables. The size of the problem

is also vast. The subscript l indexes the set of all possible sets of links, having dimension 2m for m

links. Several of the variables are indexed over LA × A× A, meaning there are Θ(n22m) variables

and similarly many constraints. Concretely, that means over 1015 variables for singly-connected

(1 edge per node) topology of 40 nodes. Figures 3.1 on page 70 and 3.2 on page 71 show the
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problem growth visually. Both are artificially trimmed in the y dimension to show more detail at

the bottom. For 30 nodes, the fully-connected scenario has 10300 variables.

It is important to note that the solution process is again super-linear, and indeed often

exponential, in the number of variables. Polynomial-time algorithms exist for linear programs

with continuous variables – in general, the easiest class of mathematical programs – but is has

been shown that, even for a restricted subclass and even for solving to a constant approximation

factor, the problem in P-complete [Efraimidis 08]. The recent solution of an LP with 109 variables

on the BlueGene supercomputer is, to the best of my knowledge, the largest LP ever directly

solved [Gondzio 06]. Moreover, solving general polynomial programs to a constant approximation

factor is NP-complete [Bellare 95]. Given that it is impractical to explicitly enumerate, let alone

directly solve, JBSS-MP, subsequent comparisons of computational complexity will consider only

the implicitly enumerated, or column-generation, form.
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Figure 3.1: Size (number of variables) of JBSS-MP as a function of the number of nodes, log/log
scale, limited at 1060
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Size complexity of JBSS−MP (semilog)
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Figure 3.2: Size (number of variables) of JBSS-MP as a function of the number of nodes, semilog
scale, limited at 1020



Chapter 4

Decomposition Process

This chapter describes a distributed and decomposed mathematical solution to the integrated

beam steering and scheduling problem. To work around the computational difficulties in this

problem, I apply multiple decompositions to the problem into multiple smaller interacting problems.

The basic formulation is the Joint Beam Steering and Scheduling Master Problem (JBSS-MP). This

is decomposed into a Restricted Master Problem (RMP) and the Configuration and Link Activation

Problem (CLAP). After working through two intermediate forms, CLAP is decomposed into the

Fixed-link Antenna Reconfiguration Program (FARP), and the Relaxed Primal Fixed-antenna Link

Activation Problem (RP-FLAP). FARP and RP-FLAP are separable, and are split into distributed,

per-node versions, the Single Node Antenna Reconfiguration Problem (SNARP) and Single Node

Relaxed Primal FLAP (SNRP-FLAP). Lastly, SNRP-FLAP is transformed to reduce oscillations,

producing the Single-node Dual Quadratic FLAP (SDQ-FLAP). This process is shown schematically

in figure 4.1 on the following page

4.1 First Decomposition: Dantzig-Wolfe on JBSS-MP

The first restructuring, which is part of [Björklund 03] and also appears in [Garache 08,

Johansson 06], [Yu 04], and [Chiang 07], is Dantzig-Wolfe decomposition. The problem is split

into a restricted master problem (RMP) which operates on only a special subset of the variables

present in the original, and subproblems which are linked by the master problem. In particular,

to avoid having to enumerate (and consider) all possible groups of nodes, I apply the technique
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JBSS-MP

RMP CLAP

CLAP-dual-1

CLAP-dual-2FLAP

FARPRP-FLAP

SNRP-FLAP_0 SNRP-FLAP_1... SNARP_0 SNARP_1...

SDQ-FLAP_0 SDQ-FLAP_1...

Master problem

Dantzig-Wolfe

decomposition

Lagrangian

Relaxation on
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Lagrangian
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duplex constraint

Block separation

Block separation

Quadrat ic

approximation

Figure 4.1: Outline of decomposition process.
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of column generation [Gilmore 61, Gilmore 63] (also called delayed column generation and

implicit enumeration.) The objective function of JBSS-MP (equation (3.1) on page 66) is quite

simple; the complexity lies in defining the region of feasible values. By definition, the feasible space

of a bounded system of linear constraints is a convex polytope. By Minkowski’s Theorem, any point

in the polytope can be formed by a linear combination of its extreme points. Note that while the

JBSS-MP is not in general bounded by linear constraints, the constraints involving the variables x

in which the decomposition is performed are all linear. As the optimal solution must be a feasible

point, it can be written as a linear combination of extreme points. Column generation uses this

fact to preserve the correctness of the original problem while working with a reduced set of points

by considering only extreme points, and identifying them iteratively on an as-needed basis.

The RMP becomes (4.1)-(4.3) below, where the feasibility requirements for the link sets are

implicit in l ∈ LA. The time allocated to each feasible point l is denoted xl, and the activation level

of each link i, j in each l – an output of the subproblem, not a decision variable here – is denoted

Sijl. The set of feasible points defining the RMP’s approximation polytope in iteration t is Lt
A.

[RMP]

min
∑

l∈Lt
A

xl (4.1)

s.t.
∑

l∈Lt
A

Sijlxl ≥ qij ∀ij (4.2)

xl ≥ 0 ∀l∈Lt
A

(4.3)

The column set Lt
A must be seeded with a set of columns s.t. RMP is feasible. The RMP is

then solved to optimality. In general, the unconstrained global optimum may or may not be within

the feasible region. If it is, then it is equal to the constrained optimum and no constraints are

binding. If not, the constrained optimum will be at an extreme point of the feasible polytope, and

the constraints generating that point will be binding. The binding constraints have, by definition,
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non-zero dual costs associated with them. It can be seen that no finite x minimizes (4.1), so this

problem is of the latter type. The AMPL specification of RMP is given in Listing D.1 on page 250.

The dual prices from the solution of the RMP form the inputs to the configuration and

link assignment problem (CLAP). After each iteration of solving the RMP, CLAP uses them to

attempt to generate a new extreme point (column) which extends the feasible region from the

current optimum along an improving (negative for minimization) gradient of the objective function.

A point having that property is referred to as a negative reduced cost column. If a reduced

cost column consistent with the constraints of the original problem exists, then adding it

to the pool Lt
A allows the solution to RMP to improve while ensuring that the solution is feasible

for the original problem. Conversely, if no (feasible) reduced cost column exists, then the current

optimal RMP solution is also optimal for the original problem and the optimization process is

done. Expressions (4.4) - (4.10) on the following page present an optimization program for the

best (minimum) reduced cost column. Note that this discussion drops the l subscripts because this

sub-problem occurs in the context of creating a new link set, so l is in effect implicit.
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[CLAP]

max
S

β̄TS (4.4)

s.t.
∑

j:(i,j)∈A
Sij +

∑

j:(j,i)∈A
Sji ≤ 1 ∀i (4.5)

PiDijDji

Lb(i, j)Nr
Sij +

γ1(1 +Mij)(1− Sij) ≥

γ1


1 +

∑

k∈N\{i,j}

PkDkjDjk

Lb(k, j)Nr
Vk








∀i,j (4.6)

Sij ≤ Vi ∀i (4.7)

Dik =
∑

p∈P
GikpBip ∀i,k (4.8)

∑

p∈P
Bjp = 1 ∀j (4.9)

Sij , Bjp ∈ {0, 1} (4.10)

The parameters β̄ij are the inputs from the RMP and the decision variables Sij define the

column returned to RMP. The variables Bip define the beam selections for use with the link set

Sij . Vi and Dij are used internally to couple the SINR constraint, inequality (4.6), with Sij and

Bip, respectively. The constraints are the same as in JBSS-MP (3.2 - 3.9), except that there is no

l variable subscript, as only one link set is in consideration. A direct (centralized) specification of

CLAP is given in Listing D.2 on page 251.

The problem RMP is trivial, but CLAP retains most of the original complexity of JBSS-MP.

Crucially, however, it is no longer dimensioned over the set of all possible sets of links: For n nodes,

the number of variables and the number of constraints are both Θ(n2). The column-generation

design allows a smaller problem to be solved many times rather than solving the larger problem

once. Figure 4.2 on the following page shows an example of the progress of the column-generation

scheme. In this case, the algorithm terminates after 15 RMP-CLAP iterations.
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4.2 Convexity of CLAP

Many desirable optimization properties depend on the convexity of the feasible set and ob-

jective function. Knowing that a problem is convex makes it easy to infer global properties from

local information; in fact local optimality suffices to show global optimality. This section will

show that the constraint structure – but not objective – of CLAP has abstract convexity and will

present an explicitly convex formulation: Convex-Constraint-CLAP. The requirement that certain

variables take on integer or boolean values is irreducibly non-convex, however there is a large class

of objective functions for which they prove unnecessary.

This discussion will begin with the SINR constraint (4.6), which is non-convex in its current

form. The techniques introduced here, especially re-formulation as part of a geometric program

(GP) in convex form, will be applied throughout. For reviews of geometric programming, including

posynomial forms and the log-sum-exp transformation to convex form, see [Ecker 80, Boyd 04b,

Chiang 05b, Boyd 07] and [Boyd 04a, §3.5, 4.5]. The formulation of Shannon capacity as a GP was

introduced in [Foschini 93] and revisited in [Chiang 05b, Boyd 07, Tan 07, Tan 09], among others.

4.2.1 SINR Constraint

Constraint (4.6) can be re-written as follows: The“dummy”component of (4.6) served to keep

the scheduling formulation, sans antenna consideration, in the linear domain. However, the (1−Sij)

component (in combination with an Sij component elsewhere) prevents straightforward translation

to a posynomial formulation. The following form (4.11) is closer to our natural understanding of

SINR, and is easily re-written in posynomial form. The parameter α > 0 allows one to “tune” the

function’s response to values of S between 0 and 1, without changing the value at those points.

This can be thought of along the lines of an augmented Lagrangian.

PiDijDji

NrLb(i, j)
≥ Sα

ijγ1

(
1 +

∑

k∈N\{i,j}
Vk

PkDkjDjk

NrLb(k, j)

)
∀i,j (4.11)

Dividing by the (original) left-hand side and then switching left for right to make the inequal-

ity a ≤ yields ineq. 4.12 on the next page:
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Sα
ijNrLb(i, j)γ1

(
1 +

∑
k∈N\{i,j}

PkVkDjkDkj

NrLb(k,j)

)

PiDjiDij
≤ 1 ∀i,j (4.12)

This constraint will be further manipulated, however its properties will first be demonstrated

while it still closely resembles the original.

Proposition 4.2.1. The left-hand side of inequality (4.12) is a posynomial functional in S, V ,

and D, if α ∈ Z

Proof. Note that the elements of Nr, P , M , and Lb are scalar constants having values always

∈ R+. These terms are consequently monomial. Similarly, the elements of S, V , and D are

scalar variables having values ∈ R+ and are monomial functions. Monomials are closed under

multiplication, division, and exponentiation to integer powers, so the terms Sα
ijγ1, PkVkDjkDkj ,

NrLb(k, j), PiDijDjiSij , and NrLb(i, j) are also monomial.

A sum of monomials is posynomial, as is a posynomial divided by a monomial. Let m and p

denote any monomial and any polynomial, respectively, in the variables discussed, and → denote

inferring a new proposition about multiple terms. By repeated inference, the LHS of (4.12) can be

shown to be a posynomial:

m(m+ m
m

+ m
m

+ · · · )
m
m

→ m
m+m+m+ · · ·

m
→ m

p

m
→ p

Proposition 4.2.2. Inequality (4.12) is a geometric program constraint in standard form for any

set of variables X ⊇ {S, V,D}.

Proof. Ineq. (4.12) is of the form f(S, V,D) ≤ 1, f posynomial by Proposition 4.2.1. For any

variable x ∈ X \ {S, V,D}, let f ′(S, V,D, x) = f(S, V,D) ∗ x0. The term x0 is an integer power

of a monomial, and therefore a monomial, and therefore a posynomial. The set of posynomials is

closed under multiplication, so f ′ = f(S, V,D) ∗ x0 is a posynomial functional of S, V,D, and x.
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Consequently, f ′(S, V,D, x) ≤ 1 is a GP constraint in standard form for the variables S, V , D, and

x [Boyd 04b].

Moreover, x0 = 1 ∀x, so f(S, V,D) ∗ x0 = f ′(S, V,D, x) = f(S, V,D) ∀S,V,D,x. Since it is

identical to the constraint written in f ′, f(S, V,D) ≤ 1 is also a GP constraint in standard form

for the variables S, V , D, and x. By induction on x′ ∈ X \ {S, V,D, x}, the result holds for all of

X.

Proposition 4.2.3. The log-sum-exp transformation of inequality (4.12) defines a convex region

in any variables X ⊇ {S,D, V }.

Proof. By Proposition 4.2.2, Ineq. (4.12) is a GP constraint in standard form for X. It follows

immediately that the transformed version is a geometric constraint in convex form, which is,

in fact, convex [Boyd 07, §2.5].

In order to facilitate this transformation, we first algebraically simplify (4.12) to the following

(4.13). It is easily verified that the LHS of (4.13) is still posynomial (it is a simple sum of monomials)

and that it is exactly equal to (4.12).

Nrγ1Lb(i, j)S
α
ij

PiDijDji
+

∑

k∈N\{i,j}

PkVkγ1DjkDkjLb(i, j)S
α
ij

PiDijDjiLbkj
≤ 1 ∀i,j (4.13)

The transformation is presented here: For any variable x, let x̃ denote the natural log of x.

The inequality becomes:

log

(
e−P̃i−D̃ij−D̃ji+αS̃ijNrγ1Lb(i, j) +

∑

k∈N\{i,j}

eP̃k+Ṽk+Djk+Dkj−Dij−Dji+αS̃ijγ1Lb(i,j)

PiLb(k, j)

)
≤ 0 ∀i,j (4.14)

The inequality (4.14) constitutes part of a convex program in the log-domain variables D̃, Ṽ ,

and S̃. Any value x̃ satisfying these inequalities corresponds directly to an x : x̃ = log(x) satisfying

(4.11).
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4.2.2 Objective Function

Let us consider the remaining components of CLAP in sequence: The objective (4.4) consti-

tutes a concave maximization in the linear domain as long as the constants β̄ ≥ 0, which is true

by definition. Because β̄ are positive, this is a posynomial functional. Transformed to convex GP

form, the objective becomes:

max
S̃

∑

ij

log
(
eS̃ij+log(β̄ij)

)

The value log(0) is generally taken to be either −∞ or undefined. For the purpose of any

numerical solution process, it is undefined and constitutes a problematic input. Since β can easily

be 0, we write the objective as (4.15), where ǫ > 0.

max
S̃

∑

ij

log
(
eS̃ij+log(β̄ij+ǫ)

)
(4.15)

An analogous issue occurs in multiple places in this formulation: Geometric programs are

in general defined only over the strictly positive domain R++
n. This does not limit us in any

meaningful way, as they are well defined for arbitrarily small ǫ, and the natural domains of our

variables are all ≥ 0. In general, ǫ must be chosen to be small enough not to alter the solution

materially, but large enough to avoid numerical instability or rounding to 0. In the context of

CLAP, there are no variables for which it is important to maintain a distinction between a value of

0 and very nearly 0, so a constraint of the form ǫ < x ≤ 1 is functionally equivalent to 0 ≤ x ≤ 1.

The variables S, V , and B are ultimately 0− 1 integers, so values near ǫ can safely be interpreted

as 0.

This transformation, however, produces a (strictly) convex maximization problem. The

linear-domain objective is affine, meaning that it is both convex and concave, and therefore well-

behaved as either a maximization or minimization objective. A strictly convex maximization ob-

jective, on the other hand, is equivalent to a strictly concave minimization objective, which is

undesirable. It is possible to define many convex objective functions which are equivalent to our

original in the discrete case, but they behave badly in the continuous case. This is not merely

a technicality: In the way we generally understand it, the value of “activating” a link is essentially
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binary – a partially-activated link is either an undefined concept, or a rather low value case.∗ A

continuous version of the problem is acceptable, so long as the optimal solutions happen to fall on

discrete values (the integrality gap is 0). I am not aware of any convex function of the logarithm

of link activations which has this property, and indeed I strongly suspect that none is possible.

Definition 4.1 (0-1 Dominance Property). Consider an minimization objective function f(xb, xc) :

X → R defined on a set X ⊂ Rn+m, where xb ⊂ Rn, xc ⊂ Rm. Say that f has 0-1 dominance with

regard to xb and X if and only if: For any xb, xc ∈ X,xb /∈ {(0, ǫ], 1}n, ∃x′b, x′c ∈ X, xb ∈ {(0, ǫ], 1}n

s.t. f(x′b, x
′
c) ≤ f(xb, xc).

Conjecture 4.2.1. For any set X such that X ′ = (log(xb), xc) ∀xb, xc ∈ X is closed and convex,

define f ′(log(xb), xc) : X ′ → R ≡ f(xb, xc). Conjecture: ∄f, f
′ s.t. f has 0-1 dominance with regard

to xb and f ′ is convex.

The argument for this conjecture proceeds from the fact that δ log(x)
δx

∣∣∣
1
= 1 and limx→+0

δ log(x)
δx

∣∣∣
x
=

+∞. For any f ′ which is negatively linear or super-linear in log(xb), and a feasible space which

allows a linear “trade off” between variables xb1 ≈ 0 and xb2 ≈ 1, moving from f ′(≈ 0,≈ 1, · · · ) to

f ′(≈ 0+δ,≈ 1−δ, · · · ) will lower (improve) the objective function. A real proof requires expressing

the notion of a “trade off” formally (which follows from the KKT conditions), and generalizing

beyond the linearity assumptions.

Because of the above limitation, I refer the formulation developed in this section as Convex-

Constraint-CLAP to emphasize that the objective function of CLAP is not preserved in this trans-

formation.

∗ Note that activating a link for a fraction of the total time is perfectly reasonable, but in this context we are
discussing which links are active in a given slice of time (or frequency, or code space).



83

4.2.3 Half-Duplex Constraint

The duplex constraint (4.5) is already a posynomial inequality. Transforming to the log

domain gives:

log

( ∑

j∈N\{i}
eS̃ij + eS̃ji

)
(4.16)

4.2.4 S-V Coupling Constraint

The first coupling constraint, (4.7), can be re-written as below:

Sij

Vi
≤ 1 ∀ij

Transformed into the log domain, that gives:

log
(
eS̃ij−Ṽi

)
≤ 0 ∀ij (4.17)

4.2.5 D-B (Antenna) Coupling Constraint

The antenna coupling constraint, equation (4.8), does not admit a trivial transformation to a

GP, as it is naturally a (non-monomial) posynomial equality. This difficulty can be side-stepped by

formulating the constraint directly in the log domain, rather than writing it in the linear domain

and then transforming it. Consider the following equality (4.18) where the constant G̃ikp denotes

the antenna gain in log units of node i toward node k, when using antenna pattern index p:

−D̃ik +
∑

p

BipG̃ikp = 0 ∀ik (4.18)

Proposition 4.2.4. The left-hand side of equality (4.18) defines an affine function.

Proof. Noting that G̃ikp is a constant for all i,k, and p, the result is immediate.

Proposition 4.2.5. Equality (4.18) defines a valid constraint for a convex program in the variables

D̃ and B.

Proof. An equality of the form f(x) = b, where f(x) is affine and b is a constant, defines a hy-

perplane. Given any convex optimization program P, its feasible set is convex by definition. The



84

intersection of a convex set with a hyperplane is a (possibly empty) convex set. By induction over

all ik, adding (4.18) to any otherwise valid convex optimization program produces a valid convex

optimization program.

Note that while (4.18) is not produced by converting a GP to convex form, its semantics are

consistent with the objective and constraints produced that way. In particular, it avoids the pitfall

in mixed linear geometric programming of using the same variable in the linear and logarithmic

domains (see [Boyd 07]).† Constraint (4.18) is not directly interchangeable with (4.8). Consider

the simplified case below:

k1x1 + k2x2 =k3

log(k1)x1 + log(k2)x2 = log(k3)

These equations do not in general have the same solution sets. However, when we add the as-

sumptions x1, x2 ∈ {0, 1},
∑

x ≤ 1, k ∈ R3
++, we quickly derive k3 ∈ {k1, k2} and log(k3) ∈

{log(k1), log(k2)} respectively. Over the given domains, these have the same solution sets.

Proposition 4.2.6. The optimization program with constraint (4.18) has at least one optimal

solution value in common with the same program constrained instead by (4.8).

Proof. Following the proof of proposition 4.4.2 on page 95, ∃ a minimizer B∗ for which Bip ∈ 0, 1∀i,p

and
∑

p = 1 ∀i. Let p1 denote the index of B∗ having value 1 for any given i. B∗ satisfies (4.8)

iff Gikp1 = Dik ∀i,k. B∗ satisfies (4.18) iff log(Gikp1) = log(Dik) ∀i,k, which is true exactly when

Gikp1 = Dik ∀i,k.

This means that if there is a unique optimal solution, it is the same regardless of which version

of the constraint one uses. If there are multiple optimal solutions, any solution not satisfying both

constraints could be discarded post hoc. Consequently, the two forms are equivalent for all purposes

of interest here.

† As an aside, using the same variable in both domains is impossible because x and x̃ , log(x) are not the same
variable. The “,” exists in the modeler’s head but not in the actual program, and therein lies the problem. Further,
adding a constraint of the form log(x) = x̃ is problematic precisely because log(x) is not affine.
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4.2.6 Convex Pattern Combination Constraint

Proposition 4.2.7. Constraint (4.9) defines a valid constraint for a convex program in the variables

B.

Proof. Proof parallels that of Propositions 4.2.4 to 4.2.5 on page 83. The LHS is affine and the

RHS is constant. The variables appearing, B, appear only in the linear domain throughout the

program.

4.2.7 The Convex-Constraint-CLAP Program

Consider now the following program:

Convex-Constraint-CLAP:

max f0 any concave objective

s.t. SINR constraint (4.14)

Single pattern constraint (4.9)

Duplex constraint (4.16)

S-V Coupling constraint (4.17)

D-B Coupling constraint (4.18)

(4.19)

Proposition 4.2.8. Convex-Constraint-CLAP (4.19) is a family of convex programs.

Proof. The objective function must be convex minimization (or concave maximization), and con-

straints (4.14) through (4.17) are ≤-type convex inequalities. This follows directly from their

construction as a geometric program in convex form. All variables appearing in these terms have

natural domains within Rn
++. Constraints (4.18) and (4.9) are affine equality constraints. No vari-

able appears both directly and in a log-transformed analogue. The objective and constraints are

all well-defined over the problem’s intended domain.
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Proposition 4.2.9. The program Convex-Constraint-CLAP is equivalent to CLAP if f0 = (4.15)

or f0(S, . . .) = (4.15) on the restricted set S ∈ {0, 1}n and S is so constrained.

Proof. Equivalence is a loosely-defined notion in this context. In this case, we mean the following:

(1) For any instance P of CLAP, there is a procedure for producing a program P ′ which is an

instance of Convex-Constraint-CLAP. (2) For any X ′∗ which is a set of optimal values for P ′, there

is a procedure for producing a set X∗ which are optimal values for P within arbitrarily small error

ǫ. For part (1), such a procedure is defined in the discussion of each functional in CLAP above.

For part (2), the procedure is as follows: for any variable x̃ which was converted to the logarithmic

domain, let x = ex̃. If X∗ is not a singleton, remove any x∗ ∈ X∗ violating any constraint of P.

Proposition 4.2.6 guarantees that X ′∗ contains at least one element which is feasible for P, but

allows the possibility of others which are not. For the other constraints, it follows directly from the

definitions of their convex equivalents that an identical feasible region under the transformation

described is defined in P and P ′. It similarly follows that the objective functions are identical

under the same transformation.

4.2.8 Pseudo-Integral Convex-Constraint-CLAP

Notwithstanding the integrality properties of FLAP and FARP, Convex-Constraint-CLAP

and the continuous relaxation of CLAP both admit non-integer solutions. In particular, non-integer

values of S (and consequently V) are possible and are observed in practice. This is important when

Convex-CLAP is being solved directly, as fractional values of S undermine the semantics of the

duplex constraint by allowing solutions like S12 = 0.6, S32 = 0.4.

One way of handling this is to explicitly constrain S ∈ {0, 1}n and solve the resulting mixed-

integer program, but that approach forgoes the advantages of convexity. There is, however, a

convexity-preserving solution.

For every pair of links which “conflict” under the duplex constraint (e.g. k → i and i → j),
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define the Strong Duplex Property as follows:

SkiSij ≤ 0

The strong duplex property is satisfied if and only if one or both of the links is completely off.

The types of “conflicting” links enumerated by ∀i,j,k,l: (k∈{i,j}∨l∈{i,k})∧(i,j) 6=(k,l) are shown visually in

Figure 4.3 below.

l0

l1

ik0

j

k1
k = j

l = j

l = i k = i

Figure 4.3: Links for which “strong duplex” constraints are defined, relative to link i→ j.

Writing this in standard GP form gives (4.20):

SijSkl + 1 ≤ 1 ∀i,j,k,l: (k∈{i,j}∨l∈{i,k})∧(i,j) 6=(k,l) (4.20)

Translating into the log domain, and allowing for strict positivity, this becomes:

log(eS̃ij+S̃kl + 1) ≤ ǫ ∀i,j,k,l: (k∈{i,j}∨l∈{i,k})∧(i,j) 6=(k,l) (4.21)

Adding constraint (4.21) to the program Convex-Constraint-CLAP gives Pseudo-Integral

Convex-Constraint-CLAP. This program is convex while yielding ǫ-integral solutions. Addition-

ally, it is equivalent to Convex-Constraint-CLAP within a small margin when S ≈ 0 or 1. The

AMPL representations of Convex-Constraint-CLAP and Pseudo-Integral Convex-Constraint-CLAP

are given in Listing D.3 on page 252. The problem CCLAP as written is the pseudo-integral variant.

Removing the constraints “CCLAP DUPLEX PAIRWISE. . .” gives Convex-Constraint-CLAP.

Note that the effect of adding strong duplex constraints on the problem’s decomposability

is not considered here; indeed, decomposition of Pseudo-Integral Convex-Constraint-CLAP is not

addressed in this dissertation.
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Variables

Functional Degree S V D B

Objective: (4.4) 1 X

Constraint

(4.5) 1 X

(4.7) 1 X X

(4.6) 3 X X X

(4.8) 1 X X

(4.9) 1 X

Table 4.1: Constraint matrix structure of CLAP

4.3 Second Decomposition: Lagrangian Relaxation on CLAP

Consider CLAP, given on page 76. This system of equations presents a near-block structure,

shown in table 4.1. Note that (4.7) is shown above (4.6). Without inequality (4.6) (the SINR

constraint), the problem decomposes into two sub-problems: One involving the variables S and V

(link and node activation), and the other involving D and B (antenna gain and pattern). Note also

that the primary computational difficulty in CLAP comes from constraint (4.6) which is still order

3 and mixed-integer.

Let us define vector-valued convenience function ds(·), entry ij of which is given by:

ds(S,D, V )ij , −
(

PiDijDji

Lb(i, j)Nr
Sij + γ1(1 + Mij)(1 − Sij) − γ1

(
1 +

∑

k∈N\{i,j}

PkDkjDkj

Lb(k, j)Nr
Vk

))

(4.22)

Note that constraint (4.6) is then ds(S,D, V ) ≤ 0. Let the Lagrangian function with regard

to (4.4) and (4.6) be:

L(S, λ) = β̄TS − λTds(S,D, V ) (4.23)

This gives a dual function:

φ(λ) = max
S,D,V

L(S,D, V, λ) (4.24)

The corresponding Lagrangian dual problem is CLAP-dual-1, below:
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[CLAP-dual-11]

min
λ

φ(λ)

s.t.
∑

j:(i,j)∈A
Sij +

∑

j:(j,i)∈A
Sji ≤ 1 ∀i

Sij ≤ Vi ∀i

Dik =
∑

p∈P
GikpBip ∀i,k

∑

p∈P
Bjp = 1 ∀j

Sij , Bjp ∈ {0, 1} ∀i, j, p

(4.25)

The resulting Lagrangian relaxed primal problem (RPP) of CLAP is given in 4.26, where λ̄

denotes an estimate of the optimal multipliers λ∗.

max
S,D,V

β̄TS + λ̄Tds(S,D, V )

s.t. constraints (4.5)− (4.9)

except (4.6).

(4.26)

This RPP is block-structured and separable into two subproblems (given in 4.27) coupled

by the Lagrange multipliers λ. I label these the Fixed-antenna Link Activation Problem (FLAP)

and the Fixed-link Antenna Reconfiguration Problem (FARP). FLAP takes estimated Lagrange

multipliers and antenna gains λ̄, D̄ as parameters and computes link activations S. Conversely,

FARP takes λ̄ and estimated link activations S̄ as parameters and computes antenna gains D:

max
S,V

βTS + λ̄Td(S, D̄, V ) max
D

βT S̄ + λ̄Td(S̄,D, V̄ )

s.t. ineq. (4.5) s.t. ineq. (4.8)

ineq. (4.7) ineq. (4.9)

(4.27)
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Concretely, FLAP is given by (4.28) and FARP is (4.29) on the next page.

[FLAP]

max
S,V





β̄TS −
∑

ij

λ̄ij

(
PiD̄ijD̄ji

Lb(i, j)Nr
Sij+

γ1(1 +Mij)(1− Sij) −

γ1

(
1 +

∑

k∈N\{i,j}

PkD̄kjD̄kj

Lb(k, j)Nr
Vk

))

s.t.
∑

j:(i,j)∈A
Sij +

∑

j:(j,i)∈A
Sij ≤ 1 ∀i

Sij ≤ Vi ∀i,j

Sij ∈ 0, 1 ∀i, j

(4.28)

This problem has the integrality property, and so the constraint Sij ∈ 0, 1 ∀i, j can be

dropped.

Proposition 4.3.1. The continuous relaxation of FLAP is equivalent to FLAP with integer S.

Proof. The constraint matrix of continuous FLAP is totally unimodular by Ghouila-Houri’s Theo-

rem. Therefore every extreme point of the feasible polytope is in Zn. The function to be maximized

is concave, implying that no maximum occurs within the feasible polytope, and therefore that the

constrained optimum occurs at an extreme point. Therefore the integer optimum and continuous

optimum occur at the same point. The inverse of the constraint matrix is also totally unimodular

by Cramer’s Rule, and so the same argument holds for the dual problem.
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[FARP]

max
D,B





β̄T S̄ −
∑

ij

λ̄ij

(
PiDijDji

Lb(i, j)Nr
S̄ij+

γ1(1 +Mij)(1− S̄ij) −

γ1

(
1 +

∑

k∈N\{i,j}

PkDkjDkj

Lb(k, j)Nr
V̄k

))

s.t. Dik −
∑

p∈P
GikpBip = 0 ∀i,k

∑

p∈P
Bip = 1 ∀i

(4.29)

The AMPL statements of the FLAP and FARP programs are given in Listings D.4, D.5, and

D.6 on pages 257–278‡ . Note that a Lagrangian decomposition on a non-convex problem introduces

the possibility of a duality gap. Techniques for eliminating the duality gap include Augmented

Lagrangians [Grothey 01] and Lagrange-type functions with convolution functions [Rubinov 03].

The approach pursued here avoids the need to for partitioning, but see discussion in [Dür 97,

Horst 00]. The problem Convex-CLAP avoids the possibility of a duality gap entirely. Problems

(4.28) and (4.29) look rather messy arithmetically, but the structure becomes clearer when constants

are factored out. Note that the estimates ¯foo are constants with regard to the current iteration of

either problem. Let K1, . . . , Ln denote the set of constants occurring in either problem. The two

problems can then be rewritten as (4.30) and (4.31):

max
S,V

K1S +
∑

ij λ̄ij

(
K2Sij +K3 +K4Sij − γ1 −

∑
k∈N\{i,j}K5Vk

)

s.t.
∑

j:(i,j)∈A Sij +
∑

j:(j,i)∈A Sij ≤ 1 ∀i

Sij ≤ Vi ∀i

(4.30)

max
D,B

K7 +
∑

ij λ̄ij

(
K7DijDji +K8 − γ1 −

∑
k∈N\{i,j}K9DkjDjk

)

s.t. Dij −
∑

p∈P K10Bjp = 0 ∀i,j
∑

p∈P Bjp = 1 ∀j

(4.31)

‡ These files contain multiple variants of both problems.
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The substitutions are shown in table 4.2. Note that they are constants in the sense of not

involving any decision variables, but they do take different values for different i, j, k.

K1 = βT

K2 =
PiD̄ijD̄ji

Lb(i,j)Nr

K3 = γ1 − γ1Mij

K4 = −γ1(1 +Mij)

K5 = γ1
PkD̄kjD̄kj

Lb(k,j)Nr

K6 = βT S̄

K7 =
PiS̄ij

Lb(i,j)Nr

K8 = γ1(1 +Mij)(1− S̄ij)

K9 = γ1
PkV̄k

Lb(k,j)Nr

K10 = Gikp

Table 4.2: Constant substitutions for LR decomposition.

The decomposition shown in (4.27) - (4.31) has the following properties: The S, V DPP is a

linear program. Its size is fairly large. There are O(n2) variables where n is the number of nodes. S

is a vector of potential size n2, and V is a vector of potential size n. In practice, potential links i, j

for which there is no link-layer demand need not be considered at all, so |S| may be substantially

smaller than n2. In a network which is small enough (relative to the communication technology)

that any node can potentially reach any other, up to n(n− 1) links may exist. As a network grows

larger (spatially) it is reasonable to assume that any given node can only communicate with some

local neighborhood, so the number of possible links per node (the node degree) is limited by the

network’s density, not its size. In that case, the expected number of possible links is O(n). For a

spatially-large network, then, both |S| and |V | are O(n).

4.4 Block Separability of FARP

FARP is given by equation (4.29) on the previous page. Note that it is a program with linear

constraints and a quadratic objective function. Unlike linear functions, which are by nature convex

(or concave), the convexity of a quadratic function depends on the coefficients of the quadratic

terms. The structure of FARP is in general not necessarily convex, but it has a number of nice

properties which make its computation tractable.

Proposition 4.4.1. FARP has convex-anticonvex structure, as defined by [Hiriart-Urruty 98, §3.1].
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Proof. Let x refer to D,B and f(x) denote the objective function of FARP from (4.29), repeated

here:

βT S̄ −
∑

ij

λ̄ij

(
PiDijDji

Lb(i, j)Nr
S̄ij + γ1(1 +Mij)(1− S̄ij) − γ1


1 +

∑

k∈N\{i,j}

PkDkjDkj

Lb(k, j)Nr
V̄k



)

Let k denote the (constant) contribution of all terms in f(x) not dependent on x. Let:

g(x) ,
∑

ij

(
λ̄ijS̄ij

Pi

Lb(i, j)Nr
DijDji

)
+ k (4.32)

h(x) ,
∑

ij

∑

k∈N\{i,j}

(
γ1V̄kλ̄ij

Pk

Lb(k, j)Nr
DkjDjk

)
(4.33)

(4.34)

Let f ′(x) = −f(x). Note that FARP is stated as max f(x), which is equivalent to min f ′(x). Now,

f ′(x) = g(x)− h(x)

The coefficients λ̄ijS̄ij
Pi

Lb(i,j)Nr
and γ1V̄kλ̄ij

Pk

Lbk,jNr
are always≥ 0. Consequently, for any given i, j, k,

λ̄ijS̄ij
Pi

Lb(i,j)Nr
DijDji and γ1V̄kλ̄ij

Pk

Lbk,jNr
DkjDjk are concave functionals. The sum combination of

concave (convex) functionals is itself concave (convex). Being constant, k is convex and concave.

Therefore, g(x) and h(x) are both concave. Consequently f ′(x) is convex-anticonvex. max f(x)

is equivalent to min f ′(x), and therefore the objective function of FARP is convex-anticonvex.

Note that convex-anticonvex structure is a special case of difference of convex or simply

D.C. structure. A review of D.C. programming is beyond the scope of this dissertation, however

excellent discussion is provided in [Shor 98, Horst 00, Hiriart-Urruty 98, Grothey 01].

Furthermore, FARP is almost separable. Consider the following algebraic transformation of

h(x). This groups the penalties for interference with the interferer as well as the interferee.

h′(x) ,
∑

i∈N


∑

j∈N

∑

k,l∈N\{i,j}

(
1

2
γ1V̄iλ̄kl

Pi

Lb(i, l)Nr
DilDli

)
 (4.35)

f ′′(x) , g(x)− h′(x) (4.36)
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Observe that h′ ∗ (x) is equivalent to h(x), and therefore f ′′(x) is equivalent to f ′(x). There-

fore, FARP can be restated as equation (4.37).

max
D,B

1− f ′′(D,B)

s.t. Dij −
∑

p∈P PijpBjp = 0 ∀i,j
∑

p∈P Bjp = 1 ∀j

(4.37)

Note that in equation (4.37) all of the constraints pertaining to a given node i pertain only

to node i. Observe also that f ′′(x) can be read as a sum
∑

i f
′′
i (xi), where xi , ∪k 6=i{Dik, Dki}.

Note that the variables xi form a partition of x. Unfortunately, the xi appear in the constraints

of nodes other than i, and so equation (4.37) is not separable by that definition. If, rather, x is

divided into xi , ∪k 6=iDik, this restores the separability of the constraints, but each f ′′
i (x) involves

more than xi.

This makes intuitive sense: The CLAP SINR constraint d(·), and consequently the function

f ′′(x), pertains to absolute power received at each destination. The effect, in linear units of power

at k, of changing the gain Dik depends on Dki.

Using the division xi , ∪k 6=iDik produces the following formulations. Note that β̄T S̄ is a

constant and is dropped for simplicity in subsequent formulations:

gi(x) ,





∑

j

(
1

2
λ̄ijS̄ij

Pi

Lb(i, j)Nr
DijD̄ji

)
+

k

|N | if i is a transmitter

∑

j

(
1

2
λ̄jiS̄ji

Pj

Lb(j, i)Nr
D̄jiDij

)
+

k

|N | if i is a receiver

(4.38)

h′i(x) ,





∑

j


 ∑

k,l∈N\{i,j}

(
1

2
γ1S̄ij λ̄kl

Pi

Lb(i, l)Nr
DilD̄li

)
 if i is a transmitter

∑

j


 ∑

k,l∈N\{i,j}

(
1

2
γ1S̄jiλ̄ji

Pk

Lb(k, i)Nr
D̄kiDik

)
 if i is a receiver

(4.39)

f ′′
i (x) = gi(xi)− h′i(x) (4.40)

f ′′(x) =
∑

i

f ′′
i (x) (4.41)
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Note that the transmitter and receiver cases of equation (4.38) on the previous page together

describe both ends of an intended link, while equation (4.39) on the preceding page describes both

ends of an unwanted transmission. Additionally, note that the division into cases is not actually

necessary: S̄ij 6= 0 if and only if i is a transmitter, and S̄ji 6= 0 if and only if i is a receiver, so the

cases can simply be added together. Therefore, a Lagrangian decomposition of FARP is possible

as follows below. The Single-Node Antenna Reconfiguration Problem (SNARP) is given

in problem 4.42.

[SNARPi]

max
D,B

1− f ′
i(D,B) (4.42a)

s.t. Dik −
∑

p∈P
GikpBip = 0 ∀k (4.42b)

∑

p∈P
Bip = 1 (4.42c)

Bip ≤ 1 ∀p∈P (4.42d)

Bip ≥ 0 ∀p∈P (4.42e)

The SNARPi subproblems are given in AMPL form in Listing D.5; see especially line 213 on

page 274.

Proposition 4.4.2. SNARPi with continuous variables has an optimal solution equal to that with

boolean Bip.

Proof. SNARPi is a linear program in D,B, but can be re-written purely in B by substituting

∑
p∈P GikpBip for Dik in the objective function. So written, it is a linear program with |P | variables

and 2|P |+1 constraints. By the fundamental theorem of linear programming [Chvátal 80, Theorem

3.4] ∃ a basic solution in which |P | constraints are satisfied with equality. Constraint (4.42c) must

be one of them. This forces |P |−1 out of (4.42d), (4.42e) to be satisfied with equality, which means
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that |P | − 1 of the variables must be either 0 or 1. Those variables must then sum to either 0 or 1,

based on (4.42c). Those options force the remaining variable to be 1 or 0, respectively, in order to

satisfy (4.42c).

4.5 Second Lagrangian Decomposition on CLAP

In the interest of scalability, it would be desirable to similarly separate FLAP. Unfortunately

the duplex constraint prevents this, and is not easily massaged away algebraically. To address this,

extend the Lagrangian relaxation of CLAP to the constraint
∑

j:(i,j)∈A Sij +
∑

j:(j,i)∈A Sji ≤ 1 ∀i.

Paralleling equation (4.22) on page 88, let dd(S) be the function having the i-th element given be

equation (4.43):

dd(S)i ,
∑

j:(i,j)∈A
Sij +

∑

j:(j,i)∈A
Sji − 1 (4.43)

Let d′s(S, V ) be ds(S,D, V ) where the antenna gain variables D are replaced with fixed

estimates D̄, where element ij is given by:

d′s(S, V )ij , −
(

PiD̄ijD̄ji

Lb(i, j)Nr
Sij + γ1(1 +Mij)(1− Sij)− γ1

(
1 +

∑

k∈N\{i,j}

PkD̄kjD̄jk

Lb(k, j)Nr
Vk

))
(4.44)

Let us define a new Lagrangian function L′(·) as follows:

L′(S,D, V, λ, µ) = β̄TS − λTds(S,D, V )− µTdd(S) (4.45)

This gives a new dual function φ′(λ, µ) and corresponding problem dual problem CLAP-dual-

2, both given below:

φ′(λ, µ) = max
S,D,V

L′(S,D, V, λ, µ)
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[CLAP-dual-2]

min
λ,µ

φ′(λ, µ)

s.t. Sij ≤ Vi ∀i

Dik =
∑

p∈P
GikpBip ∀i,k

∑

p∈P
Bjp = 1 ∀j

(4.46)

This produces a new relaxed primal version of FLAP, RP-FLAP. FARP remains unchanged.

[RP-FLAP]

max
S,V

β̄TS + λ̄Td′s(S, V )− µ̄Tdd(S)

s.t. Sij ≤ Vi ∀ij

(4.47)

RP-FLAP is separable along the index i. Let us group the link ij with node i, defining d′d

in equation (4.48):

d′d(S)i =
∑

j:(i,j)∈A
Sij +

∑

j:(j,i)∈A
S̄ji − 1 (4.48)

Using the preceding definition, we define the following:

β̄w , {β̄ij |i = w}

λ̄w , {λ̄ij |i = w}

µ̄w , {µ̄i|i = w}

d′dw(S) , {d′d(S)i|i = w}

Sw , {Sij |i = w}

d′sw(Sw, V ) , {d′sw(S, V )ij |i = w}
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The partitioned form of RP-FLAP is the Single Node Relaxed Primal FLAP (SNRP-FLAP).

[SNRP-FLAPw]

max
S

β̄T
wSw + λ̄T

wd
′s
w(Sw, Vw)− µ̄T

wd
d
w(Sw) (4.49a)

s.t. Swj ≤ Vw ∀j (4.49b)

The preceding series of decompositions replace the relaxed primal problem (RPP) with 2N

easy subproblems which can be solved in parallel. Each instance of SNARPi is a linear program

with |P | variables and 1 general constraint. By Proposition (4.4.2), it can be solved by simply

enumerating the objective value for each p ∈ P , of which there are a small constant number,

and choosing the pattern with the highest value. Therefore the overhead of a general-purpose

solver can be avoided. Each instance of SNRP-FLAP is a linear problem with O(N) variables

and constraints, although it will be further re-formulated. The final form (SDQ-FLAP) is given in

AMPL specification appears in Listing D.5 – the problem definition is given in line 197 on page 273.

4.6 Economic Interpretation

This formulation lends itself to the following semantic interpretation: In the coupling between

the restricted master problem (RMP) and CLAP, the dual values β̄ij represent the estimated value

in terms of improvement to the overall schedule of accommodating more traffic on link ij. In the

coupling between Lagrangian subproblems, λ̄ij represents the value of improving the SINR on link

ij, and µ̄i represents the value of decreasing the usage of node i.

In SNRP-FLAP, each node chooses to activate links to maximize its utility, where β̄ ≥ 0 is

the reward for activating each link, λ̄ ≥ 0 is the penalty for any SINR reduction on each link, and

µ̄ ≥ 0 is the penalty for using each node.

Correspondingly, in SNARP, each node chooses antenna gains to maximize a different utility,

defined solely in terms of λ̄. When all the constants have their values substituted in, the objective



99

function of SNARPi is of the form in equation (4.50), where the actual value of constant kij is

determined by λ̄, node j’s antenna configuration, and RF parameters Lb, P , and Nr.

max
Dij

∑

j 6=i

Dijkij (4.50)

kij





≥ 0 if ij or ji is an active link

≤ 0 if ij or ji is an “interference link”

= 0 otherwise

It is worth noting that this interpretation generalizes beyond the specific formulation used

in the rest of this dissertation: In choosing to start from Björklund’s formulation, I’ve committed

to a particular way of representing demand, and a to particular (and unintuitive) expression of

the SINR constraint. The overall decomposition approach developed does not depend on either,

especially at this semantic level.

4.7 Lagrange Multiplier Updates

The combined problems SNRP-FLAPi and SNARPi for all nodes i implement the relaxed

primal problem. Solution proceeds by iteratively solving the RPP and updating the Lagrange

multipliers λ and µ so that they converge to an optimal solution of the dual problem. This work

uses a subgradient method because it lends itself to distributed implementation and because

subgradient methods tend to scale well with the problem size. At time t, let st denote the degree

of constraint violation, αt the step size, and [·]+ projection onto the nonnegative orthant. The

subscripts λ and µ are used to distinguish the values pertaining to each set of Lagrange multipliers.

stλ = ds(St, Dt, V t)

stµ = dd(St)

λ̄t+1 ←
[
λ̄t + αt

λs
t
λ

]
+

µ̄t+1 ←
[
µ̄t + αt

µs
t
µ

]
+
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We define step size rule αt = a
(t+b)2

, a > 0, b ≥ 0. The a and b are tunable parameters and

are not related to Guan’s a and b in SDQ-FLAP and [Guan 95]. The AMPL specification of the

multiplier update process is given in Listing D.13, especially lines 138 to 153 on page 310, and the

underlying logic is given in Listing D.8 on page 280.

4.7.1 Convergence Properties

The subgradient method described above will produce optimal values of the Lagrange multi-

pliers for CLAP-dual-2.

Proposition 4.7.1. The sequences {λ̄t} and {µ̄t} converge to λ∗ ∈ λ∗ and µ∗ ∈ µ∗, where (λ∗,µ∗)

are the optimal sets of CLAP-dual-2.

Proof. For convenience, let X refer to the set of all decision variables, x refer to a vector value

in X, and x0 refer to some specific value of x, not a scalar component of x. Let Gs be any

subgradient of d′s and Gd be any subgradient of d′d. Then λGs(x0) + µGd(x0) is a subgradient of

−β̄TS+λTds(S,D, V )+µTdd(S), by Shor’s [Theorem 15][Shor 98]. This equals equation (4.45) on

page 96. ∴ St
λ + St

µ is a subgradient of (4.45). The sum over all i of the objectives and constraints

of SNRP-FLAPi and SNARPi equal the objectives and constraints of CLAP-dual-2. Assume that

the Slater condition holds, otherwise the problem and JBSS-MP are infeasible.

∫
a

(t+b)nd(t) =
a(t+b)1−n

1−n
, n > 1, which diverges as t →∞. ∴

∑∞
t=0 α

t = +∞. limt→∞ αt = 0

for n, a > 0. Therefore, {x} converges to optimal x∗ by [Shor 98, Thm 31].

It does not follow from the above that the sequence of primal values produced will converge

to optimal S∗, D∗ even though the problems exhibit strong duality. To address this, we define the

following sequence:

Ŝt = (1− αt)Ŝt−1 + αtSt (4.51)

Proposition 4.7.2. {Ŝt} converges to S∗, and the analogous {D̂t} converges to D∗
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Proof. We appeal to a result by Larsson et al. [Larsson 99]. {St} is generated by a dual subgradient

process satisfying his criteria (9)-(11). {Ŝt} is an ergodic sequence satisfying (7), (13). It follows

from [Larsson 99, Theorem 1] that {St} converges to the solution set. The same applies to {D̂t}.

4.8 Complexity Results

This section provides a crude evaluation of the computational benefit of decomposing the

CLAP problem. It is difficult to directly compare the two approaches, as the algorithms and software

tools differ substantially. Consequently, I use raw CPU time as a common metric. Figure 4.4

on the next page shows a box plot comparison of the time required to solve random problem

instances of different sizes using the two approaches. The panel labelled“Centralized”shows a direct

solution of CLAP using the KNITRO 6.0.1 solver; “Distributed” shows the relaxed primal problem

/ subgradient solution described above, using IPOPT [Wächter 06] and CPLEX for the quadratic

and linear component problems, respectively. In order to easily gather CPU usage information,

in the “distributed” case, each node’s computations were executed in sequence on the same CPU

(see Listings D.15 and D.16.) Note that for the centralized case, the final three data points (for

18, 24, and 48 nodes) are lower bounds only – they show the elapsed time so far on experiments

which have not yet terminated. The values for the distributed case are actual time to termination.

Figure 4.5 on page 103 shows the same data but scaled to reflect the CPU time per process for

the distributed case.

4.9 Summary

This dissertation will evaluates several strategies for integrating beam selection with link

scheduling. The introduction presents the baseline case of no integration or minimal integration,

which represents the current state of the art in wireless packet relay networking. The preceding

section, 3, describes a completely-integrated mathematical program and a decomposition-based

algorithm for its tractable solution.
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Figure 4.4: Scaling comparison of centralized direct solution and distributed decomposed solution.
Figure shows total user CPU time consumed.
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Per−process CPU time to termination
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Figure 4.5: Scaling comparison of centralized direct solution and distributed decomposed solution.
Figure shows user CPU time consumed per logical process.



Chapter 5

Mathematical Issues in System Implementation

This chapter discusses the mathematical issues involved in bringing the preceding formulation

into a real-world system. In addition to the design and implementation problems inherent in

all systems work, certain issues with the formulation itself present themselves in the context of

implementation and deployment.

5.1 Solution Oscillation

The problem formulation from Chapter 4 exhibits a well-known issue with subgradient meth-

ods: Small changes in the Lagrange multipliers produce large changes in primal solutions, causing

oscillation around the ideal search trajectory. This can considerably slow the solution process. The

linear objective function and previously-mentioned integrality property contribute to this behavior

in FLAP and its derived problems.

In the case of FLAP specifically, the (dualized) SINR constraint is deliberately constructed

so that it is always satisfied for unused (S = 0) links. This causes the SINR constraint to oscillate∗

between being slightly violated and grossly satisfied, which in turn leads to the Lagrange multiplier

bouncing between its S = 0 state (0) and its S = 1 state. The linear-scale figure figure 5.1 on the

next page illustrates the effect.

Additionally, when the relevant SINR prices λ are 0 and the β̄ values are the same, links

which share a node exhibit the homogeneous subproblem property where any given dual price

∗ One would normally refer to this as “flapping,” but I wish to avoid overloading the term.
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SINR Constraint Lagrange Multiplier evolution: D−W step 1
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Figure 5.1: Lagrange multiplier oscillation example (random scenario snapshot SVN r.1088)



106

µ will result in the same primal outcome for all links. This issue arises in the context of the

hydrothermal unit commitment problem, and is commonly addressed by the use of surrogate

subgradient methods. To simplify decentralized implementation, however, we avoid that approach

and instead use a nonlinear approximation method of the form presented in [Guan 95]. This is

conceptually very similar to an augmented Lagrangian, but the additional quadratic parameter is

computed locally for each subproblem, maintaining the separable structure of the original linear

program. Based on this transformation, we introduce the Single-node Dual Quadratic FLAP, or

SDQ-FLAP, where aij and bij are defined as in [Guan 95].

[SDQ-FLAPi]

max
S

∑

j:ij∈A
−aijSij

2 + (bij − λ̄ijSij)−
µ̄i + µ̄j

2
Sij (5.1a)

s.t. Sij ≤ Vi ∀j (5.1b)

Proposition 5.1.1. Any stable solution to SDQ-FLAPi is also a solution to SNRP-FLAPi.

Proof. The constraints of SDQ-FLAPi are identical to those of FLAPi. At any point x0, the

nonlinear approximation f ′ generated at x0 is parallel to f [Guan 95]. For both SDQ-FLAP and

SNRP-FLAP, the constraints are all differentiable and convex, and the objective is convex (when

stated as minimization). Therefore the Karush-Kuhn-Tucker conditions are sufficient for global

optimality.

Let x∗ be an optimal solution of SDQ-FLAPi as constructed at x0. Let The KKT conditions

therefore hold. Assume x∗ is stable, therefore x∗ = x0. Suppose that x0 is not an optimal solution

of SNRP-FLAPi. The KKT conditions other than stationarity are the same in both cases, so they

must hold for SNRP-FLAPi. Therefore the stationarity condition must hold for SDQ-FLAPi but

not for SNRP-FLAPi. That requires, for the same constraints, that ∇f ′(x∗) 6= ∇f(x∗), which is a

contradiction.
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The preceding formulation significantly reduces oscillation relative to FLAP or its decomposed

analogue, SNRP-FLAP. The constraint (5.1b) can be ignored: The variable Vi does not appear in

the objective function and is otherwise free, so the problem can be solved for S and Vi chosen to be

max(Sij). SDQ-FLAPi is therefore an unconstrained (or bound-constrained) quadratic program

with at most 2N variables.

5.2 Partial Pricing

Recall that the objective of the column generation subproblem is to find improving feasible

points for inclusion in the restricted master problem. The optimality of the overall result does

not require that the subproblem finds the most improving point, only that it finds an improving

point if one exists. We exploit this by using the well-established technique of “partial pricing”

and returning the first improving primal feasible result (Ŝt, D̂t) – which may or may not be the

best possible – without waiting for the subgradient process to converge [Desrosiers 05]. It is only

necessary to allow the subproblem to fully converge to prove that there is no as-yet-undiscovered

feasible improving point.

Every solution to an iteration of the restricted master problem is a valid schedule. Each

such schedule can be put into place in the network immediately if it is superior to the current

schedule, regardless of whether or not it is the final, best schedule. Consequently, terminating the

subproblem early and re-solving the RMP yields a useful result sooner than solving the subproblem

to optimality, even though it may or may not improve the overall running time.

5.3 Distributed Consensus

The preceding sections decompose the original problem into a form where 2N small problems

are solved in parallel for each subgradient update iteration. Going from a parallel algorithm to

a distributed one requires some consideration of the communication processes. We make use of a

very simple and robust model due to [Tsitsiklis 86]: Every node maintains its own version of every

variable, and nodes announce their variable values to other nodes occasionally. A node may actively
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compute locally-generated values for some, all, or no variables. Upon computing a new value or

receiving other nodes’ variable values, a node updates its own values according to a weighted averag-

ing scheme. Under surprisingly light requirements on the weights and communication frequencies,

it is shown that this scheme has the same convergence properties as its centralized counterpart. The

results in [Tsitsiklis 86] are only shown for objective functions which are continuously differentiable

and Lipschitz, while the Lagrangian dual function is generally non-differentiable. Similar results

are proven for the non-differentiable case in [Nedić 01].



Chapter 6

Performance Evaluation

This chapter presents some minimal performance evaluation results for the algorithms devel-

oped in the preceding chapters. Section 6.1 presents numerical experiments, showing that optimal

solutions are both achieved quickly and offer substantial speedup over (non-spatial-reuse) TDMA

schedules. Section 6.2 discusses a testbed proof-of-concept implementation of our approach, and

finally a summary is given in section 6.4.

6.1 Numerical Experiments

This section considers the performance of the optimization process taken in isolation. These

experiments emulate a distributed algorithm in that each node’s computations are performed sep-

arately. Experiments were conducted by running the algorithm over a large number of scenarios

constructed with varying initial values. In total, 1396 experiments were run. The following major

parameters were varied: Number of nodes (between 0 and 81), the number of links (between 1
2 and

3 links per node), and the size of the simulated region (between 1 and 16 square km). For each set

of parameters, nodes were randomly placed within the simulated area with uniform probabilities,

and pairwise path losses were estimated using the Green-Obaidat model [Green 02]. All possible

links were identified based on a hypothetical transmission power of 14.7 dBm, a required signal

strength of -80 dBm, and the best-case antenna gains given a measured phase array antenna beam

pattern. The requested number of links were chosen randomly from the pool of possible links; if

enough possible links did not exist, a new layout was generated. The results presented here are
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aggregates across all of these scenarios — a full factorial analysis is planned for future empirical

studies of these algorithms and associated STDMA MAC.

6.1.1 Running time

A well-known limitation of subgradient methods for updating Lagrange multipliers is that

they are very slow to reach a provably converged state. This means in practice that such algorithms

may find optimal values relatively quickly, but then require a longer period to verify that no better

values exist. As alluded to in section 5.2 on page 107, termination may not be the best criterion

for an on-line system. It is expected that schedule optimization will be a continuous process,

converging and diverging as system parameters change. Consequently, we find it useful to examine

the time required to find optimal and near-optimal solutions as well as the time to termination. In

our experiments, we find that by either measure, execution time is at worst linear in the size of

the input.

To quantify the behavior, see Figure 6.1 which plots the distribution of the number of itera-

tions required to first reach the optimal solution across all of our simulation runs. Figure 6.2 shows

the upper-left portion of the curves in more detail. We can see that in more than 90% of the cases,

the optimal solution is found within 500 iterations (the mean is 61 iterations and 92% are solved

to optimality within 200), yet some scenarios may require as many as 3250 iterations to settle on

the optimal solution. On average, we are able to get within 10% of optimal within 59 iterations

and within 20% of optimal within only 26 iterations.

6.1.2 Schedule Efficiency

In addition to convergence properties, our numerical experiments provide a window into the

ability of the algorithm to produce efficient (high-reuse) schedules across a vast number of randomly

generated scenarios. Figure 6.3 plots a speedup metric which is the ratio of the time required by a

TDMA MAC to transfer its workload as compared to the time required by our optimized system. In

our experiments, we see speedup values ranging from 1 (no speedup) to 6 with an average speedup
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Figure 6.1: Distribution of number of (minor) iterations necessary in simulations to first reach and
optimal solution.
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Iterations to Specified Fraction of Optimality (Detail)
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of 1.74 across all scenarios (σ = 0.96). This number is biased downward by the inclusion of a

significant number of simulations for which 1 was the greatest possible speedup; this also biases

the running time estimates. For more detail, speedup is shown relative to the number of links in

Figure 6.4 on page 115.

6.1.3 Alternate Cases

As mentioned before, optimal link scheduling has been shown to be NP-hard. Since the

data discussed so far suggest distinctly sub-exponential computational complexity, in makes sense

to consider input data which might cause the algorithms to exhibit exponential complexity. We

consider two such cases, one which fails to challenge the algorithms, and one which succeeds.

6.1.3.1 Grid Scenario

For the grid scenario, nodes are placed on a grid at 250m intervals, and the same propa-

gation and antenna settings described above are used. Traffic flows from every node to its two

neighbors in the positive x and y directions, as illustrated in Figure 6.5 on page 116. It had been

our observation that discrete constraints contributed to cycling and other degenerate algorithmic

behavior, suggesting that a highly-connected scenario might perform poorly.

In actuality, however, this scenario exhibited quite reasonable scaling behavior. Figure 6.6

on page 117 shows the scaling over the range of 4 to 81 nodes. (The x and y scales are chosen

for consistency with the clique scenario below.) It gives the appearance of being nearly constant,

though it must be remembered that the amount of computation involved in each iteration increases

linearly with the number of nodes.

6.1.3.2 Clique Scenario

The clique scenario represents the most difficult decision scenario, and one with a clear

reduction to a hard SAT problem. The scenario was created by suspending realistic radio models:

It is fully connected in all senses. Every node has traffic for every other, but also every node
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Acheived Speedup in Numerical Simulations
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Figure 6.3: Empirical cumulative distribution of achieved speedup (ratio of optimal to TDMA
performance) across all simulations.
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Speedup Relative to Number of Links
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Figure 6.5: Grid scenario, 9 nodes

the same propagation characteristics to every other, and every combination of antenna patterns

produces the same effect. Interestingly, this admits a very easy solution by inspection or by group-

theoretic argument – there is no possibility for spatial reuse – but it is a pathological case for

the algorithms presented here. The scaling properties are shown in Figure 6.7 on page 118. All

scenarios with greater than 14 nodes failed to terminate within a 100,000 iteration limit. Note

also that the constant time to an optimal value is potentially misleading – the algorithm always

starts with a conservative feasible solution (simple TDMA), and this scenario allows no possible

improvement. It is consequently a rather vacuous optimality, although it is also an indication that

the algorithms we present here do “something useful” even in the worst cases.

It would be nice to conclude that an artificial scenario is required in order to produce expo-

nential scaling behavior. To do so would be overreaching the data, but I at least have not succeeded

in producing “naturally plausible” scenario with that effect.

6.2 Deployed System

Thus far, this chapter has described and evaluated our mathematical design; this subsection

addresses its concrete implementation. The system we present here operates in a fully distributed,

asynchronous manner. Nodes maintain and exchange variables as described in section 5.3.

In addition to the subproblem solver processes, there is a separate process for the early

termination check and restricted master problem (RMP). When this process detects that its current

estimates (S̄t, D̄t) constitute a primal feasible solution with negative reduced cost, a corresponding

new column is added to the RMP, which is re-solved. The resulting new schedule, updated dual
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Figure 6.6: Iterations to optimality and to termination for the grid scenario
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Running Time vs. Problem Size: clique
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prices β̄, and step size reference time are sent to all nodes by a flooding protocol.

Figure 6.8 on the next page shows the execution of the algorithm on a wide-area phase array

antenna testbed, as observed by a single node (C). In this scenario, node B is sending traffic (a

stream of UDP packets with 1024 byte payloads) to node A while node C sends a similar volley to

node D. With näıve beam-steering, these links are bad neighbors—node B will cause substantial

interference at node C (62.5 dBm on average). Hence, these links can be activated simultaneously,

but only carefully.

The top strip of this figure shows the evolution of the SINR Lagrange multiplier estimates

λ̄, the second strip shows the consensus estimated link activations Ŝ, and the third strip shows

the combined antenna gains for the signals and interference. Times of interest are marked with a

vertical bar and labelled (1, 2, . . .) on all strips. Note that no change to actual system state occurs

until a new execution of the RMP; the link activation and antenna configurations referred to are

variable values. Qualitatively, the execution of the algorithm can be understood in the following

stages:

Prior to time 1, node C’s estimate λ̄CD is 0 and does not appear on the log-scale. This drives

the link activation ŜCD toward 1, while the SNARP objective is undefined and the resulting gains

are low.

At time 1, the combination of high activation and low gain causes the SINR constraint for

link C→ D to be violated. The price λ̄CD takes a large step to > 10−20. The increased price drives

ŜCD back toward 0, and causes D̂CDD̂DC to start trending up. The price λ̄CD decreases steadily as

the low activation and higher gain stay within the constraints.

At time 2, the combination of low λCD and higher gain allows ŜCD to increase to near 1. At

time 3, ŜCD gets close enough to 1 to violate the SINR constraint again and drive up λ̄CD The

dramatic increase in λ̄CD relative to λ̄BA drives the antennas to favor D̂CDD̂DC. Note that this

antenna configuration at node C has high gain toward A, raising the unwanted gain D̂CAD̂AC.

Between times 3 and 4, λ̄CD and λ̄BA trend down, but changes in their relative magnitude

cause the overall antenna state to switch back and forth. Immediately before time 4, ŜBA increases
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State Evolution at Node C
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Figure 6.8: Trace of algorithm scheduling links B→ A and C→ D concurrently, as seen locally at
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121

almost invisibly. Recall that node C is not computing SBA, so a change in ŜBA reflects the

incorporation of a value broadcast by node B. This change is sufficient to cause an SINR constraint

violation, driving λ̄BA up at time 4.

Note two changes with regard to the gains: First D̂ABD̂BA increases dramatically, reflecting

a change in antenna configuration by node B. Second, the change in λ̄BA causes node C to change

its antenna configuration to diminish D̄CA, at the cost of also reducing D̄CD. This new system-wide

antenna configuration can accommodate both links, and ŜBA tends toward 1 as node C receives

updates from other nodes. At this point the RMP can schedule the two links concurrently with

the configuration given. Note that λ̄ continues to vary but this variation does not effect the primal

estimates.

6.3 Performance Problems

This section discusses some of the weaknesses of the proposed approach and its implemen-

tation. The first subsection describes problems specific to the current implementation, which can

likely be resolved without changing the basic algorithms.

6.3.1 Implementation Issues

The simplest and least fundamental performance issues are those stemming directly from the

implementation. The current implementation which I have referring to as “Prototype 3” is best

regarded as a proof of concept: It is a working system, but not one designed for performance.

Every subproblem solution involves writing several files, synchronizing processes, and running a

stand-alone NLP solver. Especially, the STDMA driver schedules very large time slots, so freshly

computed values wait as much as a second to be sent. We expect that a performance-conscious

implementation could reduce time per iteration by at least an order of magnitude – possibly several

– without any changes to the fundamental algorithms.

The following procedures describe the current mode of operation:

Ignore for the moment the asynchronous nature of this algorithm, and imagine that all pro-
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Algorithm 6.1: Subproblem Iteration – Wireless Node

repeat
if ASYNCHRONOUS RECV (packet, from=wireless) then

ASYNCHRONOUS XMIT (packet, to=solver host)

if ASYNCHRONOUS RECV (packet, from=solver host) then
update local cache

until my transmit slot
if time since last broadcast ≥ timeout or SIZEOF (cache) ≥ full packet then

SYNCHRONOUS XMIT (cache, to=wireless)

Algorithm 6.2: Subproblem Process – Solver Thread

repeat
acquire_lock ()
local copy ← node variables
release_lock ()
write_fifo (local copy) ; /* blocking IPC */

/* Wait for AMPL cycle */

new vars ← read_fifo () ; /* blocking IPC */

acquire_lock ()
node variables ← update_estimates (local copy, new vars, node variables)
release_lock ()

until forever

Algorithm 6.3: Subproblem Process – Solver Host Main Thread

repeat
acquire_lock

if ∃ new schedule state then
SCHEDULE PROTOCOL

release_lock

foreach v ∈ node variables do
if random () ≥ thresholdv then /* depends on source of value */

ASYNCHRONOUS XMIT (v, to=wireless node)

if ASYNCHRONOUS RECV (packet, from=wireless node) then
enqueue (packet)
if length (queue) > threshold then

acquire_lock

node variables ← update_estimates (queue, node variables)
release_lock

until forever
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cesses’ cycles are aligned. Suppose that the estimate of some variable has changed value at some

node in round n – the following events will have to occur before that change can be reflected in

round n+ 1 at some other node.

(1) The source node’s cache freshness timeout expires.

(2) A protocol data transmit slot occurs in the schedule.

(3) The packet is transmitted and received by user-space daemons written in Python.

(4) The packet is re-transmitted to a solver host.

(5) Another timeout expires (or batch size is reached) on the solver host.

(6) Thread synchronization occurs (within a single Python process).

(7) The solver interaction thread blocks on named pipe IPC with the AMPL process.

(8) AMPL reads the named pipe; AMPL goes to sleep and the solver interaction thread un-

blocks.

(9) The solver interaction thread unblocks and writes.

(10) AMPL unblocks and reads.

(11) AMPL performs some computation and writes a problem description file.

(12) AMPL fork()s and exec()s a solver executable; the original process blocks.

(13) The solver reads the problem description file, performs some computations, writes a result

file, and terminates.

(14) AMPL unblocks and reads the result file.

(15) Steps 11 – 14 are repeated (the process occurs for SDQ-FLAP and SNARP).

(16) AMPL opens named pipe; AMPL goes to sleep and the solver interaction thread unblocks.
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(17) The solver interaction thread unblocks and reads.

(18) AMPL unblocks and writes.

(19) Thread synchronization occurs within Python.

(20) An updated value is sent from the solver host to the wireless node.

Even without measuring the delay associated with every component, several salient points

stand out: There is a great deal of interprocess communication, inter-thread synchronization, file

I/O and process creation involved for an ultimately very small amount of computation. Profiling

the solver-host processes shows that in each of its cycles (steps 4 – 20) the time spent in the solvers

doing the actual optimization is ≈ 10−3 of the total elapsed time.

Another major source of latency is waiting for a protocol data slot (or another assigned slot).

In the Prototype 3 driver design, the shortest available time slot is 40 ms, but the protocol data

generated in a new iteration typically requires ≈ 1 ms to send. This makes for an unnecessarily long

schedule directly, but also has a second-order effect: In order to keep the fraction of time available

for actual data transmission reasonably high, it is often appropriate to assign multiple data slots

to each link for each slot assigned to protocol data, meaning that a long protocol time slot also

implies long data slot(s). The combined effect of this and related scheduling limitations is that the

elapsed time between protocol data slots is frequently 10 – 50 times longer than necessary.

There are reasonable solutions to all of these problems: The inefficient solution process results

from using AMPL directly to implement the prototype: I use an external “solver host” because

AMPL is not available for the ARM architecture used on the wireless nodes; the complex IPC and

threading structure exists to create a synchronization and IPC capability where AMPL natively

has none. The scheduling challenges reflect a hard-wired kernel timer resolution of 100 Hz in the

Linux kernel version in use on our wireless nodes. I have subsequently made kernel modifications

to support both a higher rate fixed clock in the original kernel version and a newer hard real-time,

high-resolution kernel on the Phocus array boards∗ .

∗ I am grateful to Xi Liu and Alan Schmitz for their help with these modification
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6.3.2 Algorithmic Issues

Beyond the implementation issues described above, there are also more fundamental perfor-

mance questions. I will briefly discuss two of those here.

6.3.2.1 Discrete Algorithms

Discrete, graph-based algorithms offer substantially faster solutions to problems close but not

exactly equal to the joint beam selection and scheduling (JBSS )problem discussed in this work.

In particular, if there is either no interference constraint, or only pairwise interference, then graph

coloring algorithms are sufficient. For a significant fraction of input problems, those constraints

fully determine the outcome, and it is likely that they could significantly reduce the search space

in others. The possibility of combining algorithmic approaches has so far not been explored.

6.3.2.2 Centralized vs. Distributed Solution

The scaling results in Section 4.8 on page 101 argue for a decomposed – and possibly parallel

– solution. They do not, however, mean that a distributed algorithm is naturally superior to a

centralized one. The messaging complexity of a the distributed implementation is higher: O(ni),

where i is the number of iterations required to converge, vs O(n) for a collect-process-disseminate

scheme. The number of rounds i, as well as the amount of data sent per node per round, depends

on the specific problem in a non-trivial way. If i is O(n) then the messaging complexity for a

distributed solution is O(n2).

Distributed processing also opens the door to a class of security risks which are absent in the

centralized scheme. Assume that the standard cryptographic goals of confidentiality, authenticity,

and integrity are satisfied. Nodes can still report false information of several sorts. In the centralized

collect-process-disseminate model, the remote nodes are likely involved in collecting and reporting

what I will call primary data: the channel measurements, antenna effects, load (depending on how

that is defined), etc. Distributed computation also allows them to tamper with secondary data –

the results of computation on the primary data.
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A malicious attacker could disrupt or mislead the algorithms in any number of ways: Changing

the primary data could lead to slow schedules, to load being ignored, or to interference constraints

being violated. Changing the secondary data could prevent the algorithms from converging, or

could produce potentially arbitrary solutions. It is not immediately clear what primary data a

selfish node would benefit from changing. In terms of secondary data, the variables which convey

the importance of a node’s traffic or signal (β and λ, respectively) are promising targets.

There is no obvious cryptographic solution to either primary or secondary data misreporting,

although trusted hardware, encrypted computation, and other approaches might be applicable.

Excluding those options, various forms of consistency checking suggest themselves as defenses. The

options for checking primary data will depend very much on the specific measurement; convincingly

falsifying a path loss value might require collusion by the nodes on both ends, for example. The

secondary data is all produced by deterministic processes. In principle, any node’s calculations can

be checked – on line or after the fact – by any other node that has access to the input data. To

take advantage of this in practice would probably require auditing support to be designed into the

protocols, with some associated storage, communication, and computational overhead.

6.4 Conclusion

This chapter has presented quantitative performance results for the algorithms and system

developed in the preceding chapters. The data presented here show that this approach is feasible,

and that it yields significant gains with moderate computational overhead. Most importantly, this

data show that the algorithms’ execution time scales well, admitting the solution of large problems.

Direct comparison with lighter-weight scheduling algorithms is planned for future work.



Chapter 7

Conclusions and Future Directions

7.1 Current Work

In ongoing work, I am performing a quantitative experimental evaluation of this system in

comparison with other MAC protocols and scheduling algorithms. I am additionally evaluating the

extensions described in Section 3.1.2 on page 68, especially as applied to cognitive radio networking.

More generally, I will be examining applying the same decomposition scheme to a broader range

of optimization formulations – including the model introduced in Section 4.2 – so as to support

other models of demand and link quality, and cross-layer integration with routing and congestion

control schemes. Subsequent work will consider the dynamic behavior of this system, and on-line

algorithms for more robust and responsive scheduling.

7.2 Conclusion

This dissertation presents and solves the joint beam steering and scheduling problem. Optimal

spatial reuse TDMA scheduling is known to be NP-hard, and the addition of antenna configuration

increases the state space exponentially in the number of nodes. This research develops and ex-

plores algorithms for optimally scheduling wireless links with configurable antennas. Beyond being

directly useful, optimal solutions provide a reference point for the design and evaluation of other

systems. This is the first implementation of STDMA scheduling based on dual decom-

position. These algorithms are computationally efficient—they find the optimal solutions within

hundreds of iterations, each of which requires only minimal computation. Moreover, despite the
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NP-hard nature of the underlying problem, in practice the running time appears linear in the prob-

lem size. The algorithms make no assumptions about the patterns of the antennas’ directionality

beyond the existence of some finite number of antenna states with known gains toward other nodes

in each state. Lastly, this work identifies a price-coupled decomposition structure which can form a

basis for other algorithms and protocols, including ones making different optimality-overhead trade-

offs. I firmly believe that optimization decomposition is a paradigm that will drive next-generation

wireless networks, and offer this work here as an important step towards realizing the theoretical

gains of these algorithms on a real system.
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Sweden, March 2002. ISSN 1650-1942.

[Ecker 80] J. G. Ecker. Geometric Programming: Methods, Computations
and Applications. SIAM Review, vol. 22, no. 3, pages 338 – 362,
July 1980.

[Efraimidis 08] Pavlos S. Efraimidis. The complexity of linear programming
in ([gamma],[kappa])-form. Information Processing Letters,
vol. 105, no. 5, pages 199 – 201, 2008.



139

[ElBatt 02a] T. ElBatt & A. Ephremides. Joint Scheduling and Power
Control for Wireless Ad-hoc Networks. In IEEE Proceedings
of INFOCOM, 2002.

[Elbatt 02b] T. Elbatt & Bo Ryu. On the channel reservation schemes for
ad-hoc networks utilizing directional antennas. In Wireless
Personal Multimedia Communications, 2002. The 5th Inter-
national Symposium on, volume 2, pages 766–770 vol.2, Oct.
2002.

[Ephremides 90] Anthony Ephremides & Thuan V. Truong. Scheduling
broadcasts in multihop radio networks. Communications, IEEE
Transactions on, vol. 38, no. 4, pages 456–460, Apr 1990.

[Ertin 06] Emre Ertin, Anish Arora, Rajiv Ramnath, Mikhail Nesterenko,
Vinayak Naik, Sandip Bapat, Vinod Kulathumani, Mukundan
Sridharan, Hongwei Zhang & Hui Cao. Kansei: A Testbed for
Sensing at Scale. In IPSN/SPOTS, 2006.

[Eryilmaz 06] Atilla Eryilmaz & R. Srikant. Joint Congestion Control,
Routing, and MAC for Stability and Fairness in Wireless
Networks. Selected Areas in Communications, IEEE Journal
on, vol. 24, no. 8, pages 1514–1524, 2006.

[Evans 99] Joseph B. Evans, Gary J Minden, K.S. Shanmugan, Glen
Prescott, Victor S. Frost, Ben Ewy, Ricardo Sanchez, Craig
Sparks, K. Malinmohan, James Roberts, Richard Plumb &
Dave Petr. The Rapidly Deployable Radio Network. IEEE
Journal on Selected Areas in Communication, vol. 17, no. 4,
pages 689 – 703, April 1999.

[Fahmy 02] N.S. Fahmy, T.D. Todd & V. Kezys. Ad hoc networks with
smart antennas using IEEE 802.11-based protocols. In Com-
munications, 2002. ICC 2002. IEEE International Conference
on, volume 5, pages 3144–3148 vol.5, 2002.

[Fattah 02] H. Fattah & C. Leung. An overview of scheduling algorithms
in wireless multimedia networks. Wireless Communications,
IEEE, vol. 9, no. 5, pages 76–83, Oct. 2002.

[Foschini 93] Gerard J. Foschini & Zoran Miljanic. A Simple Distributed
Autonomous Power Control Algorithm and its Convergence. In
IEEE Transactions on Vehicular Technology (VTC), volume 42,
pages 641 – 646. IEEE, Nov 1993.

[Freeman 97] Roger L. Freeman. Radio system design for telecommunica-
tions. Wiley Series In Telecommunications And Signal Process-
ing. Wiley InterScience, 2nd edition, 1997. ISBN:0-471-16260-4.



140

[Galvan-Tejada 01] G.M. Galvan-Tejada & J.G. Gardiner. Theoretical model to
determine the blocking probability for SDMA systems. Vehic-
ular Technology, IEEE Transactions on, vol. 50, no. 5, pages
1279–1288, 2001.

[Garache 08] Marvin Sánchez Garache. Multihop Wireless Networks with
Advanced Antenna Systems - An Alternative for Rural
Communication. PhD thesis, Royal Institute of Technology
(KTH), May 2008.

[Garetto 05] Michele Garetto, Jingpu Shi & Edward W. Knightly. Modeling
media access in embedded two-flow topologies of multi-hop
wireless networks. In MobiCom ’05: Proceedings of the 11th
annual international conference on Mobile computing and net-
working, pages 200–214, New York, NY, USA, 2005. ACM
Press.

[Ghaderi 09] M. Ghaderi, A. Sridharan, H. Zang, D. Towsley & R. Cruz.
TCP-Aware Channel Allocation in CDMA Networks. Mobile
Computing, IEEE Transactions on, vol. 8, no. 1, pages 14–28,
Jan. 2009.

[Gilmore 61] P. C. Gilmore & R. E. Gomory. A Linear Programming
Approach to the Cutting-Stock Problem. Operations Research,
vol. 9, no. 6, pages 849–859, 1961.

[Gilmore 63] P. C. Gilmore & R. E. Gomory. A Linear Programming
Approach to the Cutting Stock Problem-Part II. Operations
Research, vol. 11, no. 6, pages 863–888, 1963.

[Godara 97a] Lal C. Godara. Application of Antenna Arrays to
Mobile Communications, Part I: Performance Improvement,
Feasability and System Considerations. Proceedings of the
IEEE, vol. 85, no. 7, pages 1031–1060, July 1997.

[Godara 97b] Lal C. Godara. Application of Antenna Arrays to
Mobile Communications, Part II: Beam-Forming and
Direction-of-Arrival Considerations. Proceedings of the
IEEE, vol. 85, no. 8, pages 1195 – 1245, August 1997.

[Godara 04] Lal Chand Godara. Smart antennas. CRC Press, 2004. ISBN:
0-8493-1206-X.

[Gondzio 06] Jacek Gondzio & Andreas Grothey. Direct Solution of Linear
Systems of Size 109 Arising in Optimization with Interior
Point Methods. Parallel Processing and Applied Mathemat-
ics, no. 2911, pages 513–525, 2006.

[Gore 07] Ashutosh Deepak Gore, Srikanth Jagabathula & Abhay
Karandikar. On High Spatial Reuse Link Scheduling in



141

STDMA Wireless Ad Hoc Networks. ArXiv Computer Science
e-prints, vol. , Jan 2007. Also presented at GLOBECOM 2007.

[Green 02] D.B Green & A.S. Obaidat. An accurate line of sight
propagation performance model for ad-hoc 802.11 wireless LAN
(WLAN) devices. In Communications, 2002. ICC 2002. IEEE
International Conference on, volume 5, pages 3424 – 3428, 2002.

[Grönkvist 01] Jimmi Grönkvist & Anders Hansson. Comparison between
graph-based and interference-based STDMA scheduling. In
MobiHoc ’01: Proceedings of the 2nd ACM international sym-
posium on Mobile ad hoc networking & computing, pages 255–
258, New York, NY, USA, 2001. ACM Press.

[Grothey 01] Andreas Grothey. Decomposition Methods for Nonlinear
Nonconvex Optimization Problems. PhD thesis, Department
of Mathematics and Statistics University of Edinburgh, June,
2001.

[Guan 95] Xiaohong Guan, Peter B. Luh & Lan Zhang. Nonlinear
Approximation Method in Lagrangian Relaxation-Based
Algorithms for Hydrothermal Scheduling. IEEE Transactions
on Power Systems, vol. 10, no. 2, pages 772 – 778, May 1995.

[Guo 03] Xingang Guo, Sumit Roy & W. Steven Conner. Spatial reuse in
wireless ad-hoc networks. In Vehicular Technology Conference,
58th, volume 3, pages 1437– 1442. IEEE, Oct 2003.

[Gupta 00] Piyush Gupta & P. R. Kumar. The Capacity of Wireless
Networks. IEEE Transactions on Information Theory, vol. IT-
46, no. 2, pages 388–404, March 2000.

[Hajek 88] Bruce Hajek & Galen Sasaki. Link scheduling in polynomial
time. Information Theory, IEEE Transactions on, vol. 34, no. 5,
pages 910–917, Sep 1988.

[Hiriart-Urruty 98] Jean-Baptiste Hiriart-Urruty. Conditions for Global Optimality
2. J. of Global Optimization, vol. 13, no. 4, pages 349–367,
1998.

[Ho 98] Ming-Ju Ho, G.L. Stuber & M.D. Austin. Performance of
switched-beam smart antennas for cellular radiosystems. Ve-
hicular Technology, IEEE Transactions on, vol. 47, no. 1, pages
10–19, Feb 1998.

[Horst 00] Reiner Horst, Panos Pardalos & Nguyen V. Thoai. Introduction
to global optimization, volume 48 of Nonconvex Optimization
and Its Applications. Kluwer Academic Press, Inc., 2nd edition,
2000.



142

[Hottinen 06] Ari Hottinen & Tiina Heikkinen. Subcarrier Allocation in a
Multiuser MIMO Channel using Linear Programming. In EU-
SIPCO 2006 Special Session on ?Multi-user MIMO Communi-
cations?, 2006.

[Huang 01] Xiao Long Huang & Brahim Bensaou. On max-min fairness and
scheduling in wireless ad-hoc networks: analytical framework
and implementation. In MobiHoc ’01: Proceedings of the 2nd
ACM international symposium on Mobile ad hoc networking
&amp; computing, pages 221–231, New York, NY, USA, 2001.
ACM.

[Huang 02] Zhuochuan Huang, Chien-Chung Shen, Chavalit Srisathaporn-
phat & Chaiporn Jaikaeo. Topology Control for Ad Hoc
Networks with Directional Antennas. In Proc. IEEE Int. Con-
ference on Computer Communications and Networks, pages 16
– 21, 2002.

[Hultberg 65] Richard M. Hultberg, Floyd H. Jean & Milton E. Jones.
Time Division Access for Military Communications Satellites.
Aerospace and Electronic Systems, IEEE Transactions on,
vol. AES-1, no. 3, pages 272–282, Dec. 1965.

[IEEE 99] IEEE. IEEE Std. 802.11a-1999 Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
specifications. High Speed Physical Layer in the 5 GHz Band.
Rapport technique ISO/IEC 8802-11:1999/Amd 1:2000(E),
LAN/MAN Standards Committee, IEEE Computer Society,
1999.

[Iskander 02] Magdy F. Iskander & Zhengqing Yun. Propagation Prediction
Models for Wireless Communication Systems. IEEE Transa-
tions on microwave theory and techniques, vol. 50, no. 3, pages
662 – 673, March 2002.

[Jaikaeo 03] C. Jaikaeo & C.-C. Shen. Multicast communication in ad hoc
networks with directional antennas. In Computer Communica-
tions and Networks, 2003. ICCCN 2003. Proceedings. The 12th
International Conference on, pages 385–390, Oct. 2003.
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Tekniska Högskolan, Institutionen för Signaler, Sensorer & Sys-
tem Reglerteknik, 100 44 Stockholm, Sweden, January 2004.

[Yuan 05] J. Yuan, Z. Li, W. Yu & B. Li. A cross-layer optimization
framework for multicast in multi-hop wireless networks. In
Proc. First International Conference on Wireless Internet,
pages 47–54, 2005.

[Zander 90] J. Zander. Slotted ALOHA multihop packet radio networks
with directional antennas. Electronics Letters, vol. 26, no. 25,
pages 2098–2100, Dec. 1990.



160

[Zander 92] Jens Zander & K.-A. Ahl. Capacity of time-space switch
cellular radio link systems for metropolitan area networks. In
Communications, Speech and Vision, IEE Proceedings I, vol-
ume 139, pages 533 – 538, October 1992. Uses scanning steer-
able antenna on the BS to hit multiple clients in a TDM way.

[Zegura 96] Ellen W. Zegura, Ken Calvert & S. Bhattacharjee. How to
Model an Internetwork. In Infocom. IEEE, 1996.

[Zhang 01] Ruifeng Zhang. Optimal space-time packet scheduling for
reservation ALOHA networks. Signals, Systems and Comput-
ers, 2001. Conference Record of the Thirty-Fifth Asilomar Con-
ference on, vol. 2, pages 1205–1209, 2001.

[Zhang 08] Yan Zhang, Honglin Hu & Hsiao-Hwa Chen. QoS
differentiation for IEEE 802.16 WiMAX mesh networking.
Mob. Netw. Appl., vol. 13, no. 1-2, pages 19–37, 2008.

[Zheng 07] Dong Zheng, Weiyan Ge & Junshan Zhang. Distributed
opportunistic scheduling for ad-hoc communications: an
optimal stopping approach. In MobiHoc ’07: Proceedings of the
8th ACM international symposium on Mobile ad hoc network-
ing and computing, pages 1–10, New York, NY, USA, 2007.
ACM.

[Zhu 98] C. Zhu & M.S. Corson. An Evolutionary-TDMA Scheduling
Protocol (E-TDMA) for Mobile Ad Hoc Networks. Rapport
technique CSHCN TR 98-14 (ISR TR 98-32), University of
Maryland, Center for Satellite and Hybrid Communication Net-
works, 1998.

[Zhu 01a] C. Zhu & M. S. Corson. A new protocol for scheduling TDMA
transmissions in mobile ad hoc networks. Rapport technique
CSHCN TR 2001-19, Center for Satellite and Hybrid Networks,
University of Maryland, 2001.

[Zhu 01b] Chenxi Zhu & M. S. Corson. A Five-Phase Reservation
Protocol (FPRP) for Mobile Ad Hoc Networks. Wireless Net-
works, vol. 7, no. 4, pages 371–384, Aug 2001.

[Zhu 05] W. Zhu, D. Browne & M. Fitz. An open access wideband
multiantenna wireless testbed with remote control capability.
Testbeds and Research Infrastructures for the Development of
Networks and Communities, 2005. Tridentcom 2005. First In-
ternational Conference on, pages 72–81, Feb. 2005.

[Zou 06a] Jun Zou & Dongmei Zhao. Bottleneck-first scheduling for
real-time traffic in IEEE 802.11 infrastructure-based mesh
networks. In IWCMC ’06: Proceedings of the 2006 interna-
tional conference on Wireless communications and mobile com-
puting, pages 593–598, New York, NY, USA, 2006. ACM.



161

[Zou 06b] Jun Zou & Dongmei Zhao. Real-time voice traffic scheduling
and its optimization in IEEE 802.11 infrastructure-based
wireless mesh networks. In QShine ’06: Proceedings of the
3rd international conference on Quality of service in heteroge-
neous wired/wireless networks, page 48, New York, NY, USA,
2006. ACM.

[Zukerman 08] Moshe Zukerman, Musa Mammadov, Liansheng Tan, Iradj Ou-
veysi & Lachlan L. H. Andrew. To be fair or efficient or a bit
of both. Comput. Oper. Res., vol. 35, no. 12, pages 3787–3806,
2008.



Appendix A

Modeling Effects of Directional Antennas

A.1 Introduction

Figure A.1: Sample directional antenna gain pattern displayed on a polar graph

Increasingly, wireless networks are using directional antennas to improve the throughput,

reach of networks [Ramanathan 01], or to reduce interference between adjacent networks and other

noise sources. A more recent development is the use of electronically steerable directional or phase

array antennas [Navda 07, Babich 06, Subramanian 08]. These antennas provide better network

performance by dynamically controlling the radiation pattern of the antenna. Networks that utilize

these antennas can reap substantial improvements in efficiency at all layers of the networking stack.

Figure A.1 shows a common visualization used to understand the antenna gain pattern for

a particular highly directional antenna.∗ The pattern shows a predominant main lobe along

with a number of “side lobes” interspersed with “nulls” or regions of strongly reduced gain. Fixed

∗ This particular example is the 2.4 GHz 19 dBi Die Cast Directional Reflector Grid Wireless LAN Antenna Model:
HG2419G by HyperLink Technologies.
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or steerable directional antennas provide better network performance by controlling the radiation

pattern of the antenna, increasing the gain or alternatively reducing interference by“steering a null”

at a radio on the same channel.

Different network simulators model such antennas with different degrees of fidelity. In this

chapter, I argue that the models in the most common network simulators make such simplifying

assumptions that it is often difficult to draw strong conclusions from the simulations derived using

those models. This is demonstrated using a series of measurements with several different and

widely used directional antenna configurations. A more accurate model is presented based on

measurements and intuitions about radio propagation.† This model captures more about the

uncertainty of the environment than the specifics of the antenna and that our results should be

generally applicable to many different directional antenna patterns with similar gain characteristics.

The initial measurement study uses sophisticated measurement equipment, including a vector

signal analyzer (VSA) and signal generator (VSG). Since the costs of such equipment can be

prohibitive, we also develop a method that uses inexpensive equipment (such as standard networking

cards) to produce the data needed for the derived models.

The remainder of this chapter is organized as follows: Section A.2, discusses the basics of

existing radio propagation models, their limitations, and how our proposal fits in. Section A.3

describes the data collection method and section A.4 describes the set of measurements that were

used to derive the model. Section A.5 contains a description of the model and derivation of its

parameters. Section A.6 describes how this model can be used in simulations. Finally, section A.7

concludes.

A.2 Background And Related Work

This section describes the propagation models used by current network simulators, gives an

overview of related work, and discusses how the proposed model addresses problems with those

† All of our measurements are available publicly at [Crawdad 08] and an implementation of our model for the
Qualnet 4.5.1 simulator is available at http://systems.cs.colorado.edu/wiki/EDAM.

http://systems.cs.colorado.edu/wiki/EDAM


164

approaches.

A.2.1 Path Loss Models

Wireless network simulators use a path loss model to model the degradation of a transmit-

ted signal as a function of distance; when a signal is too degraded, it cannot be received reliably.

Assuming a simplified (i.e., näıve) model, energy is propagated in all directions and the energy that

actually strikes the receiver would seem to be proportional to the square of the distance between the

transmitter and receiver—the signal is attenuated ∝ r2. This simple path loss model ignores the

significant reflection, scattering, refraction, and absorption effects as radio-frequency (RF) energy

interacts with the earth, the atmosphere and other smaller features. One of the major effects is

multipath interference, where the RF waves bounce off objects in the environment and converge

at the receiver after having traversed different distances.

The two-ray model uses a reflection from the earth and the heights of the transmitter and

receiver to indicate the likely signal strength at a given distance. This model is specific to the radio

frequency used; Figure A.2 is an example of a two-ray calculation from a survey tutorial on antenna

propagation models for a 900MHz signal for an 8.7m high transmitter and a 1.6m high receiver;

the horizontal axis is a logarithmic scale [Neskovic 00].

This diagram shows that the signal strength decreases roughly at rk, 2 ≤ k ≤ 4, but that there

is considerable variation over short distances. Other models for such effects are based on fitting

empirical measurements rather than a-priori analysis. There are general purpose models such as

the Hata / COST231 model and the Longley-Rice model [Abhayawardhana 05, Oestges 04], and

several specific to the wavelength and operating characteristics of wireless LAN cards [Green 02].

Additionally, indoor environments are sufficiently different from outdoor environments that they

justify their own approach (see [Andersen 95], [Neskovic 00] and [Iskander 02] for excellent surveys).
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Figure A.2: Example of two-ray model attenuation, from [Neskovic 00].
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A.2.2 Fading Models

The preceding work describes relatively large scale phenomena. In addition to whatever

long range attenuation there may be, there is also small-scale fading that is the result of multipath

interference and occurs at the scale of single wavelengths. Though such interference can theoretically

be predicted analytically, it requires that the environment be known with a level of detail that is

generally impractical [Wolfle 05, Tingley 01].

A common way to address such situations is through statistical fading models. Rather than

determine the signal strength at any exact place or time, it is modeled as a random variable with

a known distribution. In general, the distributions are fairly well established, but the parameters

are very environment specific (e.g., [de Leon 04]). There are several common models, among them

Rayleigh fading, which assumes that there are many comparable multipath signals, and Rician

fading, which assumes a less “cluttered” environment in which line of sight (LOS) paths are more

important.

Our model for directional antennas adopts a similar approach to the empirical models and

the Rayleigh fading model—we use empirical measurements to identify the characteristics of the

random or stochastic process. Where we differ is that our model is primarily concerned with effects

on directionality.

A.2.3 Directional Models

The simulators commonly used in networking research do not consider antenna directionality

and radio propagation as interacting variables. This chapter considers three widely used simulators,

OpNet, QualNet, and NS-2. Each one supports several models of radio propagation, but they all

follow the same general model with regard to antenna gain: For any two stations i and j, the

received signal strength is computed according to the general form of equation A.1:

Received Power = Ptx ∗Gtx ∗ |PL(i, j)| ∗Grx (A.1)
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The received power Prx is the product of the transmitted power Ptx, the transmitter’s gain

Gtx, the magnitude of path loss between the two stations |PL(i, j)|, and the receiver’s gain Grx.

The transmitter and receiver gains are treated as constants in the case of omnidirectional

(effectively isotropic in the azimuth plane) antennas. For directional antennas, however, gain is an

antenna-specific function of the direction of interest. We model the orientation of an antenna in

terms of its zenith (φ) and azimuth (θ). Then, for a given antenna a, we can define a characterization

function fa(φ, θ):

Gain in direction (φ, θ) = fa(φ, θ) (A.2)

Combined gain = fa(φ, θ) ∗ fb(φ′, θ′) (A.3)

Correspondingly, the receiver gain is modeled by a (potentially different) function of the

direction from which the signal is received. Besides being a source of interference for a dominant

signal, the energy traveling along secondary paths also carries signal. If one of the weaker signals for

a transmitter happens to be aligned with a high gain direction of a receiving antenna, the received

power from that path can be greater than that of the primary path. Thus, in environments with

significant multipath, the gain cannot be determined based solely on a single direction. This is

easier to understand using Figure A.3, which combines a transmitter (on the left) and a receiver

(on the right).

Figure A.3: Illustration of the common path loss model for directional antennas

In this figure, the transmitter gain is indicated by the (large) gain of the antenna pattern; the
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receiver gain is indicated by the (much smaller) gain from the “side lobe” that is linearly located

between transmitter and receiver. The complex-valued path loss, PL(i, j), is related to the length

of the dark line separating the transmitter and receiver.

The above models describe the power emitted in, or received from, a single direction. In

reality, the transmitter’s power is radiated in all directions, and the receiver aggregates power (be

it signal or noise) from all directions. Although the simulators we are considering assume that the

single direction of interest for each station is precisely toward the other station, we can generalize

equations A.1 and A.3 to the case where there are multiple significant signal paths:

Prx =
∑

l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ′
l, θ

′
l) (A.4)

In Equation A.4, note that that Prx is not necessarily all “signal”. It may be the case that

only one signal is decodable and the others destructively interfere. In this case equation A.5 is a

better model:

Prx = max
l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ′
l, θ

′
l) (A.5)

Both of these models assume that there is some way to describe available paths that a

signal may take. As with the Rayleigh and Rician fading models, it may be possible to build a

parameterized model of those paths for “cluttered” and “uncluttered” environments. This is the

approach we take, using measured data to determine the model.

With any of the three simulators we consider, the user has the freedom to provide any type of

mapping between gain and angle. This means that the user could conceivably make measurements

with their desired hardware in their desired environment, much as we have done, and then install

this as the pattern. However, even though the antenna can conceivably be modeled arbitrarily well,

we will show that the directionality of the signal is an effect of the interaction between antenna

and environment and that modeling both in isolation, however well, misses significant effects. We

propose a combined empirical model that attempts to account for both the pattern of the antenna
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and the deviation from this pattern due to environmental effects.

A.3 Method

In this section we will describe the method we devised for deriving empirical models for

antenna patterns using commodity hardware and address any reservations about their accuracy by

providing a means for equipment calibration.

A.3.1 Data Collection Procedure

Two laptops are used, one configured as a receiver and the other as a transmitter. Each is

equipped with an Atheros-based MiniPCI-Express radio that is connected to an external antenna

using a U.Fl to N pigtail adapter and a length of LMR-400 low loss antenna cable. The receiver

laptop is connected to a 7 dBi omnidirectional antenna on a tripod approximately two meters off

the ground. The transmitter laptop is connected to the antenna we intend to model on a tripod

30.5 m from the receiver, also two meters off the ground. The transmitter tripod features a geared

triaxial head, which allows precise rotation.

The transmitter radio is put in 802.11x ad hoc mode on the least congested channel. The

transmitter’s ARP table is manually hacked to allow it to send UDP packets to a nonexistent re-

ceiver. The receiver is put in monitor mode on the same channel and logs packets with tcpdump.

Finally, both the receiver and transmitter must have antenna diversity disabled. With the equip-

ment in place, the procedure is as follows: For each 5 degree position about the azimuth, send 500

unacknowledged UDP packets. Without intervention otherwise, due to MAC-layer retransmits,

each will be retried 8 times, resulting in 4000 distinct measurements.

During the experiment, the researchers themselves must be careful to stay well out of the

nearfield of the antennas and to move to the same location during runs (so that they, in effect,

become a static part of the environment). If additional data is desired for a given location, multiple

receivers can be used, provided the data from them is treated separately (as each unique path

describes a unique environment).
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A.3.2 Commodity Hardware Should Suffice

To ensure that it is safe to use commodity 802.11x-based hardware to measure antenna pat-

terns, we calibrate the sensitivity of our radios and analyze losses in the packet-based measurement

platform.

In the process of collection, some packets will be dropped due to interference or poor signal.

In our experience, the percentage of dropped frames per angle is very small: the maximum lost

frames per angle in our datasets is on the order of 5%, with less than 1% lost being more common

(the mean is 0.01675%). Moreover, the correlation coefficient between angle and loss percentage is

-0.0451, suggesting that losses are uniformly distributed across angles. Given that we have taken

4000 samples in each direction, noise in our measurements due to packet loss is negligible.

To get an idea of how accurate our commodity radios are in measuring received signal strength

(RSS), we directly connected each of four radio cards (all Atheros-based Lenovo-rebranded Mini-

PCI Express) to an Agilent E4438C VSG. The VSG was configured to generate 802.11 frames and

the laptop to receive them. For each of the four cards we collected many samples while varying

the transmit power of the VSG between -20 dBm and -95 dBm (lower than the receive sensitivity

threshold of just about any commodity 802.11 radio) on 5 dB increments. We performed a linear

least squares fit, finding a slope of 0.9602 and adjusted R-squared value of 0.9894 (indicating a strong

fit to the data). The commodity radios perform remarkably well in terms of RSS measurement. To

correct for the minor error they do exhibit, we use the slope of this fit to adjust our measurements,

dividing each measurement by the slope value.

A.4 Measurements

In this section we will explain the datasets we collected, discuss our normalization procedure,

and give some high level statistical characterization of the data.
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Figure A.8: Comparison of signal strength patterns across different environments and antennas:
Patch panel indoor environments.
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Figure A.9: Comparison of signal strength patterns across different environments and antennas:
Patch panel outdoor environments.
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A.4.1 Experiments Performed

In order to derive an empirical model that better fits real world behavior, we collected data

in several disparate environments with three different antennas. A summary of these datasets is

provided in table A.1. With the exception of the reference patterns, all of the measurements were

made with commodity hardware by sending many measurement packets between two antennas

and logging received signal strength (RSS) at the receiver. The three antenna configurations used

include: (1) a HyperLink 24dBi parabolic dish with an 8 degree horizontal beamwidth, (2) a

HyperLink 14dBi patch with a 30 degree horizontal beamwidth, and (3) a Fidelity Comtech Phocus

3000 8-element uniform circular phased array with a main lobe beamwidth of approximately 52

degrees. This phased array functions as a switched beam antenna and can form this beam in one

of 16 directions (on 22.5 degree increments around the azimuth). For the HyperLink antennas, we

used the same antenna in all experiments of a particular type to avoid intra-antenna variation due

to manufacturing differences.

In addition to the in situ experiments, we have a “reference” data set for each configuration.

The Array-Reference data set was provided to us by the antenna manufacturer. Because HyperLink

could not provide us with data on their antennas, Parabolic-Reference and Patch-Reference were

derived using an Agilent 89600S VSA and an Agilent E4438C VSG in a remote floodplain‡.

Following is a brief description of each of the experiments:

Parabolic-Outdoor-A, Patch-Outdoor-A: A large open field on the University of Colorado

campus was used for these experiments. The field is roughly 150m on each side and is surrounded

by brick buildings on two of the four sides. Although there is line of sight and little obstruction,

the surrounding structures make this location most representative of an urban outdoor deployment.

Parabolic-Outdoor-B, Patch-Outdoor-B: A large University-owned floodplain on the edge

‡ We were unable to aquire access to an anechoic chamber in time for this study, but would like to make use of
one in future work, for even cleaner reference measurements.
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Figure A.10: Receiver side of measurement setup in floodplain



179

Figure A.11: Floor plan of office building used in Array-Indoor-A, Array-Indoor-B, Patch-Indoor-B,
Patch-Indoor-C, Parabolic-Indoor-B, and Parabolic-Indoor-C.
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of town was used for our most isolated data sets. The floodplain is flat, recessed, and free from

obstruction for nearly a quarter mile in all directions. This location is most representative of a

rural backhaul link.

Array-Outdoor-A:The same open field is used as in the Parabolic-Outdoor-A and Patch-Outdoor-

A data sets. The collection method here differs from that described in section A.3. A single phased

array antenna is placed approximately 30 meters away from an omnidirectional transmitter. The

transmitter sends a volley of packets from its fixed position as the phased array antenna electroni-

cally steers its antenna across each of its 16 states, spending 20 ms in each state. Several packets

are received in each directional state. The phased array antenna is then manually rotated in 10

degree increments while the omnidirectional transmitter remains fixed. The same procedure is re-

peated for each of 36 increments. Moving the transmitter changes not only the angle relative to

the antenna but also the nodes’ positions relative to their environment. To address this confound,

each physical position is treated as a separate experiment. This means that the number of angles

relative to the steered antenna pattern is limited to the number of distinct antenna states (16). The

transmission power of the radio attached to the directional antenna was turned down to 10dBm

to produce more tractable noise effects (the default EIRP is much too high to model small-scale

behavior).

Parabolic-Indoor-A and Patch-Indoor-A: For this data set we used the University of Colorado

Computer Science Systems Laboratory. The directional transmitter was positioned approximately

6 meters from the receiver in a walkway between cubicles and desks. This is our most cluttered

environment.

Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B, and Patch-Indoor-C: An in-

door office space was used for this set of tests. Two receivers were used here: one with line of sight

and one without line of sight, placed amidst desks and offices.
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Array-Indoor-A and Array-Indoor-B: Seven phased array antennas are deployed in the same

25x30m indoor office space used for Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B and

Patch-Indoor-C. Data from two of the seven antennas are analyzed here. Each antenna electronically

steers through its 16 directional states, spending 20 ms at each state. Two mobile omnidirectional

transmitters move through the space and transmit 500 packets at 44 distinct positions. For each

packet received by a phased array, the packet’s transmission location and orientation is recorded

(i.e., which of the four cardinal directions the transmitter was facing) along with the directional

state in which the packet arrived and the RSSI value.

Parabolic-Reference and Patch-Reference: The large floodplain is used here. An Agilent

VSA is connected to the omnidirectional receiver and makes a 10 second running average of power

samples on a specific frequency (2.412 GHz is used). Three consecutive averages of both peak and

band power are recorded for each direction. The directional transmitter is rotated in five degree

increments and is connected to a VSG outputting a constant sinusoidal tone at 25 dBm on a spe-

cific frequency. Before, after, and between experiments, we make noise floor measurements, and

as a post-processing step, we subtract the mean of this value (-59.62 dBm or 1.1 nW) from the

measurements.

A.4.2 Normalization

Our first task in comparing data sets is to come up with a scheme for normalization so that

they can be compared to one another directly. For each data set, we find the mean peak value,

which is the maximum of the mean of samples for each discrete angle. This value is then subtracted

from every value in the data set. The net effect is that the peak of the measurements in each data

set will be shifted to zero, which allows us to compare measurements from diverse RF environments

directly.
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Label Environment LOS? Dist. (m) Samples Loss (%)

Parabolic-Outdoor-A Open Field on Campus Yes 30.5 214471 24.81
Parabolic-Outdoor-B Empty Floodplain Yes 30.5 258876 7.05
Parabolic-Indoor-A Laboratory Yes 30.5 267092 2.21
Parabolic-Indoor-B Office Building Yes ≈ 60 268935 10.41
Parabolic-Indoor-C Office Building No ≈ 15 283104 5.12
Parabolic-Reference Empty Floodplain Yes 30.5 219 N/A

Patch-Outdoor-A Open Field on Campus Yes 30.5 455952 12.44
Patch-Outdoor-B Empty Floodplain Yes 30.5 278239 4.99
Patch-Indoor-A Laboratory Yes 30.5 290030 2.21
Patch-Indoor-B Office Building Yes ≈ 60 265593 7.40
Patch-Indoor-C Office Building No ≈ 15 278205 2.65
Patch-Reference Empty Floodplain Yes 30.5 219 N/A

Array-Outdoor-A Open Field on Campus Yes ≈ 30 475178 N/A
Array-Indoor-A Office Building Mixed Varies 2672050 N/A
Array-Indoor-B Office Building Mixed Varies 2708160 N/A
Array-Reference Open Urban Area Yes ≈ 5 360 N/A

Table A.1: Summary of data sets.

A.4.3 Error relative to the reference

Figure A.12 on the next page shows the normalized measured in situ patterns and their

corresponding (also normalized) reference patterns. Recall that the reference pattern is generated

and recorded by calibrated signal processing equipment and the measured data is collected using

commodity 802.11 cards. There is great variation in the measured patterns and consequently in

how significantly they differ from the reference (which we would typically classify as error). As

we would expect, the measurements in outdoor environments exhibit less noise due to less clutter,

but still deviate from the reference on occasion. As further confirmation that our measurement

process works well, notice that Parabolic-Outdoor-B and Patch-Outdoor-B (figures A.7 and A.9)

are highly correlated with the reference pattern. (Recall that these experiments were done in the

same floodplain as the reference, indicating that the commodity hardware can compete with the

expensive specialized equipment in a similar environment).

On inspection of this data, our first question is whether there is a straight-forward explanation

for error in the measured patterns. Figure A.13 provides a CDF of all error for each antenna. The

three antennas provide similar error distributions, although offset in the mean. The array data

is the most offset from the others (presumably because its reference pattern is theoretical rather
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(c) Patch panel indoor environments (A.8)
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Figure A.12: Comparison of signal strength patterns across different environments and antennas.
Repeated from Figures A.6 to A.9 on pages 173–176 for ease of comparison.
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than measured) and exhibits some bimodal behavior. The patch measurements are closest to the

reference, showing a large kurtosis about zero.

Clearly, the antennas have different error characteristics. However, for each antenna, and

for each data set, it might be that the error in a given direction is correlated with that in other

directions—if this were true, we could use a single or small set of probability distributions to

describe the error process in a given environment with a given antenna.

We used a Shapiro-Wilkes test on the per angle error for each data set. The resulting p-values

are well under the α = 0.05 threshold, and in all cases we can reject the null hypothesis that the

error is normally distributed; this means that standard statistical tests (and regression models)

that assume normality cannot be used. A pairwise Mann-Whitney U-test can be used to determine

which pairs of samples grouped on some criterion (in our case angle) are drawn from the same

distribution. For each dataset, we generate a “heat map” where each cell corresponds to a pair of

angles. The cell is colored by the p-value produced by the U-test when run pairwise, comparing

the error for the reference pattern and the in situ pattern for those angles. Remarkably, all of our

traces produce similar heat maps: In the majority of pairs we reject the null hypothesis that their

error process is drawn from the same distribution. However, for angles near zero, we are unable

to reject this hypothesis. This observation – that measurements where the main lobe of the

directional antenna is pointed at the receiver may exhibit correlated error processes –

motivated another series of tests.

To further explore “possibly well behaved” error processes about the main lobe, we applied a

Kruskal-Wallis rank-sum test to two scenarios: (1) For angles near zero, are batches with the same

antenna (but different environments) equivalent? (2) For angles near zero, are batches with the

same environment (but different antennas) equivalent?

For (1), the null hypothesis is soundly rejected for all combinations (p-value ≪ 0.05) For

(2), the results still point strongly toward rejection (mean p-value = 0.0082), however there is one

outlier: In the case of 355 degrees in the laboratory environment, we achieve a p-value of 0.2097.

One outlier, however, is not sufficient to overcome the evidence that neither antenna configuration
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nor environment alone is sufficient to account for intra-angle variation in error—even in the more

seemingly well-behaved cone of the antenna main lobe.

A.4.4 Observations

There are several qualitative points that are worth bringing out of this data: (1) In the indoor

environments, none of the measurements track the reference signal closely; (2) In all environments,

there is significant variation between data sets; and (3) The maximum signal strength is generally

realized in approximately the direction of maximum antenna gain, but directions of low antenna

gain often do not have correspondingly low signal strength. This means that no system for

interference mitigation can safely rely on predetermined antenna patterns.

A.5 A New Model of Directionality

We began this chapter with the observation that path loss and antenna gain are typically

regarded as orthogonal components of the power loss between transmission and reception (equations

A.1 – A.3). In this section, we evaluate the best case accuracy of this approach, and suggest a

new model based on the limitations identified.

A.5.1 Limitations of Orthogonal Models

If transmit power and path loss do not vary with antenna angle, the received power relative

to antenna angle can be modeled as:

P̂rx = β0 ∗ f(φ, θ) (A.6)

β0 is a constant combining the path loss—however calculated—and the gain of the non-

rotating antenna. f(φ, θ) is a function describing the gain of the other antenna relative to the

signal azimuth θ and zenith φ. Without loss of generality, we will assume that the antenna being

varied is the receiver, and that the zenith, φ, is fixed.
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To evaluate the accuracy of this model, we start by finding the estimate b0 for β0 that

minimizes the sum of squared error (SSE). In effect, this is assuming the best possible path loss

estimate, without specifying how it is determined. If the function f(φ, θ) correctly describes the

antenna, and if path loss and antenna gain are in fact orthogonal components of the received signal

strength, then the remaining error should be randomly distributed about 0.

Figures A.14a on the following page through A.14f on the next page depict the error of this

orthogonal model for several data sets. There are several qualitative observations to be made:

First and most importantly, the error value is not uniformly random, but rather correlated with

direction. The variability within any given direction is less than that for the data set as a whole.

Second, the error is significant. In the worst states, the mean error is between 8 and 10 dB, in

either direction. Third, the model overestimates signal strength in the directions where the gain

is highest and underestimates in the directions where the gain is lowest. That is, the difference in

actual signal strength between peaks and nulls is less than the antenna in isolation would produce.

This has significant implications for systems that use null steering to manage interference.

The data in figures A.14e on the following page and A.14f on the next page is aggregated from

36 distinct physical configurations. In each configuration, the directional receiver was (electroni-

cally) rotated in 22.5 degree increments, and between configurations, the omnidirectional transmit-

ter was physically moved around the receiver by ten degrees. A consequence of this method is that

these 10 degree changes represent not only a change of the angle between the transmitter and the

antenna, but also a change of location with the attendant possibility of fading effects. To account

for this, we consider each of the 36 configurations individually. This gives less angular resolution,

but also fewer confounds. Figure A.15 on page 189 displays each configuration as a separate line.

The model accuracy is fairly consistent: The residual standard error of the aggregate is 8 dB, and

the individual cases range from 5.74 dB to 11.4 dB with a mean of 7.6 dB.

The path loss value used for each data set was the lowest error fit for that specific data

and the antenna patterns (f(θ)) for the patch and parabolic antennas were measured using the

specific individual antenna in question. Note also that error patterns differ from environment to
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Figure A.14: Differences between the orthogonal model and observed data in dB: P̂rx − Prx.
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preceding page.
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environment: One could derive an ex post facto f(θ) to eliminate the error in a single data set,

but it would not be applicable to any other.

The magnitude and systematic nature of the error suggest that the orthogonal model has

inherent limitations that cannot be alleviated by improving either the antenna model or path loss

model separately.

A.5.2 An Integrated Model

To address these limitations, we propose an integrated model that addresses the systematic

errors discussed above, while remaining simple enough to use in analysis and simulations.

We address the environment-specific, direction-specific error shown in figures A.14a

through A.14f with the following environment aware model, given in equation A.7. The expected

received power is given by a constant β0, the antenna gain function f(φ, θ), and a yet to be

determined environmental offset function x(φ, θ):

P̂rx = β0 ∗ f(φ, θ) ∗ x(φ, θ) (A.7)

As with the orthogonal model, we assume a constant zenith and consider f(φ, θ) and x(φ, θ)

with regard to the azimuth θ. Equation A.7 can be converted to a form that lends itself to least

squares (linear regression) analysis in the following way: First, we rewrite equation A.7 as addition

in a logarithmic domain, and second we substitute a discrete version for the general x(θ). In the

discrete x(θ), the range of angles is partitioned into n bins such that bin i spans the range [Bi, Ti).

Each bin has associated with it a boxcar function di(θ) to be 1 if and only if the angle θ falls within

bin i (equation A.8) and an unknown constant offset value βi. These transformations yield the

model given in equation A.10.

di(θ) =





1, Bi ≤ θ < Ti

0, otherwise

(A.8)

x(θ) =
n∑

i=1

di(θ) βi (A.9)

f(θ)− P̂rx = β0 + β1d1(θ) + β2d2(θ) + · · ·+ βndn(θ) (A.10)
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If x(θ) is discretized into n bins, the model has n + 1 degrees of freedom: One for each bin

and one for β0, the signal strength without antenna gain. For any given signal direction, exactly

one of the di(θ) functions will be 1, so each prediction is an interaction of two coefficients: β0 and

βi. Consequently, β0 could be eliminated and an equivalent model achieved by adding β0’s value to

each βi. Mathematically, this means that there are only n independent variables in the SSE fitting,

and the full set is collinear. In practice, we drop the constant βn, but this does not mean that

packets arriving in that bin are any less well-modeled. Rather, one can think of bin n as being the

“default” case.

The azimuth can be divided into arbitrarily many bins. The more finely it is divided, the more

degrees of freedom the model offers, and thus the more closely it can be fitted to the environment.

To investigate the effect of bin number, we modeled every data set using from two to twenty bins.

Figure A.16 shows the residual standard error as a function of bin count. The grey box plot depicts

the mean and interquartile range for all of the data collectively, and the foreground lines show

values for links individually. In general, there appears to be a diminishing return as the number of

bins increases, with the mean remaining nearly constant above 16 bins.

In discussing parameters for this model, we will use the 16-bin case specifically. We find

the same patterns across other numbers, though the actual coefficients are bin count specific. One

result of note with regard to bin count is this: Several environments exhibit a “sawtooth” pattern

in which the odd bin counts do better than the even ones, or vice versa. This appears to be an

effect of the alignment of the bins relative to environmental features, rather than the number of

bins as such.

Our model has significantly less error than the orthogonal model: Across all data sets, the

mean residual standard error is 4.0 dB (4.4dB indoors), compared to 6.15 dB (7.312 dB in-

doors) for the orthogonal model. More importantly, the error remaining in the discrete offset

model is largely noise: The mean error is almost exactly zero for several ways of grouping the data.

Figure A.17 depicts the error (predicted value minus observed value). While the outliers reveal

some direction-correlated effect that is not accounted for, this model is much better for the bulk of
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Figure A.17: Residual error of the discrete offset model with 16 bins.
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the traffic. Over 99.9% of the traffic at every angle falls within the whisker interval.

A.5.3 Describing and Predicting Environments

The environmental offset function x(φ, θ), or its bin offset counterpart, models the impact of

a particular environment combined with a particular antenna. This can serve as an ex post facto

description of the environment encountered, but it also has predictive value: If one knows the offset

function for a given environment, it is possible to more accurately model wireless systems in that

environment. We are not aware of any practical way to know the exact spatial RF characteristics of

an environment—and thus its offsets—without actually measuring it. However, our results suggest

that it is possible to identify parameters generating the distribution from which the offset values

for a class of environments are drawn.

We analyzed a range of possible determining factors for the fitted offsets across all traces and

a range of bin counts. A linear regression fit and ANOVA test found significant correlation with

two factors: The nominal antenna gain f(θ) and the observation point. None of the other factors

examined were consistently significant. Table A.2 shows the regression coefficients and P-values

for both factors for a variety of traces. The observation angle was always statistically significant,

but the coefficient is constantly near zero. For each factor, the regression coefficient describes the

correlation between the fitted offset and the factor. That is, the coefficient shows how much the

actual signal strength can be expected to differ from the orthogonal model for any value of that

factor. For example, the antenna gain coefficients of .668 and .703 for Parabolic-Indoor-C and

Patch-Indoor-C mean that in those data sets for every dB difference in antenna gain between two

angles, the best fit difference in actual signal strength is only ≈ 0.3 dB.

There are two key results pertaining to the antenna gain regression coefficient: First, the

coefficients for different antennas in the same environment are very close. Second, the coefficients

for distinct but similar environments are fairly close. This suggests that classes of environments

can reasonably be characterized by their associated coefficients, which provides a compact repre-

sentation of environment classes that lends itself easily to simulation. In this way, the task of the
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Data Set Factor Coefficient P-value

Parabolic-Outdoor-A
Antenna Gain 0.185 1.02e-87
Obs. Angle 0.00301 5.1e-06

Patch-Outdoor-A
Antenna Gain 0.146 6.4e-50
Obs. Angle 0.00744 1.14e-17

Array-Outdoor-A
Antenna Gain 0.41 2.03e-206
Obs. Angle -0.0271 5.36e-188

Parabolic-Outdoor-B
Antenna Gain 0.0377 8.68e-05
Obs. Angle -0.00323 5.95e-05

Patch-Outdoor-B
Antenna Gain 0.00919 0.0492
Obs. Angle -0.00198 3.08e-06

Parabolic-Indoor-A
Antenna Gain 0.33 4.6e-102
Obs. Angle 0.00463 1.91e-05

Patch-Indoor-A
Antenna Gain 0.258 1.22e-122
Obs. Angle 0.00894 3.09e-24

Parabolic-Indoor-B
Antenna Gain 0.378 2.2e-134
Obs. Angle 0.00971 1.97e-16

Patch-Indoor-B
Antenna Gain 0.372 1.1e-81
Obs. Angle 0.014 3.87e-18

Parabolic-Indoor-C
Antenna Gain 0.668 1.39e-234
Obs. Angle -0.0146 4.15e-36

Patch-Indoor-C
Antenna Gain 0.703 0
Obs. Angle -0.0154 2.63e-48

Table A.2: Factors influencing fitted offset values, 16-bin case.
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researcher is reduced to choosing amongst several representative environment classes when

designing their experiment.

A.6 Simulation Process

The statistical model laid out above can be used as the basis for more realistic simulations.

It has long been recognized that radio propagation involves very environment-specific effects. We

identify three major ways of addressing such effects in modeling and simulation: The first is to

simply ignore the variability and use a single representative value in all cases. The second, which

goes to the opposite extreme, is to model specific environments in great detail. A third approach is to

randomly generate values according to a representative process and perform repeated experiments.

Each approach has its benefits, but we are advocating the repeated sample approach. Pre-

cisely modeling a specific environment probably has the greatest fidelity, but it provides no infor-

mation as to how well results achieved in a single environment will generalize to others. Stochastic

models have the advantage of being able to produce arbitrarily many “similar” instances, and para-

metric models make it possible to study the impact of varying a given attribute of the environment.

Such approaches are frequently used to model channel conditions [Neskovic 00], network topology

[Zegura 96, Tangmunarunkit 02], and traffic load [Lee 05].

The following algorithms produce signal strength values consistent with our statistical find-

ings. The key parameters are the gain offset correlation coefficient Kgain, the offset residual error

Soff , and the per packet signal strength residual error Sss. We computed these values across many

links for two types of environments in sections A.5.3 and A.5.2. Table A.3 summarizes these results.

Environment Kgain Soff Sss

Open Outdoor 0.01 - 0.04 1.326 - 2.675 2.68 - 3.75
Urban Outdoor 0.15 - 0.19 2.244 - 3.023 2.46 - 2.75
LOS Indoor 0.25 - 0.38 2.837 - 5.242 2.9 - 5.28
NLOS Indoor 0.67 - 0.70 3.17 - 3.566 3.67 - 6.69

Table A.3: Summary of Data Derived Simulation Parameters: Gain-offset regression coefficient
(Kgain), offset residual std. error (Soff ), and signal strength residual std. error (Sss).

Algorithm A.1 is a one-time initialization procedure which computes the offsets between the
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antenna gain in any direction and the expected actual signal gain.

Algorithm A.1: Compute Directional Gain
Kgain ← gain offset correlation coefficient
Soff ← offset residual std. error
begin Direct-Gain

forall Node n ∈ all nodes do
P ← partition of azimuth range [−π, π)
forall pi ∈ P do

θi ← center angle of pi
X ← random value (µ = 0, σ2 = Soff )
on,pi ← Kgain ∗ fn(θi) +X

end

Algorithm A.2 computes the expected end-to-end gain for a given packet, not including fixed

path loss. Thus, the simulated signal strength would be determined by the transmit power, path

loss, receiver gain, fading model (if any), and the directional gain from algorithm A.2. Note that a

fading model that accounts for interpacket variation for stationary nodes might make the random

error ǫ in line 0 redundant.

A.7 Conclusion

In this chapter, we have presented an empirical study of the way different environments and

antennas interact to affect the directionality of signal propagation. The three primary contributions

of this work are:

(1) A well-validated method for surveying propagation environments with inexpensive com-

modity hardware.

(2) A characterization of several specific environments ranging from the very cluttered to the

very open.

(3) New, more accurate, techniques for modeling and simulating directional wireless network-

ing.
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Algorithm A.2: Compute Packet Gain
Spss ← residual error of packet signal strengths
begin Directional-Packet-Gain

θsrc ← direction from src toward dst
θdst ← direction from dst toward src
psrc ← partition at src containing θsrc
pdst ← partition at dst containing θdst
Gsrc ← fsrc(θsrc)− odst,psrc
Gdst ← fdst(θdst)− osrc,pdst

0 ǫ← random value (µ = 0, σ2 = Spss)
return(Gsrc +Gdst + ǫ)

end

Wireless signal—and interference—propagation is more complicated than widely-used previ-

ous models have acknowledged. Because models of the physical layer guide the development and

evaluation of higher layer systems, it is important that these models describe reality with sufficient

accuracy. Indeed, in [Anderson 09d] we show that application layer results reported by simulators

can be affected dramatically by the way directional antenna models are simulated, producing re-

sults that deviate significantly from reality. Our measurements, and the resulting model, bring to

light several important aspects of the physical environment that previous models have failed to cap-

ture. The effective directionality of a system depends not only on the antenna, but is influenced

by the environment to such a large extent that many decisions cannot be made without in situ

measurements.



Appendix B

Simulation Practices

Increasingly, directional antennas are being used in wireless networks. Such antennas can

improve the quality of individual links and decrease overall interference. However, the interaction of

environmental effects with signal directionality is not well understood. We observe that state of the

art simulators make simplifying assumptions which are often unrealistic and can give a misleading

picture of application layer performance. Because simulators are often used for prototyping and

validating new ideas, their realism and accuracy are of primary importance. In this chapter, we

apply a new empirical simulation method for directional antennas and study how well it models

reality. We show that not only is our model easy to implement, but is also more accurate and thus

better able to predict the performance of propagation-sensitive applications.

B.1 Introduction

Using directional antennas is currently one of the main techniques for improving link qual-

ity by increasing signal strength in some directions while lowering interference in others. Many

directional networking protocols and applications, however, are studied using wireless simulation

models that assume directional antennas experience environmental effects in the same way that

omnidirectional antennas do. This, in turn, influences the expected behavior of the entire network

stack, potentially producing significant discrepancies between simulations and empirical results.

This work makes the following contributions to improve the fidelity of wireless network sim-

ulators:
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• We show that current state of the art techniques do not accurately capture the effects of

the environment on directional signal propagation and can thus produce misleading results

at higher layers of the network stack.

• We introduce an empirically-derived model for signal directionality, the Effective Direc-

tivity Antenna Model (EDAM), that incorporates the environment’s effects on direc-

tional antennas as a stochastic process.

• We verify EDAM’s accuracy as a simulation technique by using it to model a data-striping

application where the physical boundaries of successful packet reception are critical to

overall success.

• We perform real-world indoor and outdoor experiments and compare the results with those

obtained by various simulation techniques. We find that simulation based on EDAM can

improve fidelity by about 60%.

In the next section, we discuss related work. In section A.3, we discuss our proposed sim-

ulation approach and the model on which it is based. Section B.4 presents a security-oriented

smart-antenna application as a case study. We discuss its implementation, simulation, and an

analysis of the accuracy of the various simulation approaches. Finally, in section B.5, we conclude.

B.2 Background and Related Work

In this section, we discuss the state of the art with respect to the way network simulators

model the physical layer. Figure B.1 shows the simulation framework we conceptualize in this work.

We argue that while path loss models and fading models capture some of the vagaries of the medium,

they insufficiently model the effects of the environment on signal directionality. Additionally, prior

work [Takai 01] has shown that the way the physical layer is simulated can have substantial effects

on higher layer results. This motivates our work into building an empirically derived model for

the environmental effects on antenna directionality, which we call a “directivity model” and can be
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Figure B.1: Physical-layer simulation framework.

used in combination with fading and path loss models to produce a more realistic simulation of the

physical layer effects in systems where antenna directionality plays a role.

Wireless network simulators use a path loss model to model the degradation of a trans-

mitted signal. In free space, energy is propagated in all directions and the energy that actually

strikes the receiver is proportional to the square of the distance between the transmitter and re-

ceiver – the signal is attenuated ∝ r2. This, however, ignores significant effects found in terrestrial

environments. Of particular concern are absorption and refraction by obstacles and multipath

interference, where the radio frequency (RF) waves bounce off objects in the environment and

converge at the receiver after traversing different distances (and thus potentially out of phase.)

The commonly-used“two-ray”path-loss model uses a reflection from the earth and the heights

of the transmitter and receiver to indicate the likely signal strength at a given distance. Other

models for such effects are based on fitting empirical measurements rather than a-priori analy-

sis. There are general-purpose models such as the Hata / COST231 model and the Longley-Rice

model [Abhayawardhana 05, Oestges 04], and several specific to the wavelength and operating char-

acteristics of wireless LAN cards [Green 02]. Additionally, the propagation characteristics of in-

door environments are sufficiently different from outdoor environments that there are a number of

measurement studies and models (see [Andersen 95], [Neskovic 00] and [Iskander 02] for excellent

surveys).

The preceding models describe relatively large-scale phenomena. In addition to whatever
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long-range attenuation there may be, there is also small-scale fading, which is the result of

multipath interference and occurs at the scale of single wavelengths. While this can theoretically

be predicted analytically, it would require that the environment be known with a level of detail

that is generally impractical [Wolfle 05, Tingley 01]. A common way of addressing such situations is

through statistical fading models. Rather than determine the signal strength at any exact place or

time, it is modeled as a random variable with a known distribution. In general, the distributions are

fairly well-established, but the parameters are environment-specific (see e.g. [de Leon 04]). There

are several common models, among them Rayleigh fading, which assumes that there are many

comparable multipath signals, and Rician fading, which assumes a less “cluttered” environment

in which line-of-site paths are more important.

The concern addressed by this chapter is that those models do not consider an environmental

component to directivity. Our model for directional antennas adopts a similar approach to the

empirical path-loss and statistical fading models – we use empirical measurements to identify the

characteristics of the random or stochastic process. Where we differ is that our model is primarily

concerned with effects on directionality.

The most commonly used simulators in networking research (OPNET, QualNet, and NS-2)

do not consider antenna directionality and radio propagation as interacting variables. Each one

supports several models of path loss, and possibly fading, but they all follow the same general

model with regard to antenna gain: For any two stations i and j, the received signal strength is

computed according to the general form of equation A.1, repeated below:

Received Power = Ptx ∗Gtx ∗ L(i, j) ∗Grx

The received power Prx is the product of the transmitted power Ptx, the transmitter’s gain

Gtx, the path gain (loss) L(i, j) between the two stations, and the receiver’s gain Grx. The transmit-

ter and receiver gains are essentially constants in the case of omnidirectional (effectively isotropic in

the azimuth plane) antennas. For directional antennas, gain is an antenna-specific function of the

direction of interest. For some given zenith φ, azimuth θ, and an antenna-specific characterization



203

function fa(), the power transmitted in that direction is given by equation A.2, repeated here:

Gain in direction (φ, θ) = fa(φ, θ)

Combined gain = fa(φ, θ) ∗ fb(φ′, θ′)

Correspondingly, the receiver gain is modeled by a (potentially different) function fb() of the direc-

tion from which the signal is received.

The above models describe the power emitted in or received from a single direction (see

Figure B.2). In reality, the transmitter’s power is radiated in all directions, and the

receiver aggregates power (be it signal or noise) from all directions. Besides being a

source of interference for a dominant signal, the energy traveling along secondary paths (due to

side lobes) also carries signal. Network simulators model the antenna gain and path loss using

the angles and straight-line distance between the transmitter and receiver. However, if one of the

“secondary” reflected or refracted signal paths is aligned with a high-gain direction of a transmitting

or receiving antenna, the received power from that path can be greater than that of the “primary”

path. Thus in environments with significant multipath, the gain cannot be determined based solely

on a single direction. It makes intuitive sense that if a narrow beam is directed into a scattering

environment, the resulting signal is probably not narrowly focussed.

Although the simulators we are considering assume that the single direction of interest for

each station is precisely toward the other station, one can generalize equations A.1 and A.3 to the

case where there are multiple significant signal paths. In this case, it is crucial to note that fa, fb,

and Ll are complex, so summation does not automatically imply an increase in magnitude.

Prx =
∑

l∈paths

Ptx ∗ fa(φl, θl) ∗ Ll(i, j) ∗ fb(φ′
l, θ

′
l)

This assumes that there is some way to identify the available paths that a signal may take.

As with the Rayleigh and Rician fading models, it may be possible to build a parameterized model

of the cumulative effect of those paths for “cluttered” and “uncluttered” environments.
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Environment Kgain Soff (dB) Sss (dB)

Open Outdoor 0.01 - 0.04 1.326 - 2.675 2.68 - 3.75
Urban Outdoor 0.15 - 0.19 2.244 - 3.023 2.46 - 2.75
LOS Indoor 0.25 - 0.38 2.837 - 5.242 2.9 - 5.28
NLOS Indoor 0.67 - 0.70 3.17 - 3.566 3.67 - 6.69

Table B.1: Summary of Data-Derived Simulation Parameters, repeated from Table A.3 on page 196.

B.3 A New Simulation Approach

In [Anderson 09a], we present a statistical model for the environmental effects on antenna

directionality. This statistical model can be used as the basis for more realistic simulations. It has

long been recognized that radio propagation involves very environment-specific effects. We identify

three major ways of addressing such effects in modeling and simulation: The first is to simply

ignore the variability and use a single representative value in all cases. The second, which goes

to the opposite extreme, is to model specific environments in great detail. A third approach is to

randomly generate values according to a representative process and perform repeated experiments.

Each approach has its benefits, but we are advocating the repeated-sample approach. Pre-

cisely modeling a specific environment probably has the greatest fidelity, but it provides no infor-

mation as to how well results achieved in a single environment will generalize to others. Stochastic

models have the advantage of being able to produce arbitrarily many “similar” instances, and para-

metric models make it possible to study the impact of varying a given attribute of the environment.

Such approaches are frequently used to model channel conditions [Neskovic 00], network topology

[Zegura 96, Tangmunarunkit 02], and traffic load [Lee 05].

The key parameters to our method are the gain offset correlation coefficient Kgain, the off-

set residual error Soff , and the per-packet signal strength residual error Sss. These values were

computed across many links for multiple environments. Table A.3 summarizes these results. Impor-

tantly, similar environments produced similar values, even with different antennas. Because of this,

it is possible for a researcher to select representative values based on a qualitative understanding

of the environment of interest.



205

EDAM’s principle of operation is that it generates randomized environmental effects based

on the fitted distributions of effects measured in real environments. This has two main components:

Algorithm A.1 on page 197 is a one-time initialization procedure which computes offsets between

the antenna gain in any direction and the expected actual signal gain. Algorithm A.2 on page 198

computes the expected end-to-end gain for a given packet, not including fixed path loss. Thus, the

simulated signal strength would be determined by the transmit power, path loss, receiver gain,

fading model (if any), and directional gain from Algorithm A.1 on page 197. Note that a fading

model that accounts for inter-packet variation for stationary nodes may make the random error ǫ

in line 0 redundant. In our simulation configurations below we refer to this error term as “implicit

Gaussian” fading and consider scenarios where it is replaced with Rician and Log-normal fading

distributions.

B.4 Case Study: Physical Space Security using Smart Antennas

In this section, we use the work of Lakshmanan et al. as a case study for the way antenna

simulation strategy effects application layer performance. In [Lakshmanan 08], the authors propose

“Data Striping” as a way of achieving physical space security by steering antennas. Downstream

packets are encrypted and split into multiple parts so that all parts must be received in order

to decode any portion of the packet. Several access points, which are presumed to have smart

antennas, then transmit the packet parts so that the only point at which all the required information

is available is at the intended receiver. In this scenario (see Figure B.3), an eavesdropper who is

outside the coverage area of any of the access points will only receive a subset of the packet parts

and therefore be unable to reconstruct the message. The measure of the effectiveness is the size

of the region in which an attacker can successfully receive and reconstruct packets for any given

probability of success.

The authors verify their work using a custom simulator that implements the International

Telecommunication Union’s (ITU) indoor attenuation model combined with log-normal fading.

This channel model fits well with our discussion in Section B.2: While the path loss and fading
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models are nontrivial, there is no interaction between the environment and directionality. Because

directionality is crucial to the proper function of this application, it is important to understand

how the environment may affect performance.

B.4.1 Implementation

In order to understand the effects of the environment on the application and get a baseline

for further analysis, we built a custom measurement testbed and ran tests in multiple environments

– both indoors and outdoors. Figure B.3 shows the conceptual layout of the experiments. Five

nodes were used – three APs, one client, and one eavesdropper. The eavesdropper was positioned

in many locations on a grid, at each of which the access points sent a volley of broadcast packets

(approximately 500) to the client while the eavesdropper attempted to overhear them from its

location. The indoor experiment was carried out in a cluttered office with 83 unique measurement

points. The outdoor tests required 437 measurement points and were carried out in a large field on

the University of Colorado campus.

All five nodes in the experiment were laptops running Linux, with Atheros radios. The access

points used 24 dBi parabolic dish antennas, mounted on tripods and manually aimed at the client

according to signal strength values. The client and eavesdropper used external omnidirectional

antennas with approximately 5 dBi gain. For the indoor experiments, we reduced the power on the

access points so that the received power at the (stationary) client was between -70 and -75 dBm.

This was motivated by prior observations on the large amount of uncorrelated noise produced

by high-power antennas in highly reflective indoor environments [Anderson 08a]. The outdoor

experiments were carried out without any power reduction.

B.4.2 Simulation

For simulation, we used the popular network simulator QualNet 4.5 with physical layer sim-

ulations of varied complexity. Each configuration has some combination of the simulation layers

listed in Table B.2. We conducted a factorial experimental design, trying each unique combination
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Path Loss Fading Directivity Model

Two-ray Log-normal EDAM
ITU 1238 Rician “Pure”

Implicit Gaussian “Omni”
None

Table B.2: Physical-layer simulation options

of path loss model, directivity model, and fading model. While there are a variety of established

path loss and fading models, we are not aware of any existing directivity models analogous to what

we propose. The alternatives considered are essentially two null hypotheses: The first is that there

is no significant environmental effect, and the antenna gain pattern sufficiently describes the signal

directionality. This is the“pure” directivity model. The second is that environmental effects com-

pletely dominate the antenna effects, and so the signal is effectively isotropic. This is the “omni”

directivity model. One might expect difficulty rejecting the first null hypothesis in an open outdoor

environment and the second in a highly-cluttered indoor environment.

The simulated experiments were modeled directly after the implementation discussed in sec-

tion B.4.1. Five nodes were simulated, placed in the same relative positions as in the actual exper-

iments. The transmitters and intended receiver were stationary, while the eavesdropper moved to

the same points as in the implementation. Both indoor and outdoor experiments were run. The

simulation processes were identical except for the EDAM parameters: The indoor simulation used

the “non-line-of-sight (NLOS) indoor” values, while the outdoor simulation used the “urban out-

door” values. To deal with power calibration, we calibrated each simulation configuration manually

so that the RSS values were comparable to those we observed in the actual implementation for only

the intended receiver. We made ten unique runs per simulation, each with a different random seed.

B.4.3 Analysis

In alignment with the literature [Takai 01], our results show that system performance varies

tremendously between simulation models. Table B.3 shows the number of locations at which an



208
Directivity Model Vulnerability region (points)

Measured 38

Pure antenna 3 - 5
EDAM 54 - 79
Omni (no directionality) 83 (100%)

Table B.3: Size of 50% vulnerability region, indoor scenario.

eavesdropper can successfully decode ≥ 50% of all packets. The actual vulnerability region is

10 times what a current simulator would predict.

By plotting the probability of an eavesdropper receiving a decodable packet at each position,

we can observe that the simulations with the EDAM model are closer to reality than those without

it. To quantify this effect, see Figure B.4 where a cumulative density function (CDF) of the

probability of decoding a packet is plotted for each of the ten seeds against the measured data from

the implementation. Looking at Figures B.4a and B.4b, we can see that EDAM performs well. On

the other hand, consider Figures B.4c and B.4d, where state of the art models (such as those used

here) without a directivity model grossly overestimate the effect of the antenna pattern on actual

signal strength, and thus the performance of this application.

Figures B.4e and B.4f give plots of outdoor results. Figure B.4e is a pathological case, with

the “pure” directivity model and no fading model. In this case, the boundaries are stark – nearly

60% of locations are protected, while the remaining 40% are not. Although this performs poorly, it

is worth considering as not all simulation software uses a fading model by default. For instance, the

popular simulation package NS-2 has none unless it is paired with an extension such as [Baldo 07].

Finally, figure B.4f shows the best performing outdoor simulation strategy. We can see that the

benefits of EDAM are more pronounced in indoor simulations where multipath reflections are more

prevalent.

To determine which simulation approach produces application-layer results that are most

consistent with the measured data, we compare the distribution of simulated application-layer

performance with the distribution of actual performance. We use a two sample Kolmogorov-Smirnov
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(KS) test, which is effectively the maximal distance between the CDFs of the two samples. We

then perform an analysis of variance (ANOVA) on the KS test results to determine how much the

various factors (directional model, path loss model, and fading model) contribute to the overall

accuracy.

Figure B.5 provides a box and whiskers plot of the KS test-statistic for each configuration. In

this diagram lower values indicate better performance, meaning that the distribution of simulated

performance closely follows the measured real-world performance. Alternately, high values indicate

that the simulated performance deviates wildly from the measured performance. We can see that

the configurations utilizing EDAM perform very well – producing application layer results which are

much closer to reality than any other configuration. EDAM performs best in the indoor simulations,

claiming the top three positions with this metric – EDAMwith ITU 1238 and Rician fading performs

best, with less than 0.3 difference from the empirical data at maximum. The other two top positions

are taken by EDAM with other fading or path loss models.

In the outdoor simulations, the conclusions are less strong – EDAM with two-ray and log-

normal fading performs best, but it is closely followed by EDAM with ITU 1238 and Rician fading,

and two-ray with Rician fading and the “pure” directivity model. While the strength of EDAM is

greatest in cluttered environments such as our indoor environment, it is important to note that it

still offers a significant improvement in the outdoor environment.

Table B.4 shows the results of a factorial analysis of variance (ANOVA), using the KS statistic

and the various physical layer simulation models as the factors. Note that the “omni” directivity

model is not included because it is so inaccurate that its inclusion obscures the other effects. The

test results show that the choice of the directivity model is by far the dominant factor indoors, and

a substantial factor outdoors.

In the indoor environment, the effect of directivity model is 4.9 times greater than any

other factor. Outdoors, the path loss model is the dominant factor, followed by the fading model

and then the directivity model. Both indoors and outdoors, a Rician fading model performed better

than log-normal or implicit Gaussian models. Somewhat predictably, the ITU 1238 indoor path
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loss model did better than the two-ray model indoors, but the two-ray model did better outdoors.

B.5 Conclusion

In this chapter we have presented EDAM, a novel empirical method for improving the mod-

eling of directional antennas in simulators. EDAM is both easy to implement and generalizable to

a wide variety of directional antennas. We have shown that state of the art techniques for mod-

eling physical-layer behavior for directional wireless networks can be misleading. Moreover, the

addition of a directivity model to the conventional simulation stack provides a critical contribution

to the ability of a simulator to produce realistic application layer results. Not only do simulations

using EDAM produce application layer results that are significantly more consistent with reality

than traditional models in the application we study, but the choice of directivity model is the most

influential factor in realistic simulation of indoor environments. We have verified this with a fac-

torial experimental design and a test-bed implementation in representative indoor and outdoor

locations. EDAM is easily incorporated into wireless networking simulations∗ , and is consistently

more accurate than the state of the art for systems involving directional antennas.

∗ Our implementation of EDAM is available as a patch to version 4.5 of the QualNet Simulator at
http://systems.cs.colorado.edu/wiki/EDAM.

http://systems.cs.colorado.edu/wiki/EDAM
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Figure B.2: Standard simulation model of directional antennas assumes all signals are emitted along
a single path.
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Figure B.3: Example of data striping application
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Figure B.4: CDF plots of application layer performance for simulation configurations: The black
line is the observed data, and the red (or grey) lines are the results of repeated simulation runs.
The X axis is the proportion of decodable packets, and the Y axis is the cumulative fraction.
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KS−Test Statistic For all Configurations and Seeds
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Figure B.5: Test-statistic of a two sample Kolmogorov-Smirnov test, run for each simulation con-
figuration against the measured data (smaller values are better).



Appendix C

The Wide-Area Radio Testbed

C.1 Introduction

Directional antennas, both fixed and steerable, are proving to be important in the next

generation of wireless networking protocols. These antennas give nodes further control over both

signal strength and interference, allowing optimization techniques which can yield greater network

throughput with fewer errors. While protocols incorporating directional or “smart” antennas have

been proposed, their evaluation has been limited. Those researchers who have attempted real-world

evaluation of their ideas have often used one-off testbeds assembled to perform a small number of

experiments [Ramanathan 05, Mitsuhashi 07, Kohmura 08]. Most proposals, however, rely solely

on simulation or theoretical analysis (for instance, [Takai 02, Singh 05]).

In this chapter we introduce the University of Colorado Wide-Area Radio Testbed (WART)

as a platform for studying uses of directional, steerable, and smart antennas in wireless network-

ing. Given the widely-recognized difficulty of accurately simulating radio environments, real-world

experiments are essential for fully understanding wireless networking. The effects of antenna con-

figuration are especially dependent on the vagaries of radio propagation, so physical fidelity is

particularly important for this area of research (see Chapter A on page 162).

WART is currently the only permanent facility for studying smart antennas in a large and

diverse urban environment. The system consists of eight phased array antenna nodes mounted to

the rooftops of university buildings, spanning an area of 1.8 x 1.4 kilometers. The entire testbed

is linked together via wired Ethernet and can be controlled from a single administration point.
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This architecture ensures that WART can both offer the geographic scale and realism of large-

scale distributed testbeds [Aguayo 04a] and also give its users the degree of control and ease of

management only seen in dense indoor testbeds such as ORBIT and Emulab [Raychaudhuri 05b,

Johnson 06].

The production and deployment of such a testbed, however, is itself an engineering problem.

In addition to the capabilities of WART, this chapter describes some of the logistical challenges

encountered in planning, installing, and maintaining a centrally-controlled wide area rooftop net-

work.

(a) Campus Testbed (1.8 x 1.4 km) (b) Installed Antenna Node

C.1.1 Design Goals

WART is intended to be a dedicated experimental testbed for studying the impact of omni-

directionality, directionality, null-steering and beam-forming throughout the network stack. Given

this objective, there were three design goals for WART:

(1) The testbed must be able to perform outdoor omni-directional, fixed directional, and beam-

forming experiments.

(2) The testbed must be able to test a diverse set of link distances of varying link qualities.

(3) WART nodes must be simple to reconfigure for varying experiments and provide an easy

recovery mechanism in case of failure.
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The environment chosen was the rooftops of several tall buildings at the University of Col-

orado at Boulder. These sites were chosen to provide a variety of link lengths and line-of-sight

between most, but not all, pairs of nodes. It was important to get a number of long links in order

to study links with lower signal strengths at varying transmit powers. Note that this is in contrast

to producing weak links by decreasing transmit power, which is only an approximation of long

links. An indoor setting or an environment with a large number of reflections would not have been

as appropriate for our directional studies due to the significant effects such an environment would

have had on beam patterns[Anderson 08b].

The remainder of this chapter describes the hardware, software, and centralized architecture

of WART which helps fulfill the design goals of easy maintenance and administration.

C.1.2 Smart Antenna System

In this section we describe the hardware and software that comprise WART. These compo-

nents give it the unique ability to perform smart antenna research at all network stack levels and

address challenges with its administration and experimental setup.

C.1.2.1 Hardware

Each smart antenna node consists of two major components: the phased array antennas

and the embedded computer. The phased array antennas used in our study were designed and

constructed by Fidelity Comtech. The antennas operate in the 2.4GHz ISM band and use an 8

element uniform circular array of dipole antennas that support a minimum 42 ◦ primary lobe when

configured for a unidirectional pattern, as shown in Figure C.1. The tight unidirectional pattern

has a primary lobe gain of 18dBi. Additionally, the ratio of the lowest null to the highest peak is

≈ 40 dB, which allows for selectively “nulling out” interfering signals.

Each dipole is controlled by a vector modulator which in turn is controlled by a distinct

embedded processor. Intrinsic antenna reconfiguration time is ≈ 10µseconds, although the inter-

face with the transceiver boards limits the effective reconfiguration time to ≈ 100µseconds. The
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Figure C.1: Unidirectional Pattern Figure C.2: Omnidirectional Pattern

transceiver boards are controlled by a series of phase-amplitude settings stored in flash memory,

which allows fast reconfiguration between set patterns. For example, the antenna can quickly

change the direction of the pattern shown in Figure C.1, or switch to the omnidirectional pattern

in Figure C.2, by indicating the pre-computed configuration to be used.

The embedded computer is a single-board computer (SBC) based on the Intel XScale IXP425

processor. The entire system runs off 128 MB of memory and thus relies on the wired network

connection for reading/writing to a long-term storage device. The wireless interface card used is

a Senao 5345MP MiniPCI adapter, which uses an Atheros chipset. The combined antenna and

embedded computer is roughly 26x23x23 cm in size and can be mounted on vehicles, light poles,

and buildings.

C.1.2.2 Software

The default image used by each WART node is a standard OpenWRT Kamikaze distribution

with some modifications to the default wireless drivers and startup scripts. This Linux distribution

was selected because of its maturity, support for the embedded IXP425 processor, and standard

tools such as python and tcpdump. The wireless driver is based on the Multi-band Atheros Driver

(MADWiFi) version 0.9.4.5 and is modified to control the loading and selection of antenna patterns.

Lastly, NFS is used to transmit data from the smart antenna node to long term storage.
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C.2 Commodity Hardware as a Research Platform

In this section, we discuss limitations of commodity hardware with respect to research appli-

cations and the solutions we have developed to mitigate them. Principally, we want to:

• Be confident in the fidelity of physical-layer (PHY) measurements and settings.

• Implement and study experimental medium access control (MAC) protocols.

• Have precise control of timing and strict clock synchronization.

C.2.1 Received Signal Strength Accuracy

To ensure that it is safe to use commodity IEEE 802.11x-based hardware to measure signal

and interference levels, we calibrated the sensitivity of our radios against known signal sources.

To get an idea of how accurate our commodity radios are in measuring received signal strength

(RSS), we directly connected each of our radio cards to an Agilent E4438C vector signal generator

(VSG). The VSG was configured to generate IEEE 802.11 frames and the laptop to receive them.

For each of the cards we collected many samples while varying the transmit power of the VSG

between -20 dBm and -95 dBm (lower than the receive sensitivity threshold of just about any

commodity 802.11 radio) by 5 dBm increments. The resulting data is plotted in Figure C.3 along

with a linear fit with a slope of 0.9602 and adjusted R-squared value of 0.9894 (indicating a strong

fit to the data). The commodity radios perform remarkably well in terms of RSS measurement.

To correct for the error they do exhibit, we use the slope and intercept of this fit to adjust our

measurements.

After calibration, the residual error has nearly zero mean (-0.05 dBm) and a standard error

of 1.7 dBm. The standard error of the sample mean varies as SEx̄ = s√
N
. This implies that any

reasonable confidence level can be achieved by taking a practical number of samples. For example,

12 samples give a 95% confidence interval of ±1dBm, 45 samples gives ±0.5dBm, and so on.
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Figure C.3: Linear fit of reported versus actual signal strength on commodity cards during calibra-
tion.
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C.2.2 Transmit Power Precision

At least two studies have analyzed the fidelity of transmit power control in commodity wireless

network interface cards (NICs) [Shrivastava 07, Ben Abdesslem 06]. Neither provides an exact

calibration for our specific hardware, but they provide sufficient guidance for the type of experiments

we have been performing. The devices studied offer a software API for setting transmit power,

accepting settings in 1 dBm increments. These setting requests are implemented at a much coarser

granularity by all of the hardware considered, including Atheros chipsets.∗ It is therefore not safe

to assume that the requested power level matches the actual power level without first identifying

the specific power levels supported by the hardware in use.

Because the phased array antenna provides additional – and relatively fine-grained – ampli-

fication, we are not particularly concerned with the absolute power level produced by the wireless

NICs. Of more concern is the relative consistency. Shrivastava et. al. provide a conservative

estimate: Their paper analyzes the combined variability of the transmitter, the channel, and the

receiver. In the situation with the least expected exogenous variability (LOS-light), the apparent

standard deviation of signal strength is less than 2 dBm. Additionally, their stationarity analysis

shows a very low Allan deviation over both short (tens of packets) and long (thousands of packets)

intervals [Shrivastava 07].

This suggests that the sample sizes discussed for mitigating receiver measurement error are

also reasonable for transmitter variability, and that samples separated by significant periods of time

ought to be comparable.

C.2.3 MAC-Layer Flexibility

A challenge associated with using COTS wireless cards for research purposes is that the

driver-card combination functions as a “black box.” The exposed functionality is generally not

sufficient for physical and MAC-layer experimentation.

∗ The Linux Wireless Extensions API allows device drivers to specify the set of supported power levels, but does
not define the proper behavior for a device if an unsupported power level is requested. All of the hardware-driver
combinations of which I am aware round to a supported level without returning an error code.
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One of the most basic requirements for a platform for experimental MAC design is the ability

to send data frames exactly when and how the user wishes. There are several ways in which normal

driver/hardware setups fall short:

• Not exposing information needed by experimental MAC protocols.

• Not offering a sufficient control interface for the physical parameters of interest.

• Imposing unwanted aspects of an existing protocol (e.g. IEEE 802.11).

We addressed the first two with modest driver modifications. The chipset in the WiFi cards

offers control over all the IEEE 802.11 a, b, and g PHY parameters on a per-frame basis, although

channel changes cannot be made that quickly. The phased array antenna driver was originally

coupled to the IEEE 802.11 protocol, but the two were fairly easy to separate. Harder than

controlling how frames are sent is controlling when. Sections C.2.5 and C.2.6 discuss our approach

to the timing problems in more detail.

There are several important aspects of the IEEE 802.11 protocol which tend to be imple-

mented in hardware, making it challenging to use that hardware to explore significantly different

protocols. In our WiFi chipset, these include MAC-layer retries and acknowledgements, carrier

sense multiple access collision avoidance (CSMA/CA) back-off, and frame checksums. The ratio-

nale for implementing these functions in hardware is presumably speed: The turn-around time

for raising an interrupt, sending information from an expansion card to the processor, waiting for

the kernel to handle the interrupt and so on can be significant. One study found that doing ac-

knowledgements in software took over 150 microseconds while the hardware implementation took

less than 10 microseconds [Neufeld 05]. Such hardware-implemented features need to be either

disabled or tolerated. Retries turn out to be easily disabled: There is a flag in the frame descriptor

(HAL_TXDESC_NOACK) that causes the hardware not to wait for an acknowledgement after transmit-

ting a frame. The frame checksums, and a few other mandatory header bits, we just accept. They

are at worst overhead: The receiver can be configured to pass frames up the stack even if they are



224

not addressed to that device or fail the hardware checksum test, so experimental protocols are not

constrained to obey the semantics of those mandatory fields, only to fill them with values that the

hardware will accept.

C.2.4 Implementing Non-CSMA MACs

Suppressing CSMA/CA is critical for exploring non-contention-based MACs. In a few scenar-

ios, such as a time division multiplexing (TDM) MAC with no outside noise sources, the medium

should always be free whenever any node senses it and so CSMA/CA is harmless. In others, espe-

cially any system with intentional spatial reuse, multiple nodes may legitimately be active at the

same time.

We developed a series of driver modifications to control CSMA/CA-related functions in the

Atheros AR5212 chip set. Unlike retry-less transmission, which is already used for various broad-

cast frames in IEEE 802.11, CSMA-less operation is not an intended function of WiFi hardware.

Consequently, this behavior has to be specified indirectly, and the necessary steps are not part of the

documented public interface to the hardware† . Our group, with help from the broader Free Software

community, reverse-engineered a procedure for practically disabling (and re-enabling) clear-channel

assessment (CCA) in the cards we are using. Credit for analyzing closed-source driver behavior to

identify registers touched during normal operation is due to the members of the madwifi-devel

and ath5k-devel mailing lists.

Our patch to the MADWiFi driver changes three main parameters in the AR5212 chip. They

seem somewhat redundant, but empirically the desired behavior is not always achieved without all

three:

• Diagnostic/Debugging Mode: Set ignore bits for the Network Allocation Vector (NAV)

in overheard packets, and physical carrier sensing.

† As of 29 November 2008, Atheros Corporation has released the source code to their Hardware Abstraction Layer
and announced that the free Linux drivers will be their public reference platform. This is likely to increase the
publicly-available documentation significantly.
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• Inter-Frame Spacing: Configure the card to use the smallest possible durations for the

gaps between frame transmission used in IEEE 802.11. If carrier-sensing is not being

performed, these introduce pointless delay.

• Disable Queue Backoff: Prevent the card from backing off after draining a single hard-

ware queue if there are other hardware queues with packets.

A patch adding this CCA control to MADWiFi is publicly available as part of our Commodity

Atheros Research Platform (CARP) project‡ .

C.2.4.1 Evaluation

Spectrum Analyzer
Vector Signal Generator

Antenna

RF  "Tee"

LMR−400 coax

Figure C.4: CSMA/CA Evaluation Apparatus

To verify that CCA has effectively been disabled, the WiFi card in the phased array antenna

node is disconnected from the antenna and connected to the test equipment shown in Figure C.4.

The embedded computer is configured to produce a continuous stream of packets, and the vector

signal generator (VSG) is used to create a competing signal on the same channel. The spectrum

analyzer is used to determine whether the expected packet transmissions from the computer are

occurring.

The testing procedure is shown in Algorithm C.1. For each type of VSG signal, the ex-

perimenter verifies that packets are sent despite the interfering signal only when CCA is dis-

abled. There is reason to believe that different mechanisms and thresholds are used for detect-
‡ Available at https://systems.cs.colorado.edu/projects/carp/. Based on personal correspondence, we know

this is being used by researchers at IIT Delhi, the Dublin Institute of Technology, Communications Research Centre
Canada, the University of Wisconsin, the University of Pittsburgh, WINLAB at Rutgers, and Stony Brook University.

https://systems.cs.colorado.edu/projects/carp/
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Algorithm C.1: CSMA/CA (CCA) testing procedure

forall VSG signal types do
Configure vector signal generator
Turn VSG RF output off
for CCA in {on, off} do

Set system CCA ← CCA
Start computer sending packets
forall power in -100 dBm to +10dBm do

VSG RF output power ← power
Check for IEEE 802.11-like signal and VSG signal on spectrum analyzer

ing different types of signals. In particular, IEEE standards define different power thresholds

for deferring to signals recognized as valid PLCP headers and other “generic” signals. Further,

a patent issued to Atheros describes their apparent approach to interference mitigation in more

detail [Atheros Communications, Inc. 04]. The mechanism employs a general power measurement

component and specific detectors for OFDM and CCK modulations. Additionally, signal detections

which correlate with successful packet reception are treated differently than those which do not.

To address all of these cases, we tested with the following signal types:

• Sine wave (carrier only)

• FM-modulated carrier

• Continuous (“unframed”) DSSS/CCK/DQPSK modulated carrier

• Continuous (“unframed”) OFDM/QAM-16 modulated carrier

• Framed complete packets: IEEE 802.11b 11 Mbps DSSS/CCK/DQPSK beacon frames

• Framed complete packets: IEEE 802.11g 54 Mbps OFDM/QAM-64 beacon frames

The last four were produced using Agilent Signal Studio and then replayed on the VSG.

In all cases, the system performs as expected. With CCA suppression activated, the test

computer produces a steady stream of packets regardless of the background signal from the VSG.

Without CCA suppression, two different effects are seen: the valid packet streams cause the test
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computer to back off indefinitely and simple wave forms produce a more complex behavior. At

low power levels, when the signal is initiated, the test computer stops sending packets for several

seconds and then resumes. At high enough power levels, however, the test computer stops producing

packets and does not resume. This behavior likely represents the “adaptive interference immunity

control” described in the patent, whereby signal measurements which do not correlate with actual

packet reception are identified as “false positives” and the threshold required to induce back off is

adjusted. We did not identify the specific power thresholds or delay periods associated with this

function.

C.2.5 Precise Timing Control

Precise timing is important for both efficient experimentation and a variety of MAC protocols.

We are interested in both when packets are sent and when experimental antenna equipment changes

state. We have developed infrastructure for quickly switching states in a coordinated manner across

the entire system. There are two main challenges: (1) To interpret the results, it must be possible

to match each packet sent or received to the antenna configuration in effect at the time. (2) To

conduct experiments involving multiple nodes, it must be possible to synchronously change states

so that the system state remains consistent.

We address both of these challenges by clocking our system off the high-resolution clock

included in the adapter’s chipset. Most of the difficulty in connecting packets to antenna states

comes from non-deterministic timing: On the sending side, the host can know when a packet is

passed to the hardware (diamond 1 in Figure C.5a), but it cannot know exactly when the packet

will leave the antenna, especially if the card performs CCA and CSMA/CA backoff. Similarly,

there is a variable delay between when the packet passes through the receiving antenna and when

the host’s interrupt handler is called to service the packet (diamond 4 in Figure C.5b).

While there is a large margin of error associated with the system time when the packet

was actually sent, the MAC time at reception can be known much more precisely. The MAC

time, used for calculating retransmission timeouts and back-offs, is maintained by a high-resolution
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clock on the interface card. Packets are stamped by the hardware with the MAC time upon arrival

(diamond 3), so there is almost no non-deterministic delay between the actual reception and the

time-stamp. Since the AR5212 chipset also makes this time available, antenna transitions are

scheduled relative to the MAC time.

kernel driver

AR5213 chipsetTX control
Antenna and

clock

1 2

SW queues

Antenna

Analog RF

HW queue

Packets

Digital Control

(a) Transmission chain architecture

kernel driver

AR5213 chipsetAntenna
TX control

Antenna and
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3 4

Digital Control

Analog RF

HW Buffer SW Buffer

DMA Packets

(b) Reception chain architecture

C.2.6 Time Synchronization

Using the on-chip timer helps with clock synchronization between nodes. MAC time synchro-

nization is already required by the IEEE 802.11 protocol and is done in the interface hardware. In

both BSS and IBSS (ad-hoc) modes, stations include their MAC time in beacon packets. Listening

stations then set their own clocks off the beacons. Since this is done in the chipset (diamonds 2

and 3), the variability in delay is much lower – and thus the synchronization is much tighter – than

what can be achieved using software on the end hosts.

C.3 Administration and Maintenance Infrastructure

The previous sections have discussed challenges related to using commodity equipment as a

research platform. This section focuses on generic challenges likely to face any distributed wireless

testbed.

Operational and maintenance issues become increasingly important as the number of nodes,

their geographic distribution, physical inaccessibility, and heterogeneity of network connections all

increase. The next several sections will describe the design decisions and support infrastructure

developed to make the testbed as useful as possible. In 2004, our experimental procedure consisted

of an operator with a laptop controlling each physical node, and human-layer signaling with cell
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phones or FRS radios. Experimental equipment was pre-configured in the laboratory before being

transported to the test sites. Experiments were controlled and monitored by the operators, and

results were downloaded onto the local laptops for later analysis. The subsequent testbed design

has been driven by the need to address problems with that approach.

C.3.1 Centralization

The simple approach described above might be sufficient for small experiments if everything

worked as intended. However, experimental hardware and software is almost inevitably flawed, and

faults which escape notice during testing regularly cause problems during live experiments. When

problems do occur, equipment needs to be rebooted, experiments need to be re-started, scripts need

to be edited, and sometimes new software needs to be installed.

The (human) communication overhead of trying to identify and correct problems across all

test locations quickly becomes prohibitive, even when the necessary fixes are small. In early tests we

found that even when nothing went wrong, coordinating a four node experiment required at least

a half-hour of overhead for setup, configuration checks, synchronization, starting the experiment,

downloading the data afterwards, and running basic sanity checks on the data. Overall, the ratio

of time expended to successful experiment time was very high.

Our primary requirement for the testbed infrastructure was that it enable centralized man-

agement. In particular, it is necessary at a minimum to be able to perform the following tasks, for

all of the experimental nodes, from a single location:

• Configure, start, and stop experiments

• Gather and analyze data

• Replace experimental software

• Reboot crashed equipment

Additionally, it is not strictly necessary but very useful to be able to:
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• Monitor the progress of experiments

• Actively identify crashed or mis-configured nodes

• Replace all system software

Our testbed infrastructure is designed to provide these capabilities. At its core, this infras-

tructure consists of a control plane network, a “management box” connected to each experimental

antenna unit, and a collection of software tools. All of these will be described in detail in upcoming

sections.

C.3.2 Management System

Every experimental antenna unit is directly connected to a management box, depicted in

Figure C.5. Each box contains a flexible single-board computer (SBC) along with hardware required

for remote power control. These serve multiple purposes, the most basic of which is connecting

the research equipment into the control plane network. The phased array antenna systems have

built-in Ethernet, but the management boxes provide a number of critical services which are not

possible without them.

The management boxes contain flexible general-purpose computers, and can be installed

indoors at a significant distance from the antenna unit. All of the currently-deployed boxes have

Ethernet connections (though not to the same Ethernet), but they can accommodate other data

connections with minimal configuration changes. WiFi has been verified – as long as the box is

sufficiently separated in frequency or space from experiments – and there are no apparent barriers

to using 900 MHz radio modems, GPRS/EVDO cellular devices, or more esoteric connections.

Besides providing network connectivity, the management boxes also provide network boot-

ing to the antenna units. This approach greatly simplifies reconfiguration: Any software change,

from one configuration file to a new operating system, can be made by uploading a new image to

the management system and rebooting the experimental equipment. The equipment could boot

from a remote network server, but only if the network to which they were attached had both the
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configuration and performance to support it, which would limit options substantially.

C.3.3 Infrastructure Configuration

We designed the infrastructure with the goal of having as few “moving parts” as possible, be-

cause configuration errors are easy to introduce and can be very difficult to remedy once equipment

has been deployed. To minimize opportunities for error, much of the system configuration is fixed,

both between nodes and over time on any given node. We tried to identify the unavoidable sources

of variability and isolate them so that as little of the overall system as possible has the potential

to handle it incorrectly. The unavoidable variability comes from the address and configuration

available on the outside (Internet) network link, the need to distinguish between units, new software

images for the experimental equipment, and the passage of time.

The computer in each management box has one inward-facing network interface, a range of

software processes, and one or more outward-facing interfaces. Except for time, which is rather

pervasive, and the boot image, which is limited to one file served up by the TFTP daemon, the

variability can be localized to the software directly interacting with the outward-facing network

interface. The network configuration for the inward-facing interface and the devices on the internal

network (the network-controlled power switch and the research equipment boot loader) is hard-

coded and identical between units.

The organization of the control plane network relies heavily on the use of a virtual private

network (VPN) and network address translation (NAT). On each management computer, the ex-

ternal IP address, DNS servers, and default routes are automatically configured by DHCP. Those

are the only aspects that need to “know” anything about the network to which the box is attached.

DNS is used to locate our VPN server, although the current IP address is also configured as a

fall-back. Every management system is loaded with a different private key and X.509 certificate

for connecting to the VPN, and this is the only hard state difference between boxes. The VPN

daemon on the management board attempts to connect to the server on boot, or if it becomes

disconnected for any reason.
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C.3.4 Reliability and Availability

A key characteristic of a large testbed is that physical access to the equipment is likely

to be difficult and time-consuming. In our testbed, the experimental equipment is mounted on

rooftops and in several cases requires a ladder or safety equipment for access. At night or in

inclement weather, on-location maintenance is effectively limited to swapping out the entire unit.

The management boxes are indoors, but access is often difficult for administrative reasons, and is

inconvenient under the best circumstances.

Availability is generally defined as A = MTBF
MTBF+MTTR

, where MTBF and MTTR are mean

time between failures and mean time to repair, respectively. Many of the design and configuration

decisions described in sections C.3.2 and C.3.3 are intended to avoid failures, but the primary goal

is to minimize the set of failures which require on-site physical intervention to repair, should they

occur. A secondary goal is to make such intervention as quick and simple as possible.

C.3.5 Remote Repair

The most common significant failure in our testbed is a kernel hang in one of the phased

array antenna units. A large portion of our experimental code has to run in kernel space, either

for performance reasons or because it is an integral part of a device driver. The IXP425 platform

includes a watchdog timer, and it is enabled, but some errors (especially acquiring locks and failing

to release them) render the kernel effectively useless while still allowing the watchdog process to

keep resetting the timer. Additionally, this platform has a limitation that the soft reset instruction

resets the CPU but does not always reset the peripherals correctly, meaning that the device can

reboot directly into a bad state.

We address this by including a network-controlled power switch in the management box. The

experimental equipment and management computer are on separate switched circuits, and either

can be turned off or power-cycled remotely using this switch. A limitation of this design is that

the switch is only reachable if the computer is forwarding packets, so it cannot be used to address
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a hung management system.§

Another possible failure is corruption of the operating system on the experimental systems.

This could easily result from either a kernel error, an intentional upgrade that proved to be faulty, an

interrupted upgrade, or other circumstances. We considered several possibilities involving fail-safe

operating system images and similar approaches, but always booting from the network sidesteps

the entire issue: Nothing important is installed or stored on the experimental system except for the

boot loader. As long as that remains intact, it is always possible to restore or replace the system

software by simply rebooting.

C.3.6 Interchangeable Parts

On-site repairs, besides being time consuming, take place in less-than-ideal environments. It

can be loud, windy, cold, hot, vibrating, high off the ground, or otherwise physically awkward. The

person making the repair has far fewer resources than would be available in the lab. Consequently,

it is beneficial to make the repair process as simple as possible, and especially to avoid the need for

on-site configuration and testing as part of the repair process.

This was a significant reason for the fixed-and-uniform configuration approach described

in section C.3.3. Every phase array antenna unit or network power switch has exactly the same

hardware and configuration as every other. Every management computer is the same as every other

except for the contents of a removable compact flash card. This makes it easier to develop testing

processes for each component and means that a faulty or suspect component can be replaced with

no thinking or configuration required. In fact, it is often easiest to replace the entire management

unit as a whole – except for the flash card – and then diagnose the faulty one in the comfort of the

lab.

§ A previous version of the management box design used a power switch which was itself prone to hanging, a
situation with little hope for remote repair.
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C.3.7 Security

Since WART nodes are connected to untrusted networks, they are potentially susceptible to

the same attacks that many other machines on the University of Colorado network experience on

a day-to-day basis. Several steps have been taken to ensure that only authorized access is given to

both the phased array antenna node and management board.

First, communication to the WART management nodes is restricted to nodes that are part

of the same VPN. This requires having a certificate signed by the certificate authority, a process

which is performed off-line. Once this trust has been established, we utilize SSH keys to allow

remote logins directly to the phased array antenna nodes.

It is important to note that this last security stage is not without its weaknesses. This is due

to the fact that the phased array antenna nodes run off a ramdisk and are thus without any real

permanent storage. This forces each node to regenerate their SSH keys upon every reboot. This

makes the nodes susceptible to man-in-the-middle attacks should an attacker obtain access to the

VPN via a trusted certificate. One possible remedy to this challenge could be to embed the SSH

keys directly into the OS image, which would allow anyone with an OS image to impersonate any

antenna node, but would still be an improvement.

Another possible attack could stem from the wireless interface side. Should an attacker

associate with a node, the node could potentially begin routing packets from unauthorized users. For

now, we have disabled all routing services, but this remains a risk for future multi-hop experiments.

C.4 Deployment Logistics

Deploying a physically large testbed, especially with outdoor equipment, involves a number of

challenges outside the traditional realm of computer science. There is a modest inherent engineering

component that is significantly compounded by the need for approval and cooperation from various

outside parties. All of the WART nodes are located on University of Colorado property, meaning

that we only had to interact with a single owner, but it is a very large and bureaucratic one.
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We suspect that broadly similar issues would be likely to arise in working with another large

organization, and possibly with multiple smaller ones.

In practice, deploying and operating equipment indoors in laboratory and office spaces has

required only the informal approval of the research groups using that space. There may be relevant

building codes or university policies, but there is no enforced approval process. However, equipment

installed on the outside of buildings, or visible from the outside, requires the involvement of the

campus-wide organizations responsible for all construction projects. Fundamentally, there seems

to be no administrative category for a project which spans a large area but with very minimal

requirements. Building an outdoor testbed therefore becomes a university construction project

with all of the overhead that entails.

Some of the more prominent logistical challenges encountered were:

• Architectural Approval: The aesthetic impact on campus buildings had to be approved

by the campus architect.

• Antenna Siting and RF Interference Approval: A separate antenna committee had

to be convinced that the proposed sites would not interfere with existing radio equipment.

• Electrical Design and Installation: The electrical requirements of the testbed equip-

ment are extremely low; each node uses less power than a desk lamp. However, all construc-

tion projects involving new electrical connections are subject to the same approval process,

regardless of the actual load. This means that an electrical design for each node had to be

completed and signed off by a certified electrical engineer, and installation of the electrical

components had to be performed by licensed electricians. Both had to be done by outside

contractors hired through the office of facilities management, requiring an additional round

of financial approvals before work could begin. Additionally, the waterproof plastic enclo-

sures we had designed and fabricated for the management boxes had to be scrapped and

replaced with metal enclosures specifically rated for containing electrical equipment.

• Environmental Health and Safety: All construction projects have to be audited for



237

safety risks to both the workers and the campus in general. The primary concern was

pre-existing asbestos building materials, although we also had to vouch for the microwave

radiation levels.

• Roof Integrity: Because the equipment was to be mounted on the outside of buildings,

both the attachment methods and cable connections had to be evaluated for waterproofing,

fire sealing, and structural impact. In the cases where new holes had to be made through

the roof, the penetration and waterproofing had to be installed by campus roofing services.

• Antenna Structure: Local building codes and campus design rules establish standards

for wind, snow, and ice tolerance. The university requirements were the more stringent

in this case, requiring that equipment be designed for 120 mile per hour (53.6 m/s) wind

load. Antenna mounting equipment, especially in the WiFi market, seldom meets those

requirements. While commercial options do exist, we found it more cost-effective to design

and construct our own.

• Financial Approvals: After our research group and department decided to allocate funds

for the testbed, there were still a significant number of delays waiting for work orders and

payments to be approved by other university entities. In particular, payments from the

computer science department to facilities management, and from facilities management to

outside contractors all required administrative approval before the payee could begin work.

C.4.1 Timeline

The testbed deployment process has required a total of two years. Most of that time has

consisted of waiting for some necessary action by parties outside our department. Within that

waiting, most of the time has been for administrative approvals, with actual design and construction

requiring relatively little. Table C.1 shows our actual timeline; with more foresight it probably could

have been compressed.

The architectural and RF approval steps are an unavoidable bottleneck, as they determine
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whether and where equipment can be installed. In our case, it required approximately nine months

from the first informal proposals to a preliminary approval of the sites chosen. Once those decisions

had been made, several of the remaining steps could likely have proceeded at once.

The obvious deployment tasks, namely physically installing the antenna node and manage-

ment box, and running conduit and Ethernet cable between them, required on the order of one

week per node.

Date Task

12/2006 Initial talks with campus architect, campus network
admin., and facilities management

01/2007 Initial proposal to campus architect
Preliminary approval from campus network admin.

05/2007 Preliminary approval from campus architect
08/2007 Preliminary approval from facilities management
09/2007 Environmental health and safety approval
04/2008 Electrical plans completed

Begin wired control plane install
05/2008 First WART node installation
06/2008 Electrical installation done
08/2008 Wired control plane done
11/2008 All WART nodes operational

Table C.1: Deployment Timeline

C.4.2 Costs

Table C.2 presents an approximate breakdown of the expense incurred per node in building

this testbed. The dominant cost is not the research equipment itself but rather labor required

for regulatory and university policy compliance. This includes both the electrical work mentioned

earlier and the time spent by university employees on evaluation and project oversight.

C.5 Proof-of-Concept Experiments

As a proof-of-concept experiment for WART, we performed a full pairwise link quality test.

In this test, each WART node takes a turn transmitting while the other nodes listen. During

each turn, the transmitter and all receivers cycle through 17 pre-configured antenna patterns,



239
Description Cost

Phased Array Antenna Node $3,000
Management Box and Other Control Plane Equipment $1,200
Installment Materials $300
External Labor and Fees $5,780

Table C.2: Cost of labor and parts per WART node. The labor of research group members is not
considered.

so that every combination of transmitter and receiver antenna patterns is tested. The patterns

chosen point the main lobe in one of 16 directions about the azimuth plane (the 17th pattern is

omnidirectional). Using the measured signal strength of received packets, we are able to determine

(a) which links are possible between which nodes and (b) what the optimal “greedy” patterns are

for each link. The results of this experiment are provided visually in Figure C.6, which we believe

makes a compelling case for the power of steerable directional antennas. When configured with

omnidirectional patterns, which are comparable to the antennas used in many single-radio mesh

networks, only a few links are even possible, and of those only a small number offer decent signal

quality. With steering, however, we see a vast improvement: not only are all link-pairs able to pass

traffic, but these links are typically of high quality (greater than -70 dBm).

Our present and future research utilizes WART to evaluate directional medium access control

(MAC) protocols, with a particular emphasis on optimization for spatial re-use. We believe that

the unique opportunity that WART provides for real-world evaluation of these protocols will lead

to important results in this direction, and new insights into methods for improving wireless systems

in general.

C.6 Related Work

In this section we will give a high level overview of other wireless testbeds, both indoor and

outdoor, and discuss how they compare to CU-WART.
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Figure C.6: Comparison of available links and link quality between seven testbed nodes using best-
steered directional patterns and omnidirectional patterns. Stronger links are indicated with a wider
arrow of a darker color. The best links are those with a link of greater than -60 dBm. The worst
links plotted are barely above the noise-floor with greater than -95 dBm achieved RSS.
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C.6.1 Outdoor Wireless Testbeds

The existing outdoor testbeds generally have more operational emphasis and less experimen-

tal control and management support than WART or the indoor testbeds. Most use stock IEEE

802.11 at the MAC and physical layers, although additional low-layer information is gathered to

inform higher-layer research. This may in part reflect their designers’ research interests, and may

also reflect limitations resulting from the lack of a stable separate control network.

Roofnet: Roofnet is probably the first distributed testbed for IEEE 802.11 mesh networking

[Aguayo 04b, Bicket 05]. It consists of 20-40 nodes mounted on the rooftops of mostly residential

buildings in Cambridge, MA. The entire network spans over an area of 1.5 x 1.5 kilometers. Unlike

WART, Roofnet is unable to experiment using IEEE 802.11g modulation schemes, and is restricted

to experiments involving omni-directional beam patterns. Roofnet is also a dual-purpose network;

in addition to being a research testbed it also acts as a multi-hop backbone that provides Internet

access. In contrast, WART is a dedicated experimental platform.

Rice/TFA Mesh: In terms of practical challenges, the RICE/TFA mesh is the most similar

to our testbed. The physical size is similar: 2.12 km diameter for TFA, 2.36 km for WART.

TFA has 14 nodes¶ , WART has 7. The TFA-Rice mesh appears to involve equipment located on

property with a variety of owners, suggesting similar access difficulties. There is little published

information about the design and operation of the network, but it seems likely that their project

and ours face similar issues. The deployment approach – in terms of choosing sites, not the logis-

tics – is described in [Camp 06]. There are two primary differences: First, WART is focussed on

experimental techniques and equipment at the physical layer, while the TFA mesh is not designed

for experimentation at this layer. Second, the TFA mesh has a large operational component, while

WART is purely experimental.

¶ Based on TFA public wiki as of 13 December, 2008.
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Mesh at Purdue (MAP): The MAP network is a primarily indoor research network which

uses several fixed directional antennas for point-to-point links between adjacent buildings [Das 06].

There are two approximately 20 meter links and two approximately 60 meter links.

RuralNet / Digital Gangetic Plains (DGP): The RuralNet deployment is an experiment

in using IEEE 802.11 equipment for very long range point-to-point communication [Raman 07].

The operators use fixed directional antennas on traditional radio towers and buildings to form

multi-kilometer links.

Ad-hoc Protocol Evaluation testbed (APE): The basic design of the APE project is for hu-

mans to carry laptops that are pre-loaded with scripts to control the experiments. Node placement

and mobility are controlled by “monkey walks” – human operators following directions displayed on

the laptops. The APE software packages include modifications to their wireless network interface

cards to collect signal strength information for all received packets [Lundgren 02, Nordstrom 05].

(This information is available as part of the Prism or Radiotap headers reported by many wireless

NIC drivers).

C.6.2 Indoor Wireless Testbeds

There are a large number of indoor wireless testbeds, emphasizing a variety of technologies

and design objectives. In general, the indoor testbeds are more compact (dense) than the outdoor

testbeds. They also benefit from a much more controlled environment: the problems of remote

repair and establishing and maintaining a reliable communication infrastructure, which have been

at the forefront of our design challenges, are largely non-issues.

Many of the indoor testbeds have at least an order of magnitude more nodes than any of

the outdoor ones: There are 400 nodes in the ORBIT testbed, over 400 (both wired and wireless)

in Emulab, and 210 in Kansei [Raychaudhuri 05b, White 02, Johnson 06, Ertin 06]. Much of the

infrastructure developed for the indoor testbeds is oriented toward automating the process of con-
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figuring, controlling, and aggregating data from such a large collection of devices.

ORBIT: The ORBIT testbed consists of a “main grid” of 400 nodes arranged in a 20 by 20

grid, and several smaller “sandboxes” for development and testing [Raychaudhuri 05b]. The nodes

consist of single-board computers with IEEE 802.11 NICs and omni-directional antennas. The

experimenter can install arbitrary software on the nodes, but there are standard operating system

images which include a specialized measurement and control framework [Raychaudhuri 05a, Ott 05].

Emulab wireless extensions: Emulab is a well-known testbed for emulating arbitrary wired

network topologies. It uses a variety of resource allocation and virtualization mechanisms to sup-

port many concurrent – but isolated – experiments [White 02]. Emulab has recently been extended

to include several classes of nodes with wireless networking capabilities: Rack-mounted PCs with

WiFi radios, PCs with GNU Software Radio and Ettus Research USRP hardware, Mica2 sensor

motes, and mobile robots [Johnson 06]. The non-mobile nodes operate very similarly to the wired-

only Emulab nodes, with a dedicated Ethernet control plane, while the robots have significant

mobility-specific support infrastructure. The mobile-node tracking and control infrastructure is

conceptually similar to that described in [De 06]. Most Emulab nodes allow the user to install

arbitrary code, down to the OS level. Because the mobile nodes do not have an out-of-band control

and reprogramming mechanism, users are significantly constrained to avoid breaking the necessary

on-board infrastructure. The mobile nodes do have attached Mica2 motes, over which the user has

complete control.

UCR Testbed: The UCR testbed consists of single-board computer with stock IEEE 802.11

NICs spread throughout several floors of a single office building. The devices are powered via

power-over-Ethernet from a set of PoE-enabled switches, providing a simple interface for power-

cycling nodes [Broustis 07]. Although not mentioned in the paper, the project web site indicates

that they have added several PCs with USRP hardware to the testbed.



244

Hydra: Hydra is an indoor testbed for SDR experimentation. The physical layer is implemented

with GNU software radio and USRP hardware, while higher layers are implemented with Click.

The design work seems to be focussed on the prototyping platform, not the testbed aspect facility

[Mandke 07]. No information is given about the size or infrastructure of the testbed.

TRNC/ESPAR: TRNC/ESPAR is a hardware platform for evaluating directional MAC pro-

tocols using Electronically Steerable Parasitic Array Radiator (ESPAR) antennas [Mitsuhashi 07,

Kohmura 08]. The authors refer to the system as a testbed, but it is in the sense of prototyping

equipment, not a specific facility.

UCLA UnWiReD Laboratory: The UnWiReD testbed is a two-node facility for physical-layer

experimentation with MIMO systems. The testbed is distinctive in that it provides a very flexible

SDR platform for four-way MIMO at both the transmitter and receiver, and includes remotely-

controlled mechanical actuators to adjust the antenna positions [Zhu 05].

Miniaturized Network Testbed: MiNT: MiNT is an effort to simulate wireless networks with

mobility using as little space as possible. It is conceptually very similar to the mobile nodes in

Emulab, although developed independently [Johnson 06]. Nodes have multiple wireless interfaces

for various purposes; the ones used for the protocol under test are highly attenuated to simulate the

loss of much larger areas. Additionally, the MiNT platform integrates with ns-2 to provide a hybrid

simulation/emulation environment [De 05]. In the initial version, the mobile nodes were simple

antenna platforms connected by RF cables to PCs where the actual processing took place. The

MiNT-m paper describes improvements to dispense with the stationary PCs, along with additional

management tools. The testbed infrastructure consists mainly of mechanisms for node tracking,

positioning, control, state logging, and state rollback [De 06].
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Kansei: Kansei is another testbed aimed at using high density to emulate a large system in a

small area [Ertin 06]. The system consists of 210 Stargate SBCs arranged in a grid with a wired

control interface.

MeshTest: MeshTest uses standard PCs and an emulated RF environment. Each computer

is connected into an RF matrix switch, allowing for programmable attenuation between nodes

[Walker 08]. This provides significant flexibility in a very small physical size, although it entails

some loss of fidelity. The infrastructure consists of the RF switch, the ORBIT software tools, and

a custom-developed application for configuring the switch.

EWANT: Emulated Wireless Ad-hoc Network Testbed: EWANT uses standard PCs and

a partially-emulated RF environment. Each PC is connected to one or more antennas through a

combination of fixed attenuator and an RF multiplexer. The antennas are all positioned within

small area, adding giving some measure of propagation realism [Sanghani 03].

C.7 Conclusion

This chapter has presented WART, a testbed that will facilitate future networking research

by providing unique physical layer capabilities not seen in any other outdoor networking testbed.

While the testbed covers an entire university campus, it is easy to manage and administer due to

its wired control plane, which is remotely accessible from anywhere on the Internet.

The research motivation for building WART was to study the use of directional, steerable,

and adaptive antennas. The prominent issues encountered in creating the testbed proved to be

only indirectly related to that objective. The direct causes were using commodity equipment,

supporting low-level experimentation, and spanning a large geographical area.

Commodity equipment: The research equipment (phased array antenna nodes) is com-

paratively affordable at $3,000 per node, while specialized test and measurement equipment could

easily cost 10 to 20 times more. The consequences of using commodity hardware have been the
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need for significant calibration and testing and extensive software hacking to make the hardware

operate in unintended ways.

Low-level experimentation: Many of the experiments we wish to conduct are low-level

both in the sense of being at the physical and MAC layers of the OSI hierarchy, and in the sense of

requiring“close to the metal”system implementation. This implies the need for easy reprogramming

and crash recovery, high-volume data collection, and a flexible control interface. In practice, these

in turn require a control connection that is separate from the experimental wireless system.

Large geographical area: It has been amply demonstrated that radio propagation in

general, and directionality in particular, are very environmentally dependent [Anderson 09a]. Con-

sequently, it was important that WART encompass a range of node densities and environmental

features of interest. However, covering a large area implies physical distance and often ad-

ministrative diversity, each of which contribute significant design challenges. Physical distance

effectively precludes running dedicated cables from a central location to all of the nodes, which

implies that power and network connectivity (if needed) must be supplied using resources available

on site. It is this constraint which leads us to the “management box” design, with network support,

power conversion, and power switching co-located with every measurement node. It is worth not-

ing that a large testbed without the focus on low-level experiments may be able to dispense with

the dedicated control plane and remote-reprogramming capabilities, significantly relaxing these

requirements.

Covering a larger area often implies involving more administrative domains. Our sites are

all owned by the same university, but building at a campus-wide scale requires the involvement of

many departments – administrative and academic – and the approval of several levels of hierarchy.

The practical impact of this cannot be overstated. The approval processes – and the cascade of

design decisions made in order to secure those approvals – account for at least half of the total time

and cost for this project.

This testbed was developed to study particular physical layer technologies, but the design

lessons are not specific to that objective. Most of the challenges encountered in designing this
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testbed – and the solutions developed – are likely to apply to other outdoor and wide-area testbeds.

We have developed an infrastructure for deploying nodes at widely separate, minimally provisioned

sites and connecting them into an easily-managed unified research system.



Appendix D

Model Code

This chapter contains the AMPL source code for the optimization models presented in this

dissertation. I include this because the code is comparatively compact and because any description

of the algorithms is ultimately imprecise without it. No effort has been made to clean up this code

for public consumption – it contains no-longer-used logic, debugging output, mis-named functions,

and otherwise un-helpful or misleading material.

In general, the optimization model can be understood from the model files in Section D.1.

Some conceptually important processing, however, does occur in the imperative files in Section D.2.

In particular, the subgradient process and loop-termination conditions are largely defined in those

files. The off-line execution processes are fully defined in AMPL — e.g. compare-versions.ampl

in Listing D.15 is a top-level script. In the on-line process, the ampl program interacts with

other components by passing data through tables. Those components are written in a variety of

programming languages, and are too large to include in this chapter.
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D.1 Model Files

These model files are declarative: They define parameters, variables, constraints, objectives,

options, and problems for AMPL.
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Listing D.1: RMP.mod

1 ##########################################################

2 # Res t r i c t e d Master Problem :

3 # Assign time ( cont inuous ) to l i n k s e t s

4 # Dual va l u e s o f capac i t y c on s t r a i n t s are inpu t s i n t o the

5 # column genera t ion phase (CLAP)

6 ##########################################################

7

8 ## Demand f o r s e r v i c e on each l i n k

9 param q{( i , j ) in Links } >= 0 ;

10

11 ##acg : LinkSets c a l l s num l ink s e t s

12 param num l ink se t s integer default 0 ;

13 set LinkSets = 1 . . num l ink se t s ordered ;

14

15 ## Record o f l i n k s e t s ( analogous to Si jL in STDMA1. py )

16 param l i n k i n s e t { l in LinkSets , ( i , j ) in Links } default 0 ;

17

18 ##acg : mark reduced cos t done

19 param r educed cos t = 1−(sum{( i , j ) in Links } ( be ta t [ i , j ] ∗ Sbar [ i , j ] ) ) ;

20

21 ## x = assignment o f time to each l i n k s e t

22 var x { l in LinkSets } >= 0 integer ;

23

24 ## Minimize t o t a l t ime assignment

25 ##acg : mark RMP obj done

26 minimize RMP obj : sum{ l in LinkSets } x [ l ] ;

27

28 ## Require t ha t a l l o c a t i o n o f time to l i n k s e t s s a t i s f i e s per−l i n k demand

29 ##acg : mark demand coverage done
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30 subject to demand coverage {( i , j ) in Links } :

31 sum{ l in LinkSets } ( x [ l ] ∗ l i n k i n s e t [ l , i , j ] ) >= q [ i , j ] ;

32

33 param r c t h r e sh := −0.9; #Maximum reduced co s t to accep t a proposed

column

Listing D.2: central-CLAP.mod

1 var SBIN { i in Nodes , j in Nodes} integer >= 0 <= 1 ;

2 var VBIN { i in Nodes} binary ;

3

4 ## Dis s e ra t i on Eq . 4 .4

5 maximize CLAP OBJ: sum{( i , j ) in Links } beta t [ i , j ] ∗ SBIN [ i , j ] ;

6

7 ## Di s s e r t a t i on Eq 4.5 i s in common.mod as ”dup lex ”

8 subject to CLAP duplex { i in Nodes } :

9 sum{ j in Nodes} SBIN [ i , j ] +

10 sum{ j in Nodes} SBIN [ j , i ] <= 1 ;

11

12 ## Dis s e ra t i on Eq . 4 .6

13 subject to CLAP SINR{( i , j ) in Links } :

14 #par t A

15 ( (P[ i ]∗D[ i , j ]∗D[ j , i ]∗SBIN [ i , j ] ) / (Lb [ i , j ]∗Nr) +

16 Gamma1∗(1+M[ i , j ] ) ∗(1−SBIN [ i , j ] )

17 −

18 #par t B

19 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗D[ k , j ]∗D[ j , k ]∗VBIN

[ k ] ) /(Lb [ k , j ]∗Nr) )

20 ) ) >= 0 ;

21

22 ## Di s s e r t a t i on Eq . 4 .7 i s in commond .mod as ”coup l ing ”
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23 subject to CLAP coupling { i in Nodes } :

24 sum{ j in Nodes : ( i , j ) in Links } SBIN [ i , j ] <= VBIN[ i ] ;

25

26

27

28 ## Di s s e r t a t i on Eq . 4 .8

29 subject to CLAP antenna coupling { i in Nodes , k in Nodes } :

30 D[ i , k ] − sum{p in Pats} ( pat ga in [ i , k , p ] ∗ B[ i , p ] ) = 0 ;

31

32 ## Di s s e r t a t i on Eq . 4 .9 i s in common.mod as ”one pat ”

33 subject to CLAP one pat { j in Nodes } :

34 sum{p in Pats} B[ j , p ] = 1 ;

35

36 subject to CLAP CLARITY { i in Nodes , j in Nodes : ! ( i , j ) in Links } :

37 SBIN [ i , j ] = 0 ;

38

39

40 problem CLAP: SBIN , VBIN, D, B, CLAP OBJ, CLAP duplex , CLAP SINR,

CLAP coupling , CLAP antenna coupling , CLAP one pat , CLAP CLARITY;

41 #opt ion s o l v e r kni t roampl ;

42 option s o l v e r ipopt ;

43 option ha l t on amp l e r ro r yes ;

Listing D.3: convex-central-CLAP.mod

1 #Convex i f i ed

2 param e p s i l o n = 1e−30;

3 param dup l ex ep s i l on = 0 . 5 ;

4

5 var logS {( i , j ) in Links } >= −90 <= log (1 ) ;

6 #var logS {( i , j ) in Links}== −90;
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7 param i n f e r r e dS {( i , j ) in Links } ;

8

9 var der ivedS {( i , j ) in Links } integer ;

10

11 # var logT {( i , j ) in Links } ;

12 # param inferredT {( i , j ) in Links } ;

13

14 var logD { i in Nodes , j in Nodes } ;

15 param i n f e r r edD { i in Nodes , j in Nodes } ;

16

17 #var logV { i in Nodes} >= −90 <= log (1) ;

18 #var logV { i in Nodes} == −90;

19 #param inferredV { i in Nodes } ;

20

21 #Nodes which p a r t i c i p a t e in at l e a s t 1 l i n k

22 set NodesUsed = { i in Nodes : ( exists { j in Nodes} ( i , j ) in Links ) or ( exists {

j in Nodes} ( j , i ) in Links ) } ;

23

24 ## Eqation 4.17

25 maximize CCLAP OBJ:

26 log (sum{( i , j ) in Links } ( exp ( logS [ i , j ] + log ( be ta t [ i , j ] + ep s i l o n ) )

) ) ;

27

28 param alpha =1.1;

29 subject to CCLAP SINR NEW {( i , j ) in Links } :

30 l og ( exp ( l og (Nr)+log (Gamma1)+log (Lb [ i , j ] )+alpha ∗ logS [ i , j ]− l og (P[ i ] )−

logD [ j , i ]− logD [ i , j ] ) +

31 sum{( k t , k r ) in Links : k t != i or k r != j }

32 exp ( l og (P[ k t ] )+logS [ k t , k r ]+ log (Gamma1)+logD [ j , k t ]+logD [ k t , j ]+ log (

Lb [ i , j ] )+
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33 ( alpha ) ∗ logS [ i , j ]− l og (P[ i ] )−logD [ j , i ]− logD [ i , j ]− l og (Lb [ k t , j ] ) ) )

34 <= 0 ;

35

36 # ## Equation 4 . 15 . The ug l y one

37 # su b j e c t to CCLAP SINR1 {( i , j ) in Links } :

38 # log ( exp ( logT [ i , j ] + l o g (Gamma1) ) +

39 # exp(− logD [ i , j ]− logD [ j , i ]− l ogS [ i , j ]+ l o g (Nr+Gamma1) ) +

40 # sum{k in Nodes : k<>i and k <> j } exp ( logV [ k]− logD [ i , j ]− logD [ j , i ]+ logD [

i , k ]+ logD [ k , i ]− l ogS [ i , j ]+ l o g (P[ k ]∗Gamma1) ) )

41 # <= 0;

42

43 # ## Equation 4 . 16 . The second h a l f o f the transformed SINR con s t r a i n t

44 # su b j e c t to CCLAP SINR2 {( i , j ) in Links } :

45 # log ( exp(− logT [ i , j ] ) ∗ M[ i , j ] ) <= 4;

46

47

48 ## Equation 4 . 18 . S−V coup l ing , in the l o g domain

49 # su b j e c t to CCLAP SV {( i , j ) in Links } :

50 # log ( exp ( logS [ i , j ] − logV [ i ] ) ) <= 0;

51

52

53 ## Equation number MISSING. Transformed form of 4 .5 −− Duplex

54 subject to CCLAP DUPLEX { i in NodesUsed } :

55 l og (sum{ j in Nodes : ( i , j ) in Links } exp ( logS [ i , j ] ) +

56 sum{ j in Nodes : ( j , i ) in Links } exp ( logS [ j , i ] ) ) <= 0 ;

57

58

59 # Magic dup lex mutex cond i t i on s : For any i −> j , k −> l c o n f l i c t s i f

60 # exa c t l y one o f the endpo in t s i s shared . ( I f both are shared , i t ’ s

61 # the same l i n k )
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62 #

63 # k−−−−−\

64 # l

65 # k−−−−> l i−−−−−−>j −−−−> l

66 # \

67 # −−> l

68 #

69

70 # su b j e c t to CCLAP DUPLEX PAIRWISE1 { i in Nodes , j in Nodes , k in Nodes :

71 # ( i , j ) in Links and ( i , k ) in Links and k<>i and k <> j } :

72 # log ( exp ( logS [ i , j ] + logS [ i , k ] ) + 1) <= dup l e x e p s i l o n ;

73 # su b j e c t to CCLAP DUPLEX PAIRWISE2 { i in Nodes , j in Nodes , k in Nodes :

74 # ( i , j ) in Links and ( k , i ) in Links and k<>i and k <> j } :

75 # log ( exp ( logS [ i , j ] + logS [ k , i ] ) + 1) <= dup l e x e p s i l o n ;

76 # su b j e c t to CCLAP DUPLEX PAIRWISE3 { i in Nodes , j in Nodes , k in Nodes :

77 # ( i , j ) in Links and ( j , k ) in Links and k<>i and k <> j } :

78 # log ( exp ( logS [ i , j ] + logS [ j , k ] ) + 1) <= dup l e x e p s i l o n ;

79 # su b j e c t to CCLAP DUPLEX PAIRWISE4 { i in Nodes , j in Nodes , k in Nodes :

80 # ( i , j ) in Links and ( k , j ) in Links and k<>i and k <> j } :

81 # log ( exp ( logS [ i , j ] + logS [ k , j ] ) + 1) <= dup l e x e p s i l o n ;

82

83 subject to CCLAP DUPLEX PAIRWISE {( i , j ) in Links , (k , l ) in Links :

84 (k == i or k==j or l==i or l==j ) and ( i != k or j != l ) } :

85 l og ( exp ( logS [ i , j ] + logS [ k , l ] ) + 1) <= dup l ex ep s i l on ;

86

87

88 ## Equation 4 . 19 . Antenna gain r e a l i t y

89 ## XXX need c l a r i t y on whether pa t ga in i s r e a l or log−s c a l e

90 subject to CCLAP REAL GAIN{ i in Nodes , k in Nodes } :

91 −logD [ i , k ] + sum{p in Pats}B[ i , p ]∗ pat ga in [ i , k , p ] == 0 ;
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92

93 ## Equation 4.9 (That i s , unmodif ied from o r i g i n a l CLAP)−− Antenna pa t t e rn

cho i c e s sum to 1

94 subject to CCLAP ONE PAT { j in Nodes } :

95 sum{p in Pats} B[ j , p ] == 1 ;

96

97 subject to CCLAP INF INT {( i , j ) in Links } :

98 der ivedS [ i , j ] == exp ( logS [ i , j ] ) ;

99

100 #Debugging

101 subject to DEBUG FORCE01:

102 logS [ 0 , 1 ] >= 0 ;

103 subject to DEBUG FORCE02:

104 logS [ 0 , 2 ] <= −20;

105 subject to DEBUG FORCE13:

106 logS [ 1 , 3 ] <= −20;

107 subject to DEBUG FORCE23:

108 logS [ 2 , 3 ] >= 0 ;

109

110

111 problem CCLAP: logS , logD , B, CCLAP OBJ, CCLAP SINR NEW, CCLAP DUPLEX,

CCLAP REAL GAIN, CCLAP ONE PAT, CCLAP DUPLEX; #CCLAP DUPLEX PAIRWISE,

DEBUG FORCE01, DEBUG FORCE02, DEBUG FORCE13, DEBUG FORCE23;

112 #CCLAP DUPLEX PAIRWISE1, CCLAP DUPLEX PAIRWISE2, CCLAP DUPLEX PAIRWISE3,

CCLAP DUPLEX PAIRWISE4;

113 option a u x f i l e s ’ a c f r s u ’ ;

114 option s o l v e r ipopt ;

115 option ha l t on amp l e r ro r yes ;

116

117
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118 #Stupid t h r e s h o l d

119 param almost one = 0 . 5 ; #XXX

Listing D.4: global-params.mod

1 option d i s p l a y p r e c i s i o n 6 ;

2 option d i s p l ay ep s 1e−99;

3 ####################

4 ## FLAP and common

5 ####################

6 set Nodes ;

7

8 set Links within (Nodes cross Nodes ) ;

9

10 ## Beta t ranspose −− the dua l s co s t o f capac i t y requirement o f each l i n k at

t h i s MP i t e r a t i o n

11 param beta t {( i , j ) in Links } ;

12 param l o c a l b e t a t {( i , j ) in Links } ;

13

14 ## Power o f node i

15 param P { i in Nodes } ;

16

17 ## Dir e c t i ona l gain ( e s t imate ) from node i toward node j

18 param Dbar { i in Nodes , j in Nodes } ;

19

20 ## Path l o s s from node i to j

21 param Lb { i in Nodes , j in Nodes } ;

22

23 ## Receiver no i se in m i l l i w a t t s

24 param Nr ;

25
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26 ## Gamma 1 −− SINR th r e s h o l d ;

27 param Gamma1;

28

29 ## SINR f l a p p i n g margin , l i n e a r : Value above a c t ua l t h r e s h o l d to aim fo r

30 ## in decomposed subprob lems . XXX

31 param Gamma1deflap default Gamma1∗ 2 . 0 ; #3 dB margin

32

33 ## Mij −− not e a s i l y e xp l a ined

34 param M { i in Nodes , j in Nodes } ;

35

36 ## Lbar ( lambda ) Lagrange mu l t i p l i e r e s t imate

37 param Lbar {( i , j ) in Links } ;

38

39 ## S −− a c t i v a t i o n o f l i n k i j

40 var S { i in Nodes , j in Nodes} >= 0 <= 1 ;

41

42 ## V −− a c t i v a t i o n o f node i

43 var V { i in Nodes} >= 0 <= 1 ;

44

45 # Obj e c t i v e and con s t r a i n t s are Equation 3 .24 , Proposal R952 , p . 58

46 ##acg : mark f l a p o b j done

47 maximize f l a p ob j : sum {( i , j ) in Links }(

48 l o c a l b e t a t [ i , j ] ∗ S [ i , j ] +

49 Lbar [ i , j ] ∗ ( ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

50 Gamma1deflap∗(1+M[ i , j ] ) ∗(1−S [ i , j ] ) ) −

51 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗V[ k ] ) /(Lb [ k , j ]∗Nr) )

52 ) ) ) ;

53 ##acg : mark dup lex done

54 subject to duplex { i in Nodes } :
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55 sum{ j in Nodes} S [ i , j ] +

56 sum{ j in Nodes} S [ j , i ] <= 1 ;

57

58 subject to coup l ing { i in Nodes } :

59 sum{ j in Nodes : ( i , j ) in Links } S [ i , j ] <= V[ i ] ;

60

61

62 # Estimate o f S −− a c t i v a t i o n o f l i n k i j

63 param Sbar { i in Nodes , j in Nodes } ;

64

65 # Estimate o f V −− a c t i v a t i o n o f node i

66 param Vbar { i in Nodes } ;

67

68

69

70 ############################################################

71 # QNA−FLAP − Quadratic Nonl inear Approximation FLAP

72 # Eva lua t ing NA as an approach to minimize o s c i l l a t i o n

73 # See Guan1995Nonlinear

74 ############################################################

75 param LocalVbar{ i in Nodes} default 0 . 5 ;

76

77

78 #See ”working .mac” in d i s s e r t a t i o n d i r e c t o ry , e xp r e s s i on %o9 .

79 ##acg : mark f l a p o b j s l o p e done

80 param f l a p o b j s l o p e {( i , j ) in Links } =

81 (

82 l o c a l b e t a t [ i , j ] +

83 Lbar [ i , j ] ∗ ( ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ] ) / (Lb [ i , j ]∗Nr) ) −

84 Gamma1deflap∗(1+M[ i , j ] ) ) ) ;
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85

86

87 ##acg : QNA b c a l l s f l a p o b j s l o p e

88 ##acg : mark QNA b done

89 #See b {cm} in Guan1995Nonlinear , eq . ( 4 . 2 ) and sec . V.

90 param QNA b {( i , j ) in Links } = 0.85 ∗ f l a p o b j s l o p e [ i , j ] ;

91

92 # See a {cm} in Guan1995Nonlinear , eq . ( 4 . 2 ) and sec . V.

93 # See ”working .mac” , output o f ” s o l v e ( a∗S [ i , j ]ˆ2+b∗S [ i , j ] = f l a p o b j (S) , a ) ; ”

94 ##acg : QNA a c a l l s QNA b

95 ##acg : mark QNA a done

96

97 param QNA a {( i , j ) in Links } =

98 −(((Gamma1deflap ∗ Lb [ i , j ] ∗ Lbar [ i , j ] ∗M[ i , j ]

99 + Gamma1deflap ∗ Lb [ i , j ] ∗ Lbar [ i , j ]

100 +(QNA b[ i , j ] − l o c a l b e t a t [ i , j ] ) ∗Lb [ i , j ] ) ∗Sbar [ i , j ]

101 −Gamma1deflap ∗ Lb [ i , j ] ∗ Lbar [ i , j ]∗M[ i , j ] ) ∗Nr

102 + Gamma1deflap ∗ Lb [ i , j ] ∗ Lbar [ i , j ] ∗

103 sum{k in Nodes : k <> i and k <> j } (

104 (Dbar [ j , k ] ∗ P[ k ] ∗ LocalVbar [ k ] ∗Dbar [ k , j ] ) /(Lb [ k , j ] ) )

105 ) ;

106 # − P[ i ] ∗ Dbar [ i , j ] ∗ Lbar [ i , j ] ∗ Sbar [ i , j ] ∗ Dbar [ i , j ] ) /

107 # (Lb [ i , j ]∗ ( Sbar [ i , j ]∗∗2) ∗Nr) ;

108

109 #Are the s i gn s r i g h t ? Who knows !

110 maximize qna f l ap ob j : sum{( i , j ) in Links }(

111 (−QNA a[ i , j ] ) ∗(S [ i , j ]∗∗2 ) +(QNA b[ i , j ]−Lbar [ i , j ] ) ∗S [ i , j ]

112 ) ;

113

114 param Other Sbar{ i in Nodes , j in Nodes } ;
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115

116 ## XXX Bela ted r e a l i z a t i o n : This r e q u i r e s some coord ina t i on ( read :

117 ## probab l y d u a l i z a t i o n ) on the dup lex c on s t r a i n t s .

118

119 param d o s i n g l e f l a p binary default 0 ;

120 #########################

121 # Sing l e−node QNA−FLAP

122 #########################

123

124 param f l ap node in Nodes ;

125 param TmpSbar{ i in Nodes , j in Nodes } ;

126

127 maximize s i n g l e q n a f l a p o b j : sum{( i , j ) in Links : i == f lap node }(

128 (−QNA a[ i , j ] ) ∗(S [ i , j ]∗∗2 ) +(QNA b[ i , j ]−Lbar [ i , j ] ) ∗S [ i , j ]

129 ) ;

130

131 #########################

132 # Sing l e−node FLAP

133 #########################

134 # Obj e c t i v e and con s t r a i n t s are Equation 3 .24 , Proposal R952 , p . 58

135 maximize s i n g l e f l a p o b j : sum {( i , j ) in Links : i == f lap node }(

136 l o c a l b e t a t [ i , j ] ∗ S [ i , j ] +

137 Lbar [ i , j ] ∗ ( ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

138 Gamma1deflap∗(1+M[ i , j ] ) ∗(1−S [ i , j ] ) ) −

139 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗V[ k ] ) /(Lb [ k , j ]∗Nr) )

140 ) ) ) ;

141

142

143 # Use Sbar va l u e s f o r every l i n k o ther than the one ( s ) s e l e c t e d by f l ap node



262

144 # No v i o l a t i o n s AT f l ap node

145 subject to s ing l e dup l ex A { i in Nodes : i == f lap node } :

146 sum{ j in Nodes} S [ i , j ] +

147 sum{ j in Nodes} Sbar [ j , i ] <= 1 ;

148

149 # And no v i o l a t i o n at t a r g e t o f l i n k FROM f l ap node

150 subject to s i ng l e dup l ex B {( i , j ) in Links : i == f lap node } :

151 S [ i , j ] + sum{k in Nodes} Sbar [ k , j ] <= 1 ;

152

153

154 ##acg : mark s i n g l e c o u p l i n g done

155 subject to s i n g l e c o up l i n g { i in Nodes : i == f lap node } :

156 sum{ j in Nodes : ( i , j ) in Links } S [ i , j ] <= V[ i ] ;

157

158 ############################################################

159 # DUAL FLAP

160 ############################################################

161

162 # Lagrange mu l t i p l i e r o f dup lex c on s t r a i n t

163 param mu{ i in Nodes} default 0 . 5 ;

164

165 # In t u i t i o n : The sum of b e t a t over a l l l i n k s through a node i s the

166 # t o t a l va lue o f us ing t ha t node ; a l l bu t one such l i n k must be denied

167 param mu i n i t i a l e s t { i in Nodes} := 1 ;

168 # (sum{( xi , x j ) in Links : x i==i or x j==i } l o c a l b e t a t [ x i , x j ] −

169 # max{( xi , x j ) in Links : x i==i or x j==i } l o c a l b e t a t [ x i , x j ] ) /2 ;

170

171

172 maximize dua l f l a p ob j : sum {( i , j ) in Links }(

173 l o c a l b e t a t [ i , j ] ∗ S [ i , j ] +
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174 Lbar [ i , j ] ∗ ( ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

175 Gamma1deflap∗(1+M[ i , j ] ) ∗(1−S [ i , j ] ) ) −

176 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗V[ k ] ) /(Lb [ k , j ]∗Nr) )

177 ) ) ) −

178 sum { i in Nodes }(mu[ i ]∗ sum{( xi , x j ) in Links : x i==i } S [ xi , x j ] )

179 ;

180

181 maximize dua l qna f l ap ob j : sum{( i , j ) in Links }(

182 (−QNA a[ i , j ] ) ∗(S [ i , j ]∗∗2 ) +(QNA b[ i , j ]−Lbar [ i , j ] ) ∗S [ i , j ]

183 ) −

184 sum { i in Nodes }(mu[ i ]∗ sum{( xi , x j ) in Links : x i==i } S [ xi , x j ] )

185 ;

186

187 ##acg : s i n g l e d u a l q n a f l a p o b j c a l l s QNA a

188 ##acg : s i n g l e d u a l q n a f l a p o b j c a l l s QNA b

189 ##acg : s i n g l e d u a l q n a f l a p o b j c a l l s mu

190 ##acg : mark s i n g l e d u a l q n a f l a p o b j done

191 maximize s i n g l e d u a l q n a f l a p ob j : sum{( i , j ) in Links : i == f lap node }(

192 ((−QNA a[ i , j ] ) ∗(S [ i , j ]∗∗2 ) +(QNA b[ i , j ]−Lbar [ i , j ] ) ∗S [ i , j ] ) −

193 (0 . 5∗mu[ i ] + 0 .5∗mu[ j ] ) ∗S [ i , j ] ) ;

194

195 ##acg : mark n o s e l f l o o p done

196 subject to n o s e l f l o o p { i in Nodes } : S [ i , i ] = 0 ;

197

198 ##acg : mark no ex t r aneou s a c t i v a t i on done

199 subject to no ex t r aneou s a c t i va t i on { i in Nodes , j in Nodes : ( i , j ) not in Links

} : S [ i , j ] = 0 ;

200

201
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202 ## 2nd−order pena l t y term fo r dup lex c on s t r a i n t . See Guan2002New ( I t h ink )

203 ## p i s the index o f the dup lex c on s t r a i n t ( t h e r e i s one per node , ) i i s the

index o f the subproblem ( again , one per node )

204 param guan v {p in Nodes , i in Nodes} =

205 ## Contr i bu t ion o f x [ l != i ] to c on s t r a i n t c ˆ(p ) . 1 i s d p

206 (sum{ l in Nodes : l <> i } ( Sbar [ l , p ] + Sbar [ p , l ] ) ) −1

207 ;

208

209 # Uses Sbar , not v a r i a b l e S

210 param guan wbar{p in Nodes} default 1e−18; ##Just f o r debugg ing

211 ##index ing by node r e l a t i v e to which dup lex c on s t r a i n t i s de f i ned (p ) and

212 ##node/ subproblem at which the term i s e va l ua t ed − BUT − t h e r e i s no S , on ly

Sbar , so i t ’ s the same everywhere

213 param sbar guan pena l ty term { i in Nodes , p in Nodes} = (

214 guan wbar [ p ] ∗ (max(0 , (

215 ( Sbar [ i , p ]+( Sbar [ p , i ] ) ) + guan v [ p , i ] ##c i ˆ(p ) x i −− c i

ˆ(p ) i s j u s t 1

216 ) ) ) ∗∗2

217 ) ;

218

219 param guan w {n in Nodes} default 1e−10; ##1e1 ; ## 2nd order pena l t y term

weigh t

220

221 ##########################################################

222 ## Only use our own l i n k s as v a r i a b l e s

223 ## Ex p l i c i t l y use l o c a l cop i e s o f a l l v a r i a b l e s

224 ## and con s t r a i n t s f o r d i s t r i b u t e d implementat ion

225

226 # Gain at a p a r t i c u l a r node −− l i n e a r un i t s

227 var l o ca l D { other in Nodes} >=0;
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228

229 param l o c a l Sba r { i in Nodes , j in Nodes} default 0 ; #Act i va t i on

230 param l o c a l Lba r {( i , j ) in Links } ; #Lambda

231 param l o ca l Dbar { i in Nodes , j in Nodes } ; #Gain

232 param l oca l mu bar {n in Nodes} >= 0 default 0 ;

233

234 #See ”working .mac” in d i s s e r t a t i o n d i r e c t o ry , e xp r e s s i on %o9 .

235 param l o c a l f l a p o b j s l o p e {( i , j ) in Links } =

236 (

237 l o c a l b e t a t [ i , j ] +

238 l o ca l Lba r [ i , j ] ∗ ( ( (P[ i ]∗ l o ca l Dbar [ i , j ]∗ l o ca l Dbar [ j , i ] ) / (Lb [ i , j ]∗Nr

) ) −

239 Gamma1deflap∗(1+M[ i , j ] ) ) ) ;

240

241

242 #See b {cm} in Guan1995Nonlinear , eq . ( 4 . 2 ) and sec . V.

243 param local QNA b {( i , j ) in Links } = 0.85 ∗ l o c a l f l a p o b j s l o p e [ i , j ] ;

244

245 # See a {cm} in Guan1995Nonlinear , eq . ( 4 . 2 ) and sec . V.

246 # See ”working .mac” , output o f ” s o l v e ( a∗S [ i , j ]ˆ2+b∗S [ i , j ] = f l a p o b j (S) , a ) ; ”

247 param local QNA a {( i , j ) in Links } =

248 −(((Gamma1deflap ∗ Lb [ i , j ] ∗ l o c a l Lba r [ i , j ] ∗M[ i , j ]

249 + Gamma1deflap ∗ Lb [ i , j ] ∗ l o c a l Lba r [ i , j ]

250 +(local QNA b [ i , j ] − l o c a l b e t a t [ i , j ] ) ∗Lb [ i , j ] ) ∗ l o c a l Sba r [ i , j ]

251 −Gamma1deflap ∗ Lb [ i , j ] ∗ l o c a l Lba r [ i , j ]∗M[ i , j ] ) ∗Nr

252 + Gamma1deflap ∗ Lb [ i , j ] ∗ l o c a l Lba r [ i , j ] ∗

253 sum{k in Nodes : k <> i and k <> j } (

254 (Dbar [ j , k ] ∗ P[ k ] ∗ LocalVbar [ k ] ∗ l o ca l Dbar [ k , j ] ) /(Lb [ k , j ] ) )

255 ) ;

256 # − P[ i ] ∗ Dbar [ i , j ] ∗ Lbar [ i , j ] ∗ Sbar [ i , j ] ∗ Dbar [ i , j ] ) /
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257 # (Lb [ i , j ]∗ ( Sbar [ i , j ]∗∗2) ∗Nr) ;

258

259

260

261 var l o c a l S { j in Nodes : ( f lap node , j ) in Links } >= 0 <=1; ##binary , r e a l l y

Listing D.5: ea stdma.mod

1 model g loba l−params .mod ;

2 ## XXX double−nega t i v e ! I s t h a t an acc iden t ?

3 maximize s i n g l e d u a l q n a s u r r f l a p o b j : sum{( i , j ) in Links : i == f lap node }(

4 ((− local QNA a [ i , j ] ) ∗( l o c a l S [ j ]∗∗2 ) +(local QNA b [ i , j ]− l o c a l Lba r [ i , j

] ) ∗ l o c a l S [ j ] ) −

5 (0 . 5∗ l oca l mu bar [ i ] + 0 .5∗ l oca l mu bar [ j ] ) ∗ l o c a l S [ j ]

6 − sum {p in Nodes : ( f lap node , p ) in Links }( ##index ing by node

r e l a t i v e to which dup lex c on s t r a i n t i s de f i ned

7 guan w [ p ] ∗ (max(0 , (

8 ( l o c a l S [ p ] + l o c a l Sba r [ p , i ] ) + guan v [ p , i ] ##c i ˆ(p ) x i

−− c i ˆ(p ) i s j u s t 1

9 ) ) ) ∗∗2

10 ) ) ;

11

12 subject to l o c a l n o s e l f l o o p : l o c a l S [ f l ap node ] = 0 ;

13

14 subject to l o c a l n o e x t r an e ou s a c t i v a t i o n { j in Nodes : ( f lap node , j ) not in

Links } : l o c a l S [ j ] = 0 ;

15

16

17 model guan−common .mod ;

18 model f a rp .mod ;

19 #########################################################
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20 # SNARP −− Sing l e−Node Antenna Recon f i gura t ion Problem

21 #########################################################

22

23 # ”Working copy ” o f D fo r each genera t ion o f SNARP

24 param temp D { i in Nodes , j in Nodes } ;

25 var l o ca l B {p in Pats} binary ;

26

27 # The node f o r ( at ) which the subproblem i s cu r r en t l y be ing s o l v e d

28 param snarp node in Nodes ;

29 param l b a r e p s i l o n default 0 ; ##Tiny i n c en t i v e to care about SINR even when

the ”r e a l ” p r i c e i s zero

30

31 #BIZARRE CONSTANT FACTOR: 1.0 e9 so s o l v e r knows i t s head from i t s ass

32 maximize snarp ob j : 1 . 0 e20 ∗ (sum{( i , j ) in Links : i == snarp node }(

33 ( ( l o ca l Lba r [ i , j ] + l b a r e p s i l o n ) ∗ l o c a l Sba r [ i , j ] ∗ (P[ i ] / ( Lb [ i , j ]∗Nr) ) ∗

l o ca l D [ j ]∗ l o ca l Dbar [ j , i ] )

34 − (sum{(k , l ) in Links : k <> i and l <> j and l <> i and k <> j }(

35 Gamma1deflap∗ l o c a l Sba r [ i , j ] ∗ ( l o c a l Lba r [ k , l ]+ l b a r e p s i l o n ) ∗(P [ i ] / ( Lb [

i , l ]∗Nr) )

36 ∗ l o ca l D [ l ]∗ l o ca l Dbar [ l , i ]

37 ) ) ) +

38 sum{( i , j ) in Links : j == snarp node }(

39 ( ( l o ca l Lba r [ i , j ] + l b a r e p s i l o n ) ∗ l o c a l Sba r [ i , j ] ∗ (P[ i ] / ( Lb [ i , j ]∗Nr) ) ∗

l o ca l Dbar [ i , j ]∗ l o ca l D [ i ] )

40 − (sum{(k , l ) in Links : k <> i and l <> j and l <> i and k <> j }(

41 Gamma1deflap∗ l o c a l Sba r [ i , j ] ∗ ( l o c a l Lba r [ i , j ] + l b a r e p s i l o n ) ∗(P[ k ] / (

Lb [ k , j ]∗Nr) )

42 ∗ l o ca l D [ k ]∗ l o ca l Dbar [ k , j ]

43 ) ) ) ) ;

44
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45 param snarp component{ r e f in Nodes , other in Nodes} =

46 sum {( i , j ) in Links } ( ## The l i n k i n v o l v i n g r e f ( i f any )

47 sum {(k , l ) in Links : k <> i and l <> i and k <> j and l <> j }( ##Al l

o ther l i n k s

48 ( i f ( r e f == i and other == j ) ## re f t x to o ther

49 then ( ( l o c a l Lba r [ i , j ] + l b a r e p s i l o n ) ∗ l o c a l Sba r [ i , j ] ∗ (P[ i ] / ( Lb [ i , j

]∗Nr) ) ∗ l o ca l Dbar [ j , i ] ) else (0 ) ) +

50 ( i f ( r e f == j and other == i ) ## other t x to r e f

51 then ( ( l o c a l Lba r [ i , j ] + l b a r e p s i l o n ) ∗ l o c a l Sba r [ i , j ] ∗ (P[ i ] / ( Lb [ i , j

]∗Nr) ) ∗ l o ca l Dbar [ i , j ] ) else (0 ) ) +

52 ( i f ( r e f == i and other == l ) ## ( r e f −> j ) i n t e r f e r e s wi th ( o ther −>

l )

53 then (−(Gamma1deflap ∗( l o c a l Lba r [ k , l ]+ l b a r e p s i l o n ) ∗ l o c a l Sba r [ i , j

] ∗ (P[ i ] / ( Lb [ i , l ]∗Nr) ) ) ) else (0 ) ) +

54 ( i f ( r e f == j and other == k) ## ( other −> l ) i n t e r f e r e s wi th ( i−> r e f

)

55 then (−(Gamma1deflap ∗( l o c a l Lba r [ i , j ] + l b a r e p s i l o n ) ∗ l o c a l Sba r [ i , j

] ∗ (P[ k ] / ( Lb [ k , j ]∗Nr) ) ) ) else (0 ) )

56 ) ) ;

57

58 #re f must be g iven

59 maximize a l t e r n a t e s n a rp ob j : sum{ other in Nodes} ( snarp component [ snarp node ,

other ] ∗ l o ca l D [ other ] ) ;

60

61 ##acg : mark sna r p r e a l p a t s done

62 subject to s n a rp r e a l p a t s { j in Nodes } :

63 l oca l D [ j ] − sum{p in Pats} ( pat ga in [ snarp node , j , p ] ∗ l o ca l B [ p ] ) =

0 ;

64

65 ## Force f u l l power again .
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66 ##acg : mark snarp one pat done

67 subject to snarp one pat :

68 sum{p in Pats} l o ca l B [ p ] = 1 ;

69

70

71 param dbg D { other in Nodes } ; #mirrors l oca l D

72 param dbg B {p in Pats } ; #mirrors l o ca l B

73

74 param sna rp r ea l pa t s dbg { j in Nodes} =

75 dbg D [ j ] − sum{p in Pats} ( pat ga in [ snarp node , j , p ] ∗ dbg B [ p ] ) ; #must

= 0

76

77 param snarp one pat dbg =

78 sum{p in Pats} dbg B [ p ] ; #must = 1

79

80 model subgradient−common .mod ;

81

82 ##

83 ## Try #3: By con f idence (HatS ) t h r e s h o l d

84 param b s s s default 0 . 2 5 ; #binary search s t ep s i z e

85

86 param be s t r c default 1 ; #No improvement

87 param be s t th r e sh default 1 ;

88 param a c t th r e sho l d default 0 . 9 ;

89 param t r i a l S {( i , j ) in Links } = i f ( l o c a l Sba r [ i , j ] >= ac t th r e sho l d ) then 1

else 0 ;

90

91 model t r i a l −SINR−l o g i c .mod ;

92

93 param th i s node in Nodes ; #must be s e t p r i o r to s o l v i n g .
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94 param tmp tr ia l D { i in Nodes , j in Nodes } ; #ho ld ing param fo r l oca l D

95

96 model post−schedule−SINR−opt .mod ;

97

98 # Now, the program :

99

100

101 maximize d i s t s i g n a l ma r g i n : sum{( i , j ) in Links } l og (

102 ( (P[ i ]∗

103 ( i f ( i==th i s node ) then l o ca l D [ j ] else t r i a l D [ i , j ] ) ∗

104 ( i f ( j==th i s node ) then l o ca l D [ i ] else t r i a l D [ j , i ] ) ∗

105 t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

106 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

107 −

108 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗

109 ( i f ( k==th i s node ) then l o ca l D [ j ] else t r i a l D [ k , j ] ) ∗

110 ( i f ( j==th i s node ) then l o ca l D [ k ] else t r i a l D [ j , k ] ) ∗ t r i a l V [ k ] ) /(Lb [

k , j ]∗Nr) )

111 ) )

112 ) ;

113

114 ## Debugging c a l c u l a t i o n : The b i t i n s i d e the l o g ( ) opera t ion f o r every l i n k

115 param d s m dbg nolog {( i , j ) in Links}= ((P[ i ]∗

116 ( t r i a l D [ i , j ] ) ∗

117 ( t r i a l D [ j , i ] ) ∗

118 t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

119 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

120 −

121 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗

122 ( t r i a l D [ k , j ] ) ∗
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123 ( t r i a l D [ j , k ] ) ∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

124 ) ) ;

125

126 subject to l o g no t exp l ode {( i , j ) in Links } :

127 ( (P[ i ]∗

128 ( i f ( i==th i s node ) then l o ca l D [ j ] else t r i a l D [ i , j ] ) ∗

129 ( i f ( j==th i s node ) then l o ca l D [ i ] else t r i a l D [ j , i ] ) ∗

130 t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

131 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

132 −

133 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗

134 ( i f ( k==th i s node ) then l o ca l D [ j ] else t r i a l D [ k , j ] ) ∗

135 ( i f ( j==th i s node ) then l o ca l D [ k ] else t r i a l D [ j , k ] ) ∗ t r i a l V [ k ] ) /(Lb [

k , j ]∗Nr) )

136 ) ) >= 0 . 0001 ;

137

138

139 #For RMP:

140 ## Link s e t s to annouce ( a l l ow s daemon master to s e t AnncLinkSets to

141 ## nu l l when the r e ’ s no new data )

142 set AnncLinkSets in LinkSets default {} ;

143 model compute−m.mod ;

144 model RMP.mod ;

145 ####################################################

146 # Parameters f o r use in separa ted proce s s e s

147 ####################################################

148

149 set updated l inks in Links default {} ;

150 param new beta t {( i , j ) in updated l inks } ;

151
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152 set i nput s t ep s default {1} ;

153 param Step { i nput s t ep s } default 1 ;

154

155 set PatsPlus = Pats union {−1};

156 param master b { l in LinkSets , n in Nodes} in PatsPlus default −1; ##

157

158 ################################

159 # Problem De f in t i ons

160 ################################

161

162 ##acg : o t h e r l i n k s c a l l s i n t e r f e r e n c e o b j

163 ##acg : o t h e r l i n k s c a l l s v i c t im o f f

164 ##acg : o t h e r l i n k s c a l l s dup lex

165 problem o t h e r l i n k s : i n t e r f e r e n c e ob j , S , v i c t im o f f , duplex ;

166 option s o l v e r ipopt ;

167 option so lver msg 1 ;

168 option t imes 0 ;

169 option show stat s 0 ;

170

171 problem FLAP: S , V, f l ap ob j , duplex , coup l ing ;

172 option r e l a x i n t e g r a l i t y 1 ;

173 option s o l v e r cplexamp ;

174

175 problem DUAL FLAP: S , V, dua l qna f l ap ob j , coup l ing ; #not i c e no dup lex

c on s t r a i n t

176 option r e l a x i n t e g r a l i t y 1 ;

177 option s o l v e r cplexamp ;

178

179

180 problem QNA FLAP: S , V, qna f l ap ob j , duplex , coup l ing ;
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181 option r e l a x i n t e g r a l i t y 1 ;

182 option s o l v e r cplexamp ;

183

184 problem SINGLE QNA FLAP: S , V, s i n g l e qna f l a p ob j , s ing l e dup lex A ,

s ing l e dup lex B , s i n g l e c o up l i n g ;

185 option r e l a x i n t e g r a l i t y 1 ;

186 option s o l v e r cplexamp ;

187

188 problem SINGLE FLAP: S , V, s i n g l e f l a p o b j , s ing l e dup lex A , s ing l e dup lex B ,

s i n g l e c o up l i n g ;

189 option r e l a x i n t e g r a l i t y 1 ;

190 option s o l v e r cplexamp ;

191

192 #problem SDQ FLAP: S , V, s i n g l e d u a l q n a f l a p o b j , s i n g l e c oup l i n g ,

n o s e l f l o o p ;

193 ##acg : SDQ FLAP c a l l s s i n g l e d u a l q n a f l a p o b j

194 ##acg : SDQ FLAP c a l l s s i n g l e c o u p l i n g

195 ##acg : SDQ FLAP c a l l s n o s e l f l o o p

196 ##acg : SDQ FLAP c a l l s no e x t r aneou s a c t i v a t i on

197 problem SDQ FLAP: S , V, s i n g l e du a l q n a s u r r f l a p ob j , s i n g l e c oup l i n g ,

n o s e l f l o op , no extraneous ’ ’ a c t i v a t i o n ;

198 option r e l a x i n t e g r a l i t y 1 ;

199 option s o l v e r ipopt ;

200

201 problem LOCAL SDQ FLAP: l o ca l S , s i n g l e d u a l q n a s u r r f l a p o b j ;

202 option r e l a x i n t e g r a l i t y 1 ;

203 option s o l v e r ipopt ;

204

205 problem FARP: D, B, fa rp ob j , r e a l pa t s , one pat ;

206 option r e l a x i n t e g r a l i t y 1 ;
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207 option s o l v e r ipopt ;

208

209 ##acg : SNARP c a l l s snarp ob j

210 ##acg : SNARP c a l l s s n a r p r e a l p a t s

211 ##acg : SNARP c a l l s snarp one pat

212

213 problem SNARP: loca l D , loca l B , snarp obj , s na rp r ea l pa t s , snarp one pat ;

214 option r e l a x i n t e g r a l i t y 1 ;

215 #opt ion s o l v e r i pop t ;

216 option s o l v e r cplexamp ;

217 option cp l e x op t i on s ’ wr i teprob foo .mps ’ ;

218 #opt ion i p o p t o p t i on s ’ c o n s t r v i o l t o l 1e−20 ’;

219 #opt ion i p o p t o p t i on s ’ p r in t op t i ons documenta t i on yes ’ ;

220

221

222 #acg : alt SNARP c a l l s a l t e r n a t e s n a r p o b j

223 ##acg : alt SNARP c a l l s s n a r p r e a l p a t s

224 ##acg : alt SNARP c a l l s snarp one pat

225 problem alt SNARP : loca l D , loca l B , a l t e rna t e sna rp ob j , s na rp r ea l pa t s ,

snarp one pat ;

226 option r e l a x i n t e g r a l i t y 1 ;

227 option s o l v e r ipopt ;

228

229 ##acg : RMP c a l l s RMP obj

230 ##acg : RMP c a l l s demand coverage

231 problem RMP: x , RMP obj , demand coverage ;

232 option r e l a x i n t e g r a l i t y 0 ;

233 option s o l v e r ipopt ;

234 #opt ion c p l e x o p t i o n s ’ s e n s i t i v i t y ’ ;

235
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236 problem RECOVER PRIMAL: PrimalS , PrimalV , c l o s e s t p r ima l ;

237 #opt ion c p l e x o p t i o n s ’ p r e s t a t s=1 p r e s o l v e=0 prereduce =0 ’;

238 option r e l a x i n t e g r a l i t y 0 ;

239 option so lver msg 1 ;

240 option t imes 1 ;

241 option show stat s 1 ;

242 #opt ion p r e s o l v e 0 ;

243 option s o l v e r cplexamp ;

244

245 problem improve antennas : D, B, s igna l marg in , r e a l pa t s , one pat ;

246 option s o l v e r ipopt ;

247 option ha l t on amp l e r ro r yes ;

248

249 problem d i s t improve antennas : loca l D , loca l B , d i s t s i gna l marg i n ,

l og not exp lode , d i s t r e a l p a t s , d i s t one pat ,

d i s t ma in ta in s i gna l marg in1 , d i s t ma in ta in s i gna l marg in2 ,

d i s t ma in ta i n s i gna l marg in3 ;

250 option s o l v e r ipopt ;

251 option so lver msg 1 ;

252 option t imes 0 ;

253 option show stat s 0 ;

254 option ha l t on amp l e r ro r yes ;

255

256 ##########################

257 # Debugging Ca l cu l a t i on s

258 ##########################

259

260 ## Signa l s t r en g t h (0 i f l i n k not a c t i v e )

261 param SNR {( i , j ) in Links } = ((P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗ Sbar [ i , j ] ) / (Lb [ i , j ]∗

Nr) ) ;
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262

263 # Sub s t i t u t e s i g n a l s t r en g t h to make i n t e r f e r e n c e con s t r a i n t s a t i s f i e d

264 # for unused l i n k s .

265 param offOK {( i , j ) in Links } = Gamma1deflap∗(1+M[ i , j ] ) ∗(1−Sbar [ i , j ] ) ;

266

267 ## Received i n t e r f e r e n c e at each l i n k .

268 param i n t e r f e r e n c e {( i , j ) in Links } =

269 sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗Dbar [ j , k ]∗Vbar [ k ] )

/(Lb [ k , j ]∗Nr) ) ;

270

271 ## Main , non−l agrang ian , problem (CLAP) o b j e c t i v e

272 param CLAP obj = sum{( i , j ) in Links } beta t [ i , j ] ∗ Sbar [ i , j ] ;

273

274 param rssMW{ i in Nodes , j in Nodes : i <> j } = P[ i ]∗Vbar [ i ]∗Dbar [ i , j ]∗Dbar [ j , i

] /Lb [ i , j ] ;

275

276 param rss dBm{ i in Nodes , j in Nodes : i <> j } = i f (rssMW[ i , j ] > 0) then (10∗

l og10 (rssMW[ i , j ] ) ) else (− I n f i n i t y ) ;

277

278 param interfereMW {( i , j ) in Links } =

279 sum{k in Nodes : k <> i and k <> j }(rssMW[ k , j ] ) ;

280

281

282 param inter fe re dBm {( i , j ) in Links } = i f ( interfereMW [ i , j ] > 0) then (10∗ l og10

( interfereMW [ i , j ] ) ) else (− I n f i n i t y ) ;

283

284 param trueSINR {( i , j ) in Links } = (rssMW[ i , j ] / ( interfereMW [ i , j ]+Nr) ) ;

285

286 param trueSINR dB {( i , j ) in Links } = i f ( trueSINR [ i , j ] > 0) then (10∗ l og10 (

trueSINR [ i , j ] ) ) else (− I n f i n i t y ) ;
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287

288 param f l ap r eward us e {( i , j ) in Links } = l o c a l b e t a t [ i , j ] ;

289

290 param f lap reward SINR {( i , j ) in Links}=

291 Lbar [ i , j ] ∗ ( (P [ i ]∗Dbar [ i , j ]∗Dbar [ j , i ] ) / (Lb [ i , j ]∗Nr) −

292 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗1 ) /(Lb [ k , j ]∗Nr) )

293 ) ) ;

294

295 param f l a p r ewa rd nu l l {( i , j ) in Links}=

296 Lbar [ i , j ] ∗ ( Gamma1deflap∗(1+M[ i , j ] ) −

297 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗1 ) /(Lb [ k , j ]∗Nr) )

298 ) ) ;

299

300 param f l a p l a g r ang e {( i , j ) in Links } =

301 Lbar [ i , j ] ∗ ( (P [ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗ Sbar [ i , j ] ) / (Lb [ i , j ]∗Nr) +

302 Gamma1deflap∗(1+M[ i , j ] ) ∗(1−Sbar [ i , j ] ) −

303 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗Vbar [ k ] ) /(Lb [ k , j ]∗Nr) ) ) ) ;

304

305

306 param pat gain dB { i in Nodes , j in Nodes , p in Pats} = i f ( pat ga in [ i , j , p ] >

0) then (10∗ l og10 ( pat ga in [ i , j , p ] ) ) else (− I n f i n i t y ) ;

307

308 param Lb dB { i in Nodes , j in Nodes : i <> j } = i f (Lb [ i , j ] > 0) then (10∗ l og10

(Lb [ i , j ] ) ) else (− I n f i n i t y ) ;

309

310

311
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312 # Time consumed in t h i s i t e r a t i o n o f FLAP, FARP ( f o r output purposes ) .

313 param f l a p i t e r t im e default 0 ;

314 param f a r p i t e r t im e default 0 ;

Listing D.6: farp.mod

1 ############

2 # FARP

3 ############

4

5 # Set o f antenna pa t t e rn s

6 set Pats ;

7

8 ## pat ga in −− gain at node i toward node j in pa t t e rn p

9 param pat ga in { i in Nodes , j in Nodes , p in Pats } ;

10

11 #Delta D −− hard to e xp l a i n

12 param de l t a d { j in Nodes , i in Nodes , k in Nodes , p in Pats } ;

13

14 # Dir e c t i ona l gain from node i toward node j

15 var D { i in Nodes , j in Nodes} >= 0 . 0 ;

16

17

18 var B { i in Nodes , p in Pats} binary ;

19

20 param Bbar{ i in Nodes , p in Pats} >= 0 <=1;

21

22 # Obj e c t i v e and con s t r a i n t s are Equation 3 .25 , Proposal R952 , p . 58

23 ##acg : mark f a r p o b j done

24 maximize f a r p ob j : sum{( i , j ) in Links }(

25 l o c a l b e t a t [ i , j ] ∗ Sbar [ i , j ] +



279

26

27 Lbar [ i , j ] ∗ ( ( (P[ i ]∗D[ i , j ]∗D[ j , i ]∗ Sbar [ i , j ] ) / (Lb [ i , j ]∗Nr) +

28 Gamma1deflap∗(1+M[ i , j ] ) ∗(1−Sbar [ i , j ] ) ) −

29 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗D[ k , j ]∗D[ j , k

]∗Vbar [ k ] ) /(Lb [ k , j ]∗Nr) )

30 ) ) ) ;

31

32 ## For s imp l i c i t y , wr i t e t h i s c on s t r a i n t d i r e c t l y in D, not d d i f f s .

33 ## Also , t h i s exceeds the s i z e l im i t s o f s tuden t e d i t i o n on AMPL.

34

35 #su b j e c t to r e a l p a t s { i in Nodes , j in Nodes , k in Nodes } :

36 # D[ j , i ] − D[ j , k ] − sum{p in Pats }( d e l t a d [ j , i , k , p ] ∗ B[ j , p ] ) = 0 ;

37

38 ##acg : mark r e a l p a t s done

39 subject to r e a l p a t s { i in Nodes , j in Nodes } :

40 D[ i , j ] − sum{p in Pats} ( pat ga in [ i , j , p ] ∗ B[ i , p ] ) = 0 ;

41

42 ##acg : mark one pat done

43 subject to one pat { j in Nodes } :

44 sum{p in Pats} B[ j , p ] = 1 ;

Listing D.7: guan-common.mod

1

2 param guan theta w star default 0 ; ##Estimate o f opt imal l ag rang ian .

3 ##This i s p r e t t y cheesy , but not a

4 ##t e r r i b l e e s t imate in genera l .

5

6 ## e x a c t l t y equa l l e v e l o f v i o l a t i o n o f dup lex c on s t r a i n t

7 param guan g mu{ i in Nodes} =

8 sum{ j in Nodes} Sbar [ i , j ] +
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9 sum{ j in Nodes} Sbar [ j , i ] − 1 ;

10

11 param guan g j = sq r t (sum { i in Nodes }( guan g mu [ i ] ) ∗∗2) ; ## there i s no

guan g lambda

12

13

14 # Augmented lag rang ian −− what we ’ re supposed ly decomposing to ge t the

o b j e c t i v e

15 param guan cur r l ag rang ian = sum{( i , j ) in Links }(

16 ((−QNA a[ i , j ] ) ∗( Sbar [ i , j ]∗∗2 ) +(QNA b[ i , j ]−Lbar [ i , j ] ) ∗Sbar [ i , j ] ) −

17 (0 . 5∗mu[ i ] + 0 .5∗mu[ j ] ) ∗Sbar [ i , j ]

18 − sum {p in Nodes }( ##index ing by node r e l a t i v e to which dup lex

c on s t r a i n t i s de f i ned

19 guan w [ p ] ∗ (max(0 , (

20 ( Sbar [ i , p ] + Sbar [ p , i ] ) + guan v [ p , i ] ##c i ˆ(p ) x i −− c i

ˆ(p ) i s j u s t 1

21 ) ) ) ∗∗2

22 ) ) ;

23

24 param guan max sj = ( guan theta w star − guan cur r l ag rang ian ) /( guan g j ∗∗2) ;

Listing D.8: subgradient-common.mod

1 ## Inc lude s l o g i c about t e rmina t ing the RPP−Subgrad ient i t e r a t i o n proces s

2 ############################

3 # Subgrad ient Computation

4 #

5 # Note t ha t we use a subg rad i en t update method in s t ead o f ( e . g . ) Newton ’ s

6 # method because the g rad i en t i s not n e c e s s a r i l y we l l−de f ined .

7 ############################

8
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9

10 # Note t ha t o ther terminat ion cond i t i on s may k i c k in b e f o r e max i ter

11 param max iter default 100000;

12 set Steps = 1 . . max iter ;

13

14 # This i s the c on s t r a i n t ( equa t ion 3.16 in [CLAP] , proposa l R952 , p . 54)

15 # dua l i z e d to a l l ow the Lagrangian decomposi t ion o f CLAP.

16

17

18 # I t i s wr i t t en as ( par t A >= par t B) in the paper ; This va lue ( par t A

19 # − par t B) i s l e v e l o f OKness (<0 imp l i e s v i o l a t i o n )

20

21 ##acg : mark CLAP SINR constraint done

22 param CLAP SINR constraint {( i , j ) in Links } =

23 #par t A

24 ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗ Sbar [ i , j ] ) / (Lb [ i , j ]∗Nr) +

25 Gamma1deflap∗(1+M[ i , j ] ) ∗(1−Sbar [ i , j ] )

26 −

27 #par t B

28 Gamma1deflap∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗

Dbar [ j , k ]∗Vbar [ k ] ) /(Lb [ k , j ]∗Nr) )

29 ) ) ;

30

31 #debugg ing i n f o from cen t r a l on ly

32 param dbg CSC a1 {( i , j ) in Links } = (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗ Sbar [ i , j ] ) / (

Lb [ i , j ]∗Nr) ;

33 param dbg CSC a2 {( i , j ) in Links } = (Gamma1deflap∗(1+M[ i , j ] ) ∗(1−Sbar [ i , j ] ) ) ;

34 param dbg CSC b {( i , j ) in Links } = Gamma1deflap∗(1+ sum{k in Nodes : k <> i and

k <> j } ( (P[ k ]∗Dbar [ k , j ]∗Dbar [ j , k ]∗Vbar [ k ] ) /(Lb [ k , j ]∗Nr) ) ) ;

35
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36 param CLAP SINR constraint real {( i , j ) in Links } =

37 #par t A

38 ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗ Sbar [ i , j ] ) / (Lb [ i , j ]∗Nr) +

39 Gamma1∗(1+M[ i , j ] ) ∗(1−Sbar [ i , j ] )

40 −

41 #par t B

42 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗Dbar [ j , k

]∗Vbar [ k ] ) /(Lb [ k , j ]∗Nr) )

43 ) ) ;

44

45

46 # This i s a subg rad i en t a t po in t Lbar , Dbar , Sbar , Vbar ; There ’ s on ly one

47 # dua l i z e d cons t ra in t , so a l l we ’ re doing i s changing the s i gn .

48 # See equat ion 2 .26 , proposa l R952 , p . 40 .

49

50 # # Proper subg rad i en t

51 # param CLAP subgradient {( i , j ) in Links } =

52 # i f ( CLAP SINR constraint [ i , j ] < 0)

53 # then 1−(CLAP SINR constraint [ i , j ] )

54 # e l s e 0.0001 ∗ (1−(CLAP SINR constraint [ i , j ] ) ) ; #XXX made t h i s up !

55

56 param CLAP subgradient {( i , j ) in Links } =

57 i f ( Sbar [ i , j ] > 0)

58 then 0−(CLAP SINR constraint [ i , j ] )

59 else (−100000) ;

60

61 # param CLAP subgradient {( i , j ) in Links } =

62 # 0−(CLAP SINR constraint [ i , j ] ) ;

63
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64 param max lbar {( i , j ) in Links } = max( l o c a l b e t a t [ i , j ] / CLAP subgradient [ i , j

] , 0) ;

65

66

67 # Adjusted f o r nonnega t i v i t y o f Lagrange Mu l t i p l i e r s :

68 # Theo r e t i c a l l y e q u i v a l e n t to us ing CLAP subgradient and then l im i t i n g

69 # the lagrange mu l t i p l i e r va lues , but much more e f f i c i e n t convergence .

70

71 param CLAP sg nn {( i , j ) in Links } =

72 i f ( Lbar [ i , j ] <= 0 and CLAP subgradient [ i , j ] < 0) then 0 else

CLAP subgradient [ i , j ] ;

73 # CLAP subgradient [ i , j ] ;

74

75 # L2−norm of tweaked subg rad i en t

76 param CLAP sg norm =

77 sq r t (sum{( i , j ) in Links }(CLAP sg nn [ i , j ] ˆ 2 ) ) ;

78

79 #I j u s t made t h i s up . Tota l BS!

80 param s t e p s i z e {k in Steps } = (1 e−13) / ( ( k+10)∗∗2) ;

81 #param s t e p s i z e {k in Steps}=1e−18;

82

83 param s s i z e default 0 ;

84

85 # Mu l t i p l i e r update r u l e : Equation 2 .27 , p ropas l R952 , p . 40 .

86 # Avoidance o f d i v i de−by−zero s i t u a t i o n i s made up .

87 # param Lbar s t ep unsca l ed {( i , j ) in Links } =

88 # i f (CLAP sg norm==0)

89 # then ( CLAP subgradient [ i , j ] /1 )

90 # e l s e ( CLAP subgradient [ i , j ] /CLAP sg norm) ;

91
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92 # Simple f u l l y l o c a l r u l e (no use o f g l o b a l l 2 norm)

93 param Lbar s tep unsca l ed {( i , j ) in Links } =

94 ( CLAP subgradient [ i , j ] ) ;

95

96 param Lbar prev {( i , j ) in Links } ; ## Must be as s i gned in i t e r a t i v e loop

97

98 param l b a r s t e p upp e r l im i t {( i , j ) in Links } = max lbar [ i , j ] ∗ 1e−5;

99 param l b a r s t e p l ow e r l im i t {( i , j ) in Links } = Lbar [ i , j ] ∗ −1; #XXX made up

100

101 param Lbar step {( i , j ) in Links } = i f ( Lbar s t ep unsca l ed [ i , j ] > 0) then

102 min ( s s i z e ∗ Lbar s tep unsca l ed [ i , j ] , l b a r s t e p upp e r l im i t [ i , j ] )

103 else

104 max( s s i z e ∗ Lbar s tep unsca l ed [ i , j ] , l b a r s t e p l ow e r l im i t [ i , j ] ) ;

105

106 param Lbar suggest {( i , j ) in Links } = Lbar [ i , j ] + Lbar step [ i , j ] ;

107

108 param Lba r l a s t s t e p {( i , j ) in Links } = Lbar [ i , j ] − Lbar prev [ i , j ] ;

109

110 param Lbar step l2 norm =

111 sq r t (sum{( i , j ) in Links }( Lba r l a s t s t e p [ i , j ] ˆ 2 ) ) ;

112

113

114 ##########################################################

115 ## Lagrange mu l t i p l i e r s (mu) f o r dup lex c on s t r a i n t s ##

116 ##########################################################

117

118 ##acg : mark dup l e x c on s t r a i n t done

119 param dup l ex con s t r a i n t { i in Nodes} =

120 sum{ j in Nodes} Sbar [ i , j ] +

121 sum{ j in Nodes} Sbar [ j , i ] − 1 ;
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122

123 #param mu s teps i z e {k in Steps}=1e−3;

124 #param mu s teps i z e {k in Steps}=1e1 /( k+100) ;

125 param mu steps i ze {k in Steps}=1e3 /( ( k+100) ∗∗2) ;

126 #mis−app ly Guan sur roga t e subg rad i en t r u l e :

127 #param mu s teps i z e {k in Steps}= 0.05 ∗ guan max sj ;

128 param mu ss ;

129

130 param dup lex subgrad ient { i in Nodes} =

131 dup l ex con s t r a i n t [ i ] ;

132

133

134 param duplex sg nn { i in Nodes} =

135 i f (mu[ i ] <= 0 and dup lex subgrad ient [ i ] < 0) then 0

136 else dup lex subgrad ient [ i ] ;

137

138 # L2−norm of tweaked subg rad i en t

139 param duplex sg norm =

140 sq r t (sum{ i in Nodes }( duplex sg nn [ i ] ˆ 2 ) ) ;

141

142 # param duplex sg norm =

143 # sq r t (sum{ i in Nodes }( dup l e x su b g rad i en t [ i ] ˆ2 ) ) ;

144

145 ##acg : mu step c a l l s dup l ex sg nn

146 ##acg : mu step c a l l s mu ss

147 param mu step { i in Nodes} = duplex sg nn [ i ] ∗ mu ss ;

148

149 ##acg : mu suggest c a l l s mu

150 ##acg : mu suggest c a l l s mu step

151 ##acg : mark mu suggest done
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152 param mu suggest { i in Nodes} = mu[ i ] + mu step [ i ] ;

153

154 ##########################################################

155 ## FLAP/{FARP,SNARP} t e rminat ion cond i t i on s . ##

156 ## Lots o f magic numbers here ##

157 ##########################################################

158

159 param mu step l2 norm = sq r t (sum{ i in Nodes }( mu step [ i ] ˆ 2 ) ) ;

160

161 # Step in both Lambda ( bar ) and mu ( bar )

162 param s tep l2 norm = sq r t (

163 sum{( i , j ) in Links }( Lbar step [ i , j ] ˆ 2 ) +

164 sum{ i in Nodes }( mu step [ i ] ˆ 2 )

165 ) ;

166

167 # A subg rad i en t s o l u t i o n i s demonstrab ly converged when the s t ep s i z e

d imin i shes to 0 (XXX − c i t e )

168 # smal l enough i s the e p s i l o n f o r c l o s e enough to zero

169 param smal l enough := 1e−18;

170 param sma l l enough lba r s t ep := 5e−15;

171 param smal l enough mu step := 1e−7;

172

173 # Require a c e r t a i n number o f i t e r a t i o n s to prevent terminat ion based

174 # on i n i t i a l e s t imate va l u e s

175 param abs min i t e r := 5 ;

176

177 # Maximum randomizat ion o f l o c a l b e t a t va l u e s ( to prevent t i e s )

178 #param max b e t a j i t t e r := 0 . 05 ;

179 param max be ta j i t t e r := 0 . 1 ;

180
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181 ####################################################################

182 ## Early terminat ion cond i t i on s : Reca l l t h a t f o r column generat ion ,

183 ## each subproblem need not be s o l v e d to op t ima l i t y ; i t i s enough t ha t

184 ## ( at l e a s t ) one improving column be found , i f one e x i s t s .

185 ## Therefore , we a l l ow an ea r l y terminat ion i f the reduced co s t i s < 0

186 ## and an a r b i t r a r y number o f i t e r a t i o n s have occurred

187

188 # Minimum i t e r a t i o n s b e f o r e ea r l y terminat ion

189 param e a r l y e x i t m i n i t e r := 20 ;

190

191 param num set s per dw i te r := 1 ; ##Disab l e e a r l y break to see what happens

wi th guan ’ s a l gor i thm

192

193 ##acg : mark s e t s t h i s d w i t e r done

194 param s e t s t h i s dw i t e r default 0 ;

195

196 #######################################################

197 # Heur i s t i c s to i d e n t i f y pr imal f e a s i b l e s o l u t i o n s #

198 #######################################################

199

200 # Given curren t es t imates , i f l i n k were used , would c on s t r a i n t be

201 # s a t i s f i e d ? Doesn ’ t l ook promising as an approach . E s p e c i a l l y

202 # because , i f Vbar = 0.99995 , i t s t i l l f a i l s .

203

204 param HatS { i in Nodes , j in Nodes} default 0 ;

205

206 # Just CLAP SINR constraint real wi th S [ i , j ]=1

207 param SINR given l ink {( i , j ) in Links } =

208 #par t A

209 ( (P[ i ]∗Dbar [ i , j ]∗Dbar [ j , i ]∗1 ) / (Lb [ i , j ]∗Nr) +
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210 Gamma1∗(1+M[ i , j ] ) ∗0

211 −

212 #par t B

213 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗Dbar [ k , j ]∗Dbar [ j , k

]∗Vbar [ k ] ) /(Lb [ k , j ]∗Nr) )

214 ) ) ;

215 param SINR wouldbe ok {( i , j ) in Links } = i f ( SINR given l ink [ i , j ] >= 0) then 1

else 0 ;

216

217 # Vbar >= S [ i , j ] s a t i s f i e d i f S [ i , j ] = 1

218 param Vbar wouldbe ok {( i , j ) in Links } = i f (Vbar [ i ] >= 1) then 1 else 0 ;

219

220

221 param dup l ex g i v en l i nk {( i , j ) in Links } = (

222 #other l i n k s i n v o l v i n g i

223 sum{ xj in Nodes : x j <> j } Sbar [ i , x j ] +

224 sum{ xj in Nodes : x j <> j } Sbar [ xj , i ] +

225 #other l i n k s i n v o l v i n g j

226 sum{ x i in Nodes : x i <> i } Sbar [ xi , j ] +

227 sum{ x i in Nodes : x i <> i } Sbar [ j , x i ] ) ;

228

229 param duplex wouldbe ok {( i , j ) in Links } = i f ( dup l ex g i v en l i nk [ i , j ] == 0) then

1 else 0 ;

230

231 param l ink wouldbe ok {( i , j ) in Links } =

232 SINR wouldbe ok [ i , j ] ∗

233 Vbar wouldbe ok [ i , j ] ∗

234 duplex wouldbe ok [ i , j ] ;

235

236 # Find c l o s e s t pr imal f e a s i b l e po in t
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237 ## S −− a c t i v a t i o n o f l i n k i j

238

239 param ewma hats alpha = 0 . 0 2 ;

240

241 # Apply EWMA to g l o b a l Dbar

242 param ewma dbar alpha = 0 . 0 2 ;

243

244 var PrimalS { i in Nodes , j in Nodes} binary ;

245

246 ## V −− a c t i v a t i o n o f node i

247 var PrimalV { i in Nodes} >= 0 <= 1 ;

248

249 #minimize c l o s e s t p r ima l : sum{( i , j ) in Links } abs ( PrimalS [ i , j ] − HatS [ i , j ] ) ;

250 minimize c l o s e s t p r ima l : sum{( i , j ) in Links } ( ( HatS [ i , j ] −PrimalS [ i , j ] ) ˆ2) ;

251 #XXX even w/o cons t ra in t s , p roces s seems not to work !

252

253 subject to pr imal duplex { i in Nodes } :

254 sum{ j in Nodes} PrimalS [ i , j ] +

255 sum{ j in Nodes} PrimalS [ j , i ] <= 1 ;

256

257 subject to pr ima l coup l ing { i in Nodes } :

258 sum{ j in Nodes : ( i , j ) in Links } PrimalS [ i , j ] <= PrimalV [ i ] ;

259

260 ##XXX su b j e c t to primal SINR ! ;

Listing D.9: trial-SINR-logic.mod

1 param t r i a l V { i in Nodes} = sum{ j in Nodes : ( i , j ) in Links } t r i a l S [ i , j ] ;

2 param t r i a l D { i in Nodes , j in Nodes } ;

3 param t r i a l B { i in Nodes , p in Pats} >= 0 <=1;

4



290

5 param t r i a l d u p l e x c o n s t r a i n t { i in Nodes} =

6 sum{ j in Nodes : ( i , j ) in Links } t r i a l S [ i , j ] +

7 sum{ j in Nodes : ( j , i ) in Links } t r i a l S [ j , i ] − 1 ;

8

9 param t s c a {( i , j ) in Links } = ((P[ i ]∗ t r i a l D [ i , j ]∗ t r i a l D [ j , i ]∗ t r i a l S [ i , j ] )

/ (Lb [ i , j ]∗Nr) + Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] ) ) ;

10

11 param t s c b {( i , j ) in Links } = (Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j

} ( (P[ k ]∗ t r i a l D [ k , j ]∗ t r i a l D [ j , k ]∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) ) ) ) ;

12

13 param t r i a l S INR con s t r a i n t {( i , j ) in Links}=

14 #par t A

15 ( (P[ i ]∗ t r i a l D [ i , j ]∗ t r i a l D [ j , i ]∗ t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

16 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

17 −

18 #par t B

19 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗ t r i a l D [ k , j ]∗

t r i a l D [ j , k ]∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

20 ) ) ;

21

22

23 param t r i a l l i n k s o k =

24 i f ( ( f o ra l l { i in Nodes} t r i a l d u p l e x c o n s t r a i n t [ i ] <= 0) and

25 ( f o ra l l {( i , j ) in Links } t r i a l S INR con s t r a i n t [ i , j ] >=0))

26 then 1 else 0 ;

27

28 param t r i a l r c = (1 − sum{( i , j ) in Links } ( t r i a l S [ i , j ] ∗ beta t [ i , j ] ) ) ;

29

30

31 # Output in format ion . t p r e f i x i n d i c a t e s t ha t thhese are c a l c u l a t e d
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32 # over the t r i a l v a r i a b l e s

33 param t rssMW{ i in Nodes , j in Nodes : i <> j } = P[ i ]∗ t r i a l V [ i ]∗ t r i a l D [ i , j ]∗

t r i a l D [ j , i ] /Lb [ i , j ] ;

34

35 param t interfereMW {( i , j ) in Links } =

36 sum{k in Nodes : k <> i and k <> j }( t rssMW [ k , j ] ) ;

37

38 param t trueSINR {( i , j ) in Links } = t rssMW [ i , j ] / ( t interfereMW [ i , j ]+Nr) ;

39

40 param t trueSINR dB {( i , j ) in Links } = i f ( t r i a l S [ i , j ] > 0) then (10∗ l og10 (

t trueSINR [ i , j ] ) ) else (− I n f i n i t y ) ;

Listing D.10: post-schedule-SINR-opt.mod

1 #########################################################################

2 # Post−s chedu l i n g antenna tweaking : Basic idea i s to improve gain ,

3 # even on l i n k s where the SNR con s t r a i n t was not b ind ing . Note t ha t

4 # t h i s i s h e u r i s t i c and by no means guaranteed to produce an opt imal

5 # anything , though i t w i l l not hu r t the op t ima l i t y o f the s chedu l e .

6 ###################################################################

7

8 # Precondi t ion : t r i a l S must be the ju s t−accepted schedu l e .

9 # tr i a l S INR con s t r a i n t i s then co r r e c t f o r t h i s s chedu l e .

10

11

12

13 maximize s i gna l marg in : sum{( i , j ) in Links }

14 ##par t A

15 ( (P[ i ]∗ l og (D[ i , j ]∗D[ j , i ] ) ∗ t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr)

16 −

17 ##par t B
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18 (1+ sum{k in Nodes : k <> i and k <> j }

19 ( (P[ k ]∗ l og (D[ k , j ]∗D[ j , k ] ) ∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

20 ) ) ;

21

22 # Lets t r y an over−s t r i c t r u l e : Local changes may not make SINR worse

23 # for anyone .

24

25 subject to mainta in s i gna l marg in {( i , j ) in Links } :

26 ( (P[ i ]∗D[ i , j ]∗D[ j , i ]∗ t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

27 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

28 −

29 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j } ( (P[ k ]∗D[ k , j ]∗D[ j , k ]∗

t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

30 ) ) >= tr i a l S INR con s t r a i n t [ i , j ] ;

31

32

33 ######################

34 # Di s t r i b u t e d ve r s i on

35

36 # Question 1 : What ’ s the worst−case e f f e c t my ( k ’ s ) d e c i s i on s cou ld have on

l i n k i−>j ?

37 # A change o f x mw EIRP at k cou ld mean at most x ∗

38 # max l ink impac t f a c t o r ( ( i , j ) , k ) change in S−IN on l i n k i−>j

39

40 param max l ink impact fac to r {( i , j ) in Links , k in Nodes} = (

41 i f ( k != i and k != j ) then (max{p in Pats }( pat ga in [ j , k , p ] ) / Lb [ k , j

] )

42 else #k i s i or j

43 i f ( k == i ) then (max{p in Pats} ( pat ga in [ j , i , p ] ) / Lb [ k , j ] )

44 else # k == j by e x c l u s i on
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45 (max{p in Pats} ( pat ga in [ i , j , p ] ) / Lb [ i , j ] ) ) ;

46

47

48 # Question 2 : What ’ s my ( k ’ s ) ”p i s s i n g on l i n k i−>j budge t ?” Naive ly ,

49 # ju s t d i v i d e the curren t ( pre−op t im i za t i on ) budget e v en t l y among a l l

50 # po s s i b l y i n vo l v ed nodes .

51

52 # note t ha t i t doesn ’ t matter which l i n k we ’ re cons i d e r ing : Every

53 # transmi t t e r , p l u s one rece i v e r , i s ” i n vo l v ed ”

54 param num involved nodes = 1 + sum{ i in Nodes} t r i a l V [ i ] ;

55

56 param p i s s i ng budge t {( i , j ) in Links , k in Nodes} =

57 t r i a l S INR con s t r a i n t [ i , j ] / num involved nodes ;

58

59

60 ## Obj e c t i v e i s miss ing : Not common between c e n t r a l i z e d and d i s t r i b u t e d code .

61

62 #Link ( s ) from me

63 subject to d i s t ma in ta i n s i gna l marg in1 {( i , j ) in Links : i == th i s node } :

64 t r i a l S INR con s t r a i n t [ i , j ] −

65 ( (P[ i ]∗ l o ca l D [ j ]∗ t r i a l D [ j , i ]∗ t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

66 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

67 −

68 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j }(

69 (P[ k ]∗ t r i a l D [ k , j ]∗ t r i a l D [ j , k ]∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

70 ) ) <= pi s s i ng budge t [ i , j , th i s node ] ;

71

72 #Link ( s ) to me

73 subject to d i s t ma in ta i n s i gna l marg in2 {( i , j ) in Links : j == th i s node } :

74 t r i a l S INR con s t r a i n t [ i , j ] −
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75 ( (P[ i ]∗ t r i a l D [ i , j ]∗ l o ca l D [ i ]∗ t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

76 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

77 −

78 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j }(

79 (P[ k ]∗ t r i a l D [ k , j ]∗ t r i a l D [ j , k ]∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

80 ) ) <= pi s s i ng budge t [ i , j , th i s node ] ;

81

82 #Others ’ l i n k s

83 subject to d i s t ma in ta i n s i gna l marg in3 {( i , j ) in Links : i != th i s node and j

!= th i s node } :

84 t r i a l S INR con s t r a i n t [ i , j ] −

85 ( (P[ i ]∗ t r i a l D [ i , j ]∗ t r i a l D [ j , i ]∗ t r i a l S [ i , j ] ) / (Lb [ i , j ]∗Nr) +

86 Gamma1∗(1+M[ i , j ] ) ∗(1− t r i a l S [ i , j ] )

87 −

88 Gamma1∗(1+ sum{k in Nodes : k <> i and k <> j }(

89 (P[ k ] ∗ ( i f ( k==th i s node ) then l o ca l D [ j ] else t r i a l D [ k , j ] ) ∗ t r i a l D [

j , k ]∗ t r i a l V [ k ] ) /(Lb [ k , j ]∗Nr) )

90 ) ) <= pi s s i ng budge t [ i , j , th i s node ] ;

91

92

93 subject to d i s t r e a l p a t s { j in Nodes } :

94 l oca l D [ j ] − sum{p in Pats} ( pat ga in [ th i s node , j , p ] ∗ l o ca l B [ p ] ) =

0 ;

95

96 ## Force f u l l power again .

97 subject to d i s t on e pa t :

98 sum{p in Pats} l o ca l B [ p ] == 1 ;

Listing D.11: compute-m.mod

1 ###################################
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2 # Routine to pre−compute M[ i , j ]

3 ###################################

4 param t a r g e t p {( i , j ) in Links } default 0 ;

5

6

7 # Compute the worst p o s s i b l e power from other node to our v i c t im

8 ##acg : mark wors t case power done

9 param worst case power {k in Nodes , j in Nodes : k <> j } = (P[ k ]∗

10 (max {p in Pats} pat ga in [ k , j , p ] ) ∗

11 (max {p in Pats} pat ga in [ j , k , p ] ) ) /Lb [ k , j ] ;

12

13 ##acg : i n t e r f e r e n c e o b j c a l l s wors t case power

14 ##acg : mark i n t e r f e r e n c e o b j done

15 maximize i n t e r f e r e n c e o b j : sum {( i , j ) in Links } S [ i , j ]∗ worst case power [ i , j ]∗1

e9 ;

16 ##acg : mark v i c t im o f f done

17 subject to v i c t im o f f {( i , j ) in Links } : t a r g e t p [ i , j ] ∗ S [ i , j ] = 0 ;

18

19 param max i {( i , j ) in Links } ;

20 param Mij {( i , j ) in Links } = (max i [ i , j ] / ( Nr∗1 e9 ) ) ;

D.2 Command Files

These command files are AMPL’s imperative component.

D.2.1 On-Line System

Listing D.12: master-daemon.ampl

1 ## Test o f i n t e r a c t i o n between AMPL and invok ing program

2

3 ## Source STMDA model d e f i n i t i o n s
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4 model ea stdma .mod ;

5 data stdma−d e f a u l t s . dat ;

6

7 option t imes 0 ;

8 option show stat s 0 ;

9

10 ## Source t a b l e d e f i n t i o n s

11 commands ” t ab l e s . ampl ” ;

12

13 #data nodeconf . dat ;

14

15 set changed nodepairs in {Nodes , Nodes } ;

16 param out sbar { i in Nodes , j in Nodes : i == f lap node } ;

17 l et AnncLinkSets := {} ;

18

19

20 read table nodevars ;

21 read table s tep ;

22 read table nodepa i rvar s ;

23 read table l i n k v a r s ;

24 read table pat t e rn s ;

25

26 write table x ;

27 write table m antennas ;

28 write table l i n k i n s e t ;

29 write table beta t ;

30

31 p r i n t ” I n i t i a l i z i n g ” > master log . txt ;

32 p r i n t ” I n i t i a l i z i n g ” > dw log . txt ;

33
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34 ###############################################

35 # Compute M[ i j ]

36 ###############################################

37 for {( i , j ) in Links }{

38 l et {(k , l ) in Links } t a r g e t p [ k , l ] := 0 ;

39 l et t a r g e t p [ i , j ] := 1 ;

40 solve o t h e r l i n k s ;

41 l et max i [ i , j ] := i n t e r f e r e n c e o b j ;

42 }

43 l et {( i , j ) in Links } M[ i , j ] := Mij [ i , j ] ;

44

45

46

47 d i sp l ay M;

48

49

50 ##############################################

51 # I n i t i a l i z e LinkSets wi th s imple TDMA

52 #############################################

53

54 param index in LinkSets ;

55 for {( i , j ) in Links }{

56 l et num l ink se t s := num l ink se t s +1;

57 i f ( num l ink se t s == 1) then let index := f i r s t ( LinkSets ) ;

58 else let index := next ( index , LinkSets ) ;

59 l et l i n k i n s e t [ index , i , j ] := 1 ;

60 }

61

62 param dw i te r integer >0;

63 l et dw i te r := 1 ;
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64 param o ld num l ink s e t s integer >0;

65

66

67

68 repeat {

69 read table nodevars ;

70 read table s tep ;

71 read table nodepa i rvar s ;

72 read table l i n k v a r s ;

73 read table pat t e rn s ;

74

75 ##################################################################

76 # Solve RMP: Find the opt imal l i n k s e t a c t i v a t i o n s

77 ##################################################################

78 solve RMP;

79 l et updated l inks := Links ;

80 l et {( i , j ) in Links } beta t [ i , j ] := demand coverage [ i , j ] . dual ;

81 ## XXX contemplate s i g n i f i c a n c e o f nega t i v e dua l va l u e s ( f o r >=

cons t r a i n t ) !

82 l et {( i , j ) in Links } new beta t [ i , j ] := max(0 , be ta t [ i , j ] ) ;

83

84 #d i s p l a y l i n k i n s e t ;

85 d i sp l ay x ;

86 d i sp l ay be ta t ;

87 d i sp l ay new beta t ;

88

89 # Cause x and l i n k i n s e t t a b l e s to be f i l l e d in

90 l et AnncLinkSets := LinkSets ;

91 write table x ;

92 write table m antennas ;
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93 write table l i n k i n s e t ;

94 l et AnncLinkSets := {} ;

95 write table beta t ;

96

97

98 p r i n t ”top ” ;

99 repeat{

100 read table nodevars ;

101 read table s tep ;

102 read table nodepa i rvar s ;

103 read table l i n k v a r s ;

104 read table pat t e rn s ;

105

106 #d i s p l a y l oca l Dbar ;

107 #d i s p l a y l o c a l L ba r ;

108 #d i s p l a y l o c a l S b a r ;

109 #d i s p l a y loca l mu bar ;

110

111 p r i n t f ”New loop . Step = %d” , Step [ 1 ] >> master log . txt ;

112

113 #############################################################

114 # Find b e s t f e a s i b l e pr imal s o l u t i o n from curren t dua l

115 #############################################################

116 p r i n t f ”Attempting pr imal recovery \n” ;

117 ## Binary search on a c t t h r e s h o l d f o r f e a s i b l e s e t wi th l owe s t

reduced co s t

118 l et a c t th r e sho l d := 0 . 5 ;

119 l et b s s s := 0 . 2 5 ;

120 l et be s t r c := 1 ;
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121 l et be s t th r e sh :=1 . 1 ; #Demand the imposs i b l e , u n t i l something

p o s s i b l e i s proven OK.

122 p r i n t f ”\ t th r e sho l d \ t f e a s .\ treduced co s t \n” ;

123 repeat {

124 l et { i in Nodes , j in Nodes : i <> j } t r i a l D [ i , j ] :=

loca l Dbar [ i , j ] ;

125 p r i n t f ”\ t%f \ t%d\ t%d\n” , ac t th r e sho ld , t r i a l l i n k s o k

, t r i a l r c ;

126

127 p r i n t ”P.R. loop ” >> master log . txt ;

128 d i sp l ay a c t th r e sho l d >> master log . txt ;

129 d i sp l ay t r i a l S >> master log . txt ;

130 d i sp l ay t r i a l V >> master log . txt ;

131 d i sp l ay t r i a l D >> master log . txt ;

132 d i sp l ay t r i a l d u p l e x c o n s t r a i n t >> master log . txt ;

133 d i sp l ay P >> master log . txt ;

134 d i sp l ay Lb >> master log . txt ;

135 d i sp l ay Nr >> master log . txt ;

136

137 d i sp l ay t s c a >> master log . txt ;

138 d i sp l ay t s c b >> master log . txt ;

139

140 d i sp l ay t r i a l S INR con s t r a i n t >> master log . txt ;

141 d i sp l ay t r i a l l i n k s o k >> master log . txt ;

142 d i sp l ay t r i a l r c >> master log . txt ;

143

144 d i sp l ay t rssMW >> master log . txt ;

145 d i sp l ay t trueSINR >> master log . txt ;

146 d i sp l ay t trueSINR dB >> master log . txt ;

147
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148 i f ( ( t r i a l l i n k s o k == 1) and

149 ( t r i a l r c <= be s t r c ) ) then {

150 l et be s t r c := t r i a l r c ;

151 l et be s t th r e sh := ac t th r e sho l d ;

152 } ;

153

154 i f ( t r i a l l i n k s o k == 1) then {

155 # reduce t h r e s h o l d as long as f e a s i b i l i t y i s

maintained

156 l et a c t th r e sho l d := ac t th r e sho l d − b s s s ;

157 }

158 else {

159 # increa se t h e s ho l d u n t i l f e a s i b l e

160 l et a c t th r e sho l d := ac t th r e sho l d + bs s s ;

161 } ;

162

163

164 l et b s s s := b s s s /2 ;

165 } while ( b s s s > 0 . 002 ) ;

166 l et a c t th r e sho l d := be s t th r e sh ;

167

168

169 ##########################################################

170 # Evaluate primal s o l u t i o n as p o s s i b l e s t opp ing po in t

171 ##########################################################

172

173 i f ( t r i a l r c < r c t h r e sh ) then {

174

175 d i sp l ay a c t th r e sho l d ;

176 d i sp l ay be s t th r e sh ;
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177 d i sp l ay t r i a l S ;

178 d i sp l ay t r i a l D ;

179 d i sp l ay t r i a l S INR con s t r a i n t ;

180 d i sp l ay t r i a l d u p l e x c o n s t r a i n t ;

181 d i sp l ay t r i a l l i n k s o k ;

182 d i sp l ay t r i a l r c ;

183

184 i f ( exists { l in LinkSets } (not exists {( i , j ) in Links }

185 ( t r i a l S [ i , j ] > l i n k i n s e t [ l , i , j ] ) ) ) then { #must not

be equa l to OR DOMINATED BY e x i s t i n g l i n k s e t

186

187 p r i n t ”Rejected l i n k s e t ! ” ;

188 d i sp l ay { l in LinkSets } : {( i , j ) in Links } l i n k i n s e t [

l , i , j ] ;

189 d i sp l ay t r i a l S ;

190 } else {

191 l et num l ink se t s := num l ink se t s +1;

192 l et index := next ( index , LinkSets ) ;

193 l et {( i , j ) in Links } l i n k i n s e t [ index , i , j ] := t r i a l S

[ i , j ] ;

194 l et s e t s t h i s dw i t e r := s e t s t h i s dw i t e r + 1 ;

195

196

197 p r i n t ”Added l i n k s e t . Continuing ” ;

198 d i sp l ay t r i a l S ;

199

200 p r i n t ”Added l i n k s e t . Continuing ” >> dw log . txt ;

201 d i sp l ay {( i , j ) in Links } t r i a l S [ i , j ] >> dw log . txt ;

202
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203 p r i n t f ”\nPost−opt imized antennas f o r candidate

schedu le :\n” >> dw log . txt ;

204 p r i n t f ”Pre−opt SINR in f o \n” >> dw log . txt ;

205 d i sp l ay t r i a l S INR con s t r a i n t >> dw log . txt ;

206 d i sp l ay t trueSINR dB >> dw log . txt ;

207

208 for {blah in Nodes} {

209 l et th i s node := blah ;

210 d i sp l ay blah >> dw log . txt ;

211 d i sp l ay d s m dbg nolog >> dw log . txt ;

212 expand d i s t s i g n a l ma r g i n >> dw log . txt ;

213

214 # ”warm s t a r t ” wi th non−exp l od ing va l u e s .

215 l et { j in Nodes : j <> th i s node } l o ca l D [ j ] :=

t r i a l D [ th i s node , j ] ;

216 l et l o ca l D [ th i s node ] := 0 ;

217 solve d i s t improve antennas ;

218 l et { j in Nodes} tmp tr ia l D [ th i s node , j ] :=

loca l D [ j ] ;

219 d i sp l ay loca l D >> dw log . txt ;

220 d i sp l ay l o ca l B >> dw log . txt ;

221 ## Record the most−s e l e c t e d pa t t e rn . Should

always be s e l e c t e d

222 ## with va lue o f 1 , w i th in some sma l l e p s i l o n .

223 for {p in Pats} {

224 i f ( l o ca l B [ p ] == max {xp in Pats}

l o ca l B [ xp ] ) then

225 {

226 l et master b [ index , th i s node ] :=

p ;
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227 }

228 }

229 }

230 l et { i in Nodes , j in Nodes} t r i a l D [ i , j ] :=

tmp tr ia l D [ i , j ] ;

231 p r i n t f ”Post−d i s t−opt SINR in f o \n” >> dw log . txt ;

232 d i sp l ay t r i a l S INR con s t r a i n t >> dw log . txt ;

233 d i sp l ay t trueSINR dB >> dw log . txt ;

234 d i sp l ay master b >> dw log . txt ;

235

236 i f ( s e t s t h i s dw i t e r >= num set s per dw i te r ) then {

237 #se t Sbar so t ha t r educed cos t parameter i s

c o r r e c t .

238 l et {( i , j ) in Links } Sbar [ i , j ] := t r i a l S [ i , j

] ;

239 write table x ;

240 write table m antennas ;

241 write table l i n k i n s e t ;

242 write table beta t ; ## otherwise , ”break ”

throws o f f sync

243 break ;

244 }

245 }

246 }

247

248 ## J i t t e r b e t a t

249 ## J i t t e r b e t a t to break t i e s

250 l et {( i , j ) in Links } beta t [ i , j ] :=

251 i f ( be ta t [ i , j ] < max be ta j i t t e r )

252 then 0
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253 else beta t [ i , j ] + Uniform(−max beta j i t t e r ,

max be t a j i t t e r ) ;

254

255 write table x ;

256 write table m antennas ;

257 write table l i n k i n s e t ;

258 write table beta t ;

259 p r i n t ”rump” ;

260 } while (1 < 2) ;

261 p r i n t ”bottom ” ;

262 } while (1 < 2) ;

263 p r i n t ” t a i l ” ;

Listing D.13: solver-daemon.ampl

1 ## Test o f i n t e r a c t i o n between AMPL and invok ing program

2

3 ## Source STMDA model d e f i n i t i o n s

4 model ea stdma .mod ;

5 data stdma−d e f a u l t s . dat ;

6

7 #param loca l Vbar {n in Nodes} >= 0 <= 1;

8 #param l o c a l S b a r {( src , d s t ) in Links } ;

9 #param lo ca l L ba r {( src , d s t ) in Links } ;

10 param whatever {n in Nodes } ;

11

12 option t imes 0 ;

13 option show stat s 1 ;

14 option d i s p l a y p r e c i s i o n 0 ;

15

16 ## Source t a b l e d e f i n t i o n s
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17 commands ” t ab l e s . ampl ” ;

18

19 data nodeconf . dat ;

20

21 set changed nodepairs in {Nodes , Nodes } ;

22 param out sbar { i in Nodes , j in Nodes : i == f lap node } ;

23

24

25 ## Do one ”nu l l c y c l e ” to ge t in format ion f o r Mij c a l c u l a t i o n . I t ’ s

26 ## c r i t i c a l to do the same reads and wr i t e s , in the same order , as

27 ## the normal c y c l e .

28

29 read table nodevars ;

30 read table s tep ;

31 read table nodepa i rvar s ;

32 read table l i n k v a r s ;

33 read table pat t e rn s ;

34

35 #Dummy va l u e s so computed nodevars doesn ’ t output ”. ” and make Python ba r f

36 l et {n in Nodes} l oca l mu bar [ n ] := 0 . 5 ;

37

38 write table computed nodevars ;

39 write table computed Sbar ;

40 write table computed Lbar ;

41 write table computed Dbar ;

42 write table computed Bbar ; ##I t ’ s r e a l l y l o ca l B d i r e c t l y

43

44

45 ## Compute M[ i , j ]

46 for {( i , j ) in Links }{
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47 l et {(k , l ) in Links } t a r g e t p [ k , l ] := 0 ;

48 l et t a r g e t p [ i , j ] := 1 ;

49 solve o t h e r l i n k s ;

50 l et max i [ i , j ] := i n t e r f e r e n c e o b j ;

51 }

52 d i sp l ay max i ;

53 d i sp l ay Mij ;

54 l et {( i , j ) in Links } M[ i , j ] := Mij [ i , j ] ;

55

56 d i sp l ay Lb ;

57

58 repeat {

59 read table nodevars ;

60 read table s tep ;

61 read table nodepa i rvar s ;

62 read table l i n k v a r s ;

63 read table pat t e rn s ;

64

65 l et { i in Nodes} mu[ i ] := loca l mu bar [ i ] ;

66

67 p r i n t ”∗∗∗∗ New I t e r a t i o n ∗∗∗∗ ” ;

68

69

70 d i sp l ay l o c a l Sba r ;

71 d i sp l ay l o ca l Lba r ;

72 d i sp l ay loca l mu bar ;

73 d i sp l ay mu;

74

75 ## Perform an STDMA l i n k i t e r a t i o n !

76
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77 ## Local /Globa l name s t u f f

78 l et { i in Nodes , j in Nodes} Sbar [ i , j ] := 0 ; #non− l i n k s i n i t i a l i z e d to

zero

79 l et {( i , j ) in Links } Sbar [ i , j ] := l o c a l Sba r [ i , j ] ;

80 l et {( i , j ) in Links } Lbar [ i , j ] := l o ca l Lba r [ i , j ] ;

81 l et {( i , j ) in Links } l o c a l b e t a t [ i , j ] := be ta t [ i , j ] ;

82 l et { i in Nodes , j in Nodes : i <> j } Dbar [ i , j ] := loca l Dbar [ i , j ] ;

83

84 d i sp l ay { j in Nodes , p in Pats} pat ga in [ snarp node , j , p ] ;

85 d i sp l ay { i in Nodes , j in Nodes : ( i == snarp node or j == snarp node )

and i <> j } Lb [ i , j ] ;

86

87 d i sp l ay { j in Nodes , p in Pats} pat gain dB [ snarp node , j , p ] ;

88 d i sp l ay { i in Nodes , j in Nodes : ( i == snarp node or j == snarp node )

and i <> j } Lb dB [ i , j ] ;

89

90 d i sp l ay local QNA a ;

91 d i sp l ay local QNA b ;

92 d i sp l ay LocalVbar ;

93 d i sp l ay loca l Dbar ;

94

95 expand s i n g l e d u a l q n a s u r r f l a p o b j ;

96

97 solve LOCAL SDQ FLAP;

98 l et { xj in Nodes : ( f lap node , x j ) in Links } l o c a l Sba r [ f lap node , x j ]

:= l o c a l S [ x j ] ;

99 l et LocalVbar [ f l ap node ] := sum { xj in Nodes : ( f lap node , x j ) in Links

} l o c a l S [ x j ] ;

100 l et { i in Nodes} Vbar [ i ] := LocalVbar [ i ] ;

101
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102

103 p r i n t ”Post−s o l v e (FLAP) : ” ;

104 d i sp l ay l o c a l S ;

105 d i sp l ay l o c a l Sba r ;

106 #d i s p l a y LocalVbar ;

107

108 d i sp l ay snarp node ;

109 d i sp l ay {( i , j ) in Links } l o c a l Lba r [ i , j ]∗1 e5 ;

110 d i sp l ay l b a r e p s i l o n ;

111 d i sp l ay loca l mu bar ;

112 expand snarp ob j ;

113 expand s n a rp r e a l p a t s ;

114 expand snarp one pat ;

115

116 solve SNARP;

117 p r i n t ”Post−s o l v e (SNARP) : ” ;

118 d i sp l ay loca l D ;

119 l et { j in Nodes} l o ca l Dbar [ snarp node , j ] := loca l D [ j ] ;

120 l et { i in Nodes , j in Nodes : i <> j } Dbar [ i , j ] := loca l Dbar [ i , j ] ;

121 d i sp l ay l o ca l B ;

122

123 p r i n t ”SNARP DEBUGGING: ” ;

124 i f ( snarp node == 99) then {

125 p r i n t ”FORCIBLY SETTING dbg D and dbg B f o r t e s t i n g ! ” ;

126 l et {p in Pats} dbg B [ p ] := ( i f (p == 11) then 1 else 0) ;

127 l et { j in Nodes} dbg D [ j ] := pat ga in [ snarp node , j , 1 1 ] ;

128 } else {

129 p r i n t ”MIRRORING loca l D and lo ca l B f o r t e s t i n g ! ” ;

130 l et {p in Pats} dbg B [ p ] := lo ca l B [ p ] ;

131 l et { j in Nodes} dbg D [ j ] := loca l D [ j ] ;
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132

133 }

134

135 d i sp l ay sna rp r ea l pa t s dbg ;

136 d i sp l ay snarp one pat dbg ;

137

138 # Compute sub g rad i en t s

139 #l e t s s i z e := 1e−4; ##Lbar s t ep s i z e (WRONG)

140 #l e t mu ss := 1e−3; ##Mu s t ep s i z e (WRONG)

141

142 l et s s i z e := (1 e−13) / ( ( Step [1 ]+10) ∗∗2) ;

143 l et mu ss := (1 e2 ) / ( ( Step [1 ]+10) ∗∗2) ;

144

145 # CRUCIAL, o the rw i s e a l l t he subg rad i en t s t u f f may be mi s ca l cu l a t e d

146 l et {( i , j ) in Links } Sbar [ i , j ] := l o c a l Sba r [ i , j ] ;

147

148 for {( i , j ) in Links } l et l o c a l Lba r [ i , j ] := max(0 , Lbar suggest [ i , j ] ) ;

149 for {( i , j ) in Links } l et Lbar [ i , j ] := l o ca l Lba r [ i , j ] ;

150

151 for { i in Nodes} l et mu[ i ] := max(0 , mu suggest [ i ] ) ;

152 for { i in Nodes} l et l oca l mu bar [ i ] := mu[ i ] ;

153

154 p r i n t ”Post−s o l v e ( subgrad ient ) : ” ;

155 d i sp l ay dup l ex con s t r a i n t ;

156 d i sp l ay loca l mu bar ;

157

158 d i sp l ay CLAP SINR constraint ;

159

160

161 d i sp l ay Lbar suggest ;
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162 d i sp l ay l o ca l Lba r ;

163

164 write table computed nodevars ;

165 write table computed Sbar ;

166 write table computed Lbar ;

167 write table computed Dbar ; ##I t ’ s r e a l l y l o ca l D d i r e c t l y

168 write table computed Bbar ; ##I t ’ s r e a l l y l o ca l B d i r e c t l y

169

170

171 } while (1 < 2) ;

172

173 d i sp l ay Nodes ;

174 d i sp l ay l o c a l Sba r ;

Listing D.14: stdma subproblem.ampl

1 ## Sta r t wi th subproblem

2 ##

3 d i sp l ay worst case power ;

4

5 ## Compute M[ i , j ]

6 ##acg : c a l l s o t h e r l i n k s

7 ##acg : c a l l s i n t e r f e r e n c e o b j

8 for {( i , j ) in Links }{

9 l et {(k , l ) in Links } t a r g e t p [ k , l ] := 0 ;

10 l et t a r g e t p [ i , j ] := 1 ;

11 solve o t h e r l i n k s ;

12 l et max i [ i , j ] := i n t e r f e r e n c e o b j ;

13 }

14 d i sp l ay max i ;

15 d i sp l ay Mij ;
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16 l et {( i , j ) in Links } M[ i , j ] := Mij [ i , j ] ;

17

18 ## J i t t e r b e t a t to break t i e s

19 l et {( i , j ) in Links } l o c a l b e t a t [ i , j ] :=

20 i f ( be ta t [ i , j ] < max be ta j i t t e r )

21 then 0

22 else beta t [ i , j ] + Uniform(−max beta j i t t e r , max be t a j i t t e r ) ;

23

24 d i sp l ay l o c a l b e t a t ;

25 d i sp l ay l o c a l b e t a t >> dw log . txt ;

26

27 # Data f o r e v a l u a t i n g performance

28 p r i n t f ” i t e r a t i o n \ t c l ap . obj \ treduced . co s t \ t f l a p . obj \ t f a r p . obj \ t s t ep . norm\ tampl

. time\ t f l a p . s o l v e r . time\ t f a r p . s o l v e r . time\ t l b a r . s t ep \tmu . s tep \ t s t ep \ t ” > (

”runlog . ” & dw i te r & ” . txt ”) ;

29 p r i n t f {( i , j ) in Links } : ”lambda.%d.%d\ t ” , i , j >> ( ”runlog . ” & dw i te r & ” .

txt ”) ;

30 p r i n t f {( i , j ) in Links } : ”S.%d.%d\ t ” , i , j >> ( ”runlog . ” & dw i te r & ” . txt ”) ;

31 #p r i n t f { i in Nodes , p in Pats } : ”pat .%d.%d\ t ” , i , p >> (”run log . ” & dw i t e r &

”. t x t ”) ;

32 p r i n t f ”\n” >> ( ”runlog . ” & dw i te r & ” . txt ”) ;

33

34 p r i n t f ”SNR in format ion log \n” > ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

35

36 #Link use

37 p r i n t f ” i t e r a t i o n \ t s r c . node\ td s t . node\ tSbar\ tHatS\ t t ru e . SINR\tCLAP. SINR\n” > (

” l i n k l o g . ” & dw i te r & ” . txt ”) ;

38

39 #Rewards
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40 p r i n t f ” i t e r a t i o n \ t s r c . node\ td s t . node\ tlambda\ tuse \tSINR\ t n u l l \ t l ag range \tmax .

l ba r \n” > ( ”rewards . ” & dw i te r & ” . txt ”) ;

41

42 # Antenna pa t t e rn s s p e c i f i c a l l y

43 p r i n t f ” i t e r a t i o n \ tnode\ tpat \ t va l \n” > ( ”antenna log . ” & dw i te r & ” . txt ”) ;

44 p r i n t f ” i t e r a t i o n \ t r e f . node\ t o the r . node\ tga in \n” > ( ”ga i n l o g . ” & dw i te r & ” .

txt ”) ;

45

46 # Subgrad ient FLAP

47 p r i n t f ” i t e r a t i o n \ tnode\tmu\n” > ( ”dua l f l a p . ” & dw i te r & ” . txt ”) ;

48

49 #(Re) i n i t i a l i z e Lbar to 0 between Dantzig−Wolfe i t e r a t i o n s

50 l et {( i , j ) in Links } Lbar [ i , j ] := 0 ;

51 l et {( i , j ) in Links } Sbar [ i , j ] := 0 ;

52 l et { i in Nodes} V[ i ] := 0 ;

53

54 #(Re) i n i t i a l i z e mu

55 ##acg : mu c a l l s mu i n i t i a l e s t

56 l et { i in Nodes} mu[ i ] := mu i n i t i a l e s t [ i ] ;

57

58 ##acg : d i s p l a y c a l l s f l a p o b j

59 l et s e t s t h i s dw i t e r := 0 ;

60 for { i t e r a t i o n in Steps }{

61 d i sp l ay Dbar [ 0 , 0 ] ;

62 d i sp l ay Dbar [ 1 , 1 ] ;

63 d i sp l ay Dbar ;

64 d i sp l ay Lbar ;

65 expand f l a p ob j ;

66 ## Solve FLAP

67
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68

69 # so l v e FLAP;

70 # l e t f l a p i t e r t im e := so l v e t ime ;

71 # d i s p l a y FLAP. r e s u l t ;

72 # d i s p l a y f l a p o b j ;

73 # d i s p l a y S , V;

74 # d i s p l a y sum{( i , j ) in Links } S [ i , j ] ;

75

76 # l e t { i in Nodes , j in Nodes} Sbar [ i , j ] := S [ i , j ] ;

77 # l e t { i in Nodes} Vbar [ i ] := V[ i ] ;

78

79 # ## Solve QNA FLAP fo r comparison ;

80

81 # expand qna f l a p o b j ;

82 # so l v e QNA FLAP;

83 # so l v e DUAL FLAP;

84

85 # And r e a l l y use i t ! Overwri tes FLAP r e s u l t s !

86 # l e t { i in Nodes , j in Nodes} Sbar [ i , j ] := S [ i , j ] ;

87 # l e t { i in Nodes} Vbar [ i ] := V[ i ] ;

88

89 l et { i in Nodes , j in Nodes} Other Sbar [ i , j ] := S [ i , j ] ;

90 #expand f a r p o b j ;

91

92 i f ( sna rp not f a rp == 1) then {

93 ## Solve SNARP ins t ead o f FARP

94 l et {( xi , x j ) in Links } l o c a l Lba r [ xi , x j ] := Lbar [ xi , x j ] ;

95 l et { x i in Nodes , x j in Nodes} l o ca l Dbar [ xi , x j ] := Dbar [ xi , x j ] ;

96

97 for { i in Nodes}{
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98

99 l et f l ap node := i ;

100 d i sp l ay f l ap node ;

101 p r i n t ”Pre−s o l v e : ” ;

102 d i sp l ay Sbar ;

103 d i sp l ay {p in Nodes} sbar guan pena l ty term [ 0 , p ] ;

104 d i sp l ay Lbar ;

105

106 expand s i n g l e c o up l i n g ;

107 expand s i n g l e d u a l q n a s u r r f l a p o b j ;

108 ##acg : c a l l s SDQ FLAP

109 solve SDQ FLAP;

110 #l e t { x j in Nodes} Other Sbar [ f l ap node , x j ] := S [ f l ap node , x j

] ;

111 l et { xj in Nodes} TmpSbar [ f lap node , x j ] := S [ f lap node , x j ] ;

112 #l e t { x j in Nodes} Sbar [ f l ap node , x j ] := S [ f l ap node , x j ] ;

113 l et LocalVbar [ f l ap node ] := V[ f l ap node ] ;

114 #l e t Vbar [ f l a p node ] := V[ f l ap node ] ;

115 p r i n t ”Post−s o l v e : ” ;

116 d i sp l ay S ;

117 d i sp l ay TmpSbar ;

118 d i sp l ay LocalVbar ;

119

120 l et snarp node := i ;

121 d i sp l ay Dbar ;

122

123 ## Debugging output f o r SNARP. Reca l l :

124 # maximize snarp ob j : sum{( i , j ) in Links : i == snarp node }(

125 # (Lbar [ i , j ]∗ Sbar [ i , j ]∗ (P[ i ] / ( Lb [ i , j ]∗Nr) )∗ l o ca l D [ j ]∗Dbar [ j , i ] )

126 # − (sum{( k , l ) in Links : k <> i and l <>j }(
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127 # Gamma1∗Sbar [ i , j ]∗ Lbar [ k , l ]∗ (P[ i ] / ( Lb [ i , l ]∗Nr) )

128 # ∗ l o ca l D [ l ]∗Dbar [ l , i ]

129 # ) ) ) +

130 # sum{( i , j ) in Links : j == snarp node }(

131 # (Lbar [ i , j ]∗ Sbar [ i , j ]∗ (P[ i ] / ( Lb [ i , j ]∗Nr) )∗Dbar [ i , j ]∗ l o ca l D [ i ] )

132 # − (sum{( k , l ) in Links : k <> i and l <>j }(

133 # Gamma1∗Sbar [ i , j ]∗ Lbar [ i , j ]∗ (P[ k ] / ( Lb [ k , j ]∗Nr) )

134 # ∗ l o ca l D [ k ]∗Dbar [ k , j ]

135 # ) ) ) ;

136

137 # d i s p l a y Nr ;

138 # d i s p l a y { x i in Nodes} P[ x i ] ;

139 # d i s p l a y { x j in Nodes} l o ca l D [ x j ] ;

140 # d i s p l a y {( xi , x j ) in Links } Sbar [ xi , x j ] ;

141 # d i s p l a y {( xi , x j ) in Links } Lbar [ xi , x j ] ;

142 # d i s p l a y {( xi , x j ) in Links } Dbar [ xi , x j ] ;

143 # d i s p l a y {( xi , x j ) in Links } Lb [ xi , x j ] ;

144 # d i s p l a y {( xi , x j ) in Links , ( xk , x l ) in Links : x j==snarp node

and xk <> x i and x l <> x j } Lb [ xk , x j ] ;

145 # d i s p l a y { x i in Nodes , x j in Nodes : x i <> x j } Lb [ xi , x j ] ;

146 # d i s p l a y pa t ga in ;

147 # d i s p l a y l o ca l B ;

148 # Comes up NaN:

149 # d i s p l a y {( xi , x j ) in Links : x i == snarp node } ( ( Lbar [ xi , x j ]∗

Sbar [ xi , x j ]∗ (P[ x i ] / ( Lb [ xi , x j ]∗Nr) )∗ l o ca l D [ x j ]∗Dbar [ xj , x i ] )

150 # − (sum{( xk , x l ) in Links : xk <> x i and x l <>x j }(

151 # Gamma1∗Sbar [ xi , x j ]∗ Lbar [ xk , x l ]∗ (P[ x i ] / ( Lb [ xi , x l ]∗Nr) )

152 # ∗ l o ca l D [ x l ]∗Dbar [ x l , x i ] ) ) ) ;

153
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154 # d i s p l a y {( xi , x j ) in Links : x i == snarp node } ( ( Lbar [ xi , x j ]∗

Sbar [ xi , x j ]∗ (P[ x i ] / ( Lb [ xi , x j ]∗Nr) )∗ l o ca l D [ x j ]∗Dbar [ xj , x i ] ) ) ;

155 # d i s p l a y {( xi , x j ) in Links : x i == snarp node } (sum{( xk , x l ) in

Links : xk <> x i and x l <> x j and x l <> x i }(

156 # Gamma1∗Sbar [ xi , x j ]∗ Lbar [ xk , x l ]∗ (P[ x i ] / ( Lb [ xi , x l ]∗Nr) )

157 # ∗ l o ca l D [ x l ]∗Dbar [ x l , x i ] ) ) ;

158 # d i s p l a y {( xi , x j ) in Links , ( xk , x l ) in Links : x i == snarp node

and xk <> x i and x l <> x j and x l <> x i } (Gamma1∗Sbar [ xi , x j ]∗ Lbar [ xk , x l ]∗ (

P[ x i ] / ( Lb [ xi , x l ]∗Nr) )∗ l o ca l D [ x l ]∗Dbar [ x l , x i ] ) ;

159 # d i s p l a y {( xi , x j ) in Links , ( xk , x l ) in Links : x i == snarp node

and xk <> x i and x l <> x j and x l <> x i } (Dbar [ x l , x i ] ) ;

160 # d i s p l a y Dbar ;

161

162

163

164 ## Set / update l o c a l v e r s i on o f v a r i a b l e s

165 l et { x i in Nodes , x j in Nodes} l o c a l Sba r [ xi , x j ] := Sbar [ xi , x j

] ;

166 l et {( xi , x j ) in Links } l o c a l Lba r [ xi , x j ] := Lbar [ xi , x j

] ;

167 l et { x i in Nodes , x j in Nodes} l o ca l Dbar [ xi , x j ] := Dbar [ xi , x j

] ;

168

169 p r i n t f ”SNARP: I t e r a t i o n %d , at node %d\n” , i t e r a t i o n ,

snarp node >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

170 d i sp l ay l o c a l Sba r >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

171 d i sp l ay Sbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

172 d i sp l ay l o ca l Lba r >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

173 d i sp l ay loca l Dbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

174 d i sp l ay Dbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;



318

175 d i sp l ay LocalVbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

176 d i sp l ay Vbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

177 d i sp l ay { other in Nodes} snarp component [ snarp node , other ] >>

( ”debug SNR . ” & dw i te r & ” . txt ”) ;

178 expand a l t e r n a t e s n a rp ob j >> ( ”debug SNR . ” & dw i te r & ” . txt ”

) ;

179 expand snarp ob j >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

180 p r i n t ”Al te rnate SNARP f o r u l a t i o n ” >> ( ”debug SNR . ” & dw i te r

& ” . txt ”) ;

181

182 ##acg : c a l l s alt SNARP

183 solve alt SNARP ;

184 d i sp l ay loca l D >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

185 d i sp l ay a l t e r n a t e s n a rp ob j >> ( ”debug SNR . ” & dw i te r & ” .

txt ”) ;

186 p r i n t ”Or i g i na l SNARP formulat ion ” >> ( ”debug SNR . ” & dw i te r

& ” . txt ”) ;

187 ##acg : c a l l s SNARP

188 solve SNARP;

189 d i sp l ay loca l D >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

190 d i sp l ay snarp ob j >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

191

192 l et {k in Nodes} temp D [ snarp node , k ] := loca l D [ k ] ;

193 l et {p in Pats} Bbar [ snarp node , p ] := lo ca l B [ p ] ;

194 }

195 #Apply EMWA to Dbar here , ( i n s t ead o f where temp D i s se t , f o r no

p a r t i c u l a r reason )

196

197 l et { i in Nodes , j in Nodes} Dbar [ i , j ] :=

198 ( ( ewma dbar alpha ∗ temp D [ i , j ] ) +
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199 ( (1 − ewma dbar alpha ) ∗ Dbar [ i , j ] ) ) ;

200 }

201 else {

202 ## Solve FARP

203 ##acg : c a l l s FARP

204 ##acg : c a l l s s o l v e t ime

205 ##acg : c a l l s f a r p o b j

206 solve FARP;

207 l et f a r p i t e r t im e := so l v e t ime ;

208 d i sp l ay FARP. r e s u l t ;

209 d i sp l ay f a rp ob j ;

210 l et { i in Nodes , j in Nodes} Dbar [ i , j ] := D[ i , j ] ;

211 }

212

213

214 d i sp l ay Dbar ;

215

216

217 #SINGLE−NODE−FLAP

218 l et { i in Nodes , j in Nodes} Sbar [ i , j ] := TmpSbar [ i , j ] ;

219 l et { i in Nodes} Vbar [ i ] := LocalVbar [ i ] ;

220

221 d i sp l ay guan cur r l ag rang ian ;

222 d i sp l ay ( guan theta w star − guan cur r l ag rang ian ) ;

223 d i sp l ay guan g j ∗∗2 ;

224 d i sp l ay guan max sj ;

225

226

227 ## Debugging / Eva luat ion output
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228 p r i n t f ” I t e r a t i o n %d , post FARP\n−−−−−−−−−−−−−−−−−−−−−−−−\n\n” ,

i t e r a t i o n >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

229 d i sp l ay {( i , j ) in Links } S [ i , j ] >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

230 i f ( sna rp not f a rp == 1) then {

231 d i sp l ay Bbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

232 }

233 p r i n t f ”In−use l i n k s \n” >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

234 d i sp l ay { i in Nodes , j in Nodes : ( ( i , j ) in Links or ( j , i ) in Links )

and Sbar [ i , j ]==1} Dbar [ i , j ] >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

235 p r i n t f ”∗Pos s i b l e ∗ I n t e r f e r e n c e l i n k s \n” >> ( ”debug SNR . ” & dw i te r &

” . txt ”) ;

236 d i sp l ay {k in Nodes , j in Nodes : ( ( k , j ) not in Links and ( j , k ) not in

Links ) and V[ k]==1} Dbar [ k , j ] >> ( ”debug SNR . ” & dw i te r & ” . txt ”)

;

237 d i sp l ay rssMW >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

238 d i sp l ay {( i , j ) in Links } rssMW[ i , j ] >> ( ”debug SNR . ” & dw i te r & ” . txt

”) ;

239

240 d i sp l ay rss dBm >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

241 d i sp l ay {( i , j ) in Links } rss dBm [ i , j ] >> ( ”debug SNR . ” & dw i te r & ” .

txt ”) ;

242

243 d i sp l ay interfereMW >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

244 d i sp l ay inter fe re dBm >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

245

246 d i sp l ay Nr >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

247 d i sp l ay trueSINR >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

248 d i sp l ay trueSINR dB >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

249

250 d i sp l ay SNR >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;
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251 d i sp l ay offOK >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

252 d i sp l ay i n t e r f e r e n c e >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

253

254 d i sp l ay S >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

255 d i sp l ay Sbar >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

256 d i sp l ay dbg CSC a1 >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

257 d i sp l ay dbg CSC a2 >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

258 d i sp l ay dbg CSC b >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

259

260 d i sp l ay CLAP SINR constraint >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

261 d i sp l ay CLAP SINR constraint real >> ( ”debug SNR . ” & dw i te r & ” . txt ”)

;

262 d i sp l ay Lbar s t ep unsca l ed >> ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

263

264 for { i in Nodes , p in Pats }{

265 i f ( sna rp not f a rp == 1) then

266 p r i n t f ”%d\ t%d\ t%d\ t%g\n” , i t e r a t i o n , i , p , Bbar [ i , p ] >> ( ”

antenna log . ” & dw i te r & ” . txt ”) ;

267 else

268 p r i n t f ”%d\ t%d\ t%d\ t%g\n” , i t e r a t i o n , i , p , B[ i , p ] >> ( ”

antenna log . ” & dw i te r & ” . txt ”) ;

269 }

270

271 for { i in Nodes , j in Nodes}{

272 p r i n t f ”%d\ t%d\ t%d\ t%g\n” , i t e r a t i o n , i , j , Dbar [ i , j ] >> ( ”

ga i n l o g . ” & dw i te r & ” . txt ”) ;

273 }

274 for {( i , j ) in Links }{

275 p r i n t f ”%d\ t%d\ t%d\ t%g\ t%g\ t%g\ t%g\n” , i t e r a t i o n , i , j , Sbar [ i

, j ] , HatS [ i , j ] , trueSINR [ i , j ] , CLAP SINR constraint [ i , j ]
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>> ( ” l i n k l o g . ” & dw i te r & ” . txt ”) ;

276 }

277

278 for {( i , j ) in Links }{

279 p r i n t f ”%d\ t%d\ t%d\ t%g\ t%d\ t%g\ t%g\ t%g\ t%g\n” , i t e r a t i o n , i , j

, Lbar [ i , j ] ,

280 f l ap r eward us e [ i , j ] , f lap reward SINR [ i , j ] , f l a p r ewa rd nu l l [

i , j ] ,

281 f l a p l a g r ang e [ i , j ] , max lbar [ i , j ] >> ( ”rewards . ” & dw i te r & ”

. txt ”) ;

282 }

283

284 for { i in Nodes}{

285 p r i n t f ”%d\ t%d\ t%g\n” , i t e r a t i o n , i , mu[ i ] >> ( ”dua l f l a p . ” &

dw i te r & ” . txt ”) ;

286 }

287

288

289

290

291 #Al l the bar ∗ parameters∗ now conta in the most recen t

292 #∗ v a r i a b l e s ∗ , so the f o l l ow i n g ∗parameter∗ c a l c u l a t i o n s works :

293

294 l et s s i z e := s t e p s i z e [ i t e r a t i o n ] ;

295 l et mu ss := mu steps i ze [ i t e r a t i o n ] ;

296 d i sp l ay CLAP subgradient ;

297 d i sp l ay CLAP sg norm ;

298 d i sp l ay Lbar s t ep unsca l ed ;

299 d i sp l ay Lbar step ;

300
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301 d i sp l ay dup l ex con s t r a i n t ;

302 d i sp l ay duplex sg norm ;

303 d i sp l ay mu step ;

304

305 ## Mu l t i p l i e r Est imat ion ( by subg rad i en t method )

306

307 #Track prev ious va l u e s

308 for {( i , j ) in Links } l et Lbar prev [ i , j ] := Lbar [ i , j ] ;

309

310 #Enforce non−n e g a t i v i t y f o r ”mu” mu l t p l i e r s −− see McShane

311 #”The Lagrange Mu l t i p l i e r Rule ” , 1973 , The American

312 #Mathematical Monthly

313 ##acg : Lbar c a l l s Lbar sugge s t

314 for {( i , j ) in Links } l et Lbar [ i , j ] := max(0 , Lbar suggest [ i , j ] ) ;

315

316 ##acg : mu c a l l s mu suggest

317 for { i in Nodes} l et mu[ i ] := max(0 , mu suggest [ i ] ) ;

318 d i sp l ay mu;

319 d i sp l ay Lba r l a s t s t e p ;

320 d i sp l ay step l2 norm ;

321

322 #for {( i , j ) in Links } l e t Lbar [ i , j ] := Lbar sugge s t [ i , j ] ;

323

324 # Logging −− execu te a f t e r subg rad i en t update .

325 p r i n t f ”%d\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t%g\ t ” , i t e r a t i o n ,

CLAP obj , reduced cost , f l ap ob j , f a rp ob j , CLAP sg norm ,

ampl time , f l a p i t e r t im e , f a r p i t e r t ime , Lbar step l2 norm ,

mu step l2 norm , step l2 norm >> ( ”runlog . ” & dw i te r & ” . txt ”) ;

326 p r i n t f {( i , j ) in Links } : ”%g\ t ” , Lbar [ i , j ] >> ( ”runlog . ” & dw i te r & ” .

txt ”) ;
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327 p r i n t f {( i , j ) in Links } : ”%g\ t ” , S [ i , j ] >> ( ”runlog . ” & dw i te r & ” .

txt ”) ;

328 #p r i n t f { i in Nodes , p in Pats } : ”%g\ t ” , B[ i , p ] >> (”run log . ” &

dw i t e r & ”. t x t ”) ;

329 p r i n t f ”\n” >> ( ”runlog . ” & dw i te r & ” . txt ”) ;

330

331 # d i s p l a y SINR wouldbe ok ;

332 # d i s p l a y Vbar wouldbe ok ;

333 # d i s p l a y dup l ex wou ldbe ok ;

334 # d i s p l a y l i n k wou l d b e ok ;

335

336 ## Maintain EWMA smoothed es t imate o f S [ i , j ]

337 l et {( i , j ) in Links } HatS [ i , j ] := (

338 ( ewma hats alpha ∗ Sbar [ i , j ] ) +

339 ( (1 − ewma hats alpha ) ∗ HatS [ i , j ] ) ) ;

340

341 p r i n t f ”S ta r t i ng pr imal recovery \n” ;

342 #re s t o r e c l o s e s t p r ima l ;

343 #expand c l o s e s t p r ima l ;

344 #so l v e RECOVER PRIMAL;

345

346 ## Binary search on a c t t h r e s h o l d f o r f e a s i b l e s e t wi th l owe s t reduced

co s t

347 l et a c t th r e sho l d := 0 . 5 ;

348 l et b s s s := 0 . 2 5 ;

349 l et be s t r c := 1 ;

350 l et be s t th r e sh :=1;

351 p r i n t f ”\ t th r e sho l d \ t f e a s .\ treduced co s t \n” ;

352 repeat {

353 ## Try antenna c f g .
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354 # for { i in Nodes} {

355 # l e t snarp node := i ;

356 # ## Set / update l o c a l v e r s i on o f v a r i a b l e s

357 # l e t { x i in Nodes , x j in Nodes} l o c a l S b a r [ xi , x j ] :=

358 # t r i a l S [ xi , x j ] ;

359 # l e t {( xi , x j ) in Links } l o c a l L ba r [ xi , x j ] :=

360 # i f ( t r i a l S [ xi , x j ] == 1) then Lbar [ xi , x j ] e l s e 0 ;

361 # l e t { x i in Nodes , x j in Nodes} l o ca l Dbar [ xi , x j ] :=

362 # Dbar [ xi , x j ] ;

363 # so l v e SNARP;

364 # d i s p l a y snarp node ;

365 # expand snarp ob j ;

366 # d i s p l a y l o c a l L ba r ;

367 # d i s p l a y l o c a l S b a r ;

368 # d i s p l a y l oca l D ;

369 # l e t {k in Nodes} t r i a l D [ i , k ] := loca l D [ k ] ;

370 # l e t {p in Pats} t r i a l B [ i , p ] := l o ca l B [ p ] ;

371 # }

372 l et { i in Nodes , j in Nodes} t r i a l D [ i , j ] :=Dbar [ i , j ] ;

373 p r i n t f ”\ t%f \ t%d\ t%d\n” , ac t th r e sho ld , t r i a l l i n k s o k ,

t r i a l r c ;

374 i f ( ( t r i a l l i n k s o k == 1) and

375 ( t r i a l r c <= be s t r c ) ) then {

376 l et be s t r c := t r i a l r c ;

377 l et be s t th r e sh := ac t th r e sho l d ;

378 } ;

379 d i sp l ay t r i a l S ;

380 d i sp l ay t r i a l d u p l e x c o n s t r a i n t ;

381 d i sp l ay t r i a l D ;

382 d i sp l ay t r i a l S INR con s t r a i n t ;
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383 d i sp l ay t r i a l l i n k s o k ;

384 d i sp l ay t r i a l r c ;

385

386 i f ( t r i a l l i n k s o k == 1) then {

387 # reduce t h r e s h o l d as long as f e a s i b i l i t y i s maintained

388 l et a c t th r e sho l d := ac t th r e sho l d − b s s s ;

389 }

390 else {

391 # increa se t h e s ho l d u n t i l f e a s i b l e

392 l et a c t th r e sho l d := ac t th r e sho l d + bs s s ;

393 } ;

394

395

396 l et b s s s := b s s s /2 ;

397 } while ( b s s s > 0 . 002 ) ;

398 l et a c t th r e sho l d := be s t th r e sh ;

399 #d i s p l a y t r i a l d u p l e x c o n s t r a i n t ;

400 #d i s p l a y t r i a l S INR con s t r a i n t ;

401 #d i s p l a y t r i a l l i n k s o k ;

402 #d i s p l a y t r i a l r c ;

403

404 p r i n t f ”C lo s e s t pr imal po int :\n” ;

405 p r i n t f ”−−−−−−−−−−−−−−−−−−−−−\n” ;

406 d i sp l ay t r i a l S ;

407 d i sp l ay a c t th r e sho l d ;

408 d i sp l ay t r i a l r c ;

409 d i sp l ay t r i a l l i n k s o k ;

410 #d i s p l a y PrimalV ;

411 p r i n t f ”d i s t anc e : %f \n” , c l o s e s t p r ima l ;

412 p r i n t f ”−−−−−−−−−−−−−−−−−−−−−\n” ;
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413

414 i f ( t r i a l r c < r c t h r e sh ) then {

415 p r i n t f ”\nPost−opt imized antennas f o r candidate schedu le :\n” ;

416 #so l v e improve antennas ;

417 #d i s p l a y { i in Nodes , j in Nodes} ( t r i a l D [ i , j ] , D[ i , j ] ) ;

418 p r i n t f ”Pre−opt SINR in f o \n” ;

419 d i sp l ay t r i a l S INR con s t r a i n t ;

420 d i sp l ay t trueSINR dB ;

421 # l e t { i in Nodes , j in Nodes} t r i a l D [ i , j ] := D[ i , j ] ;

422 # p r i n t f ”Post−opt SINR in f o \n ”;

423 # d i s p l a y t r i a l S INR con s t r a i n t ;

424 # d i s p l a y t trueSINR dB ;

425 d i sp l ay B;

426 d i sp l ay Lb ;

427 d i sp l ay pat ga in ;

428 d i sp l ay max l ink impact fac to r ;

429 d i sp l ay p i s s i ng budge t ;

430 for {blah in Nodes} {

431 l et th i s node := blah ;

432 ##acg : c a l l s d i s t improve an tennas

433 solve d i s t improve antennas ;

434 l et { j in Nodes} tmp tr ia l D [ th i s node , j ] := loca l D [ j

] ;

435 d i sp l ay blah , l o ca l D ;

436 d i sp l ay blah , l o ca l B ;

437 }

438 l et { i in Nodes , j in Nodes} t r i a l D [ i , j ] := tmp tr ia l D [ i , j ] ;

439 p r i n t f ”Post−d i s t−opt SINR in f o \n” ;

440 d i sp l ay t r i a l S INR con s t r a i n t ;

441 d i sp l ay t trueSINR dB ;
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442

443

444 i f ( exists { l in LinkSets } (not exists {( i , j ) in Links }

445 ( t r i a l S [ i , j ] > l i n k i n s e t [ l , i , j ] ) ) ) then { #must not be

equa l to OR DOMINATED BY e x i s t i n g l i n k s e t

446

447 p r i n t ”Rejected l i n k s e t ! ” ;

448 d i sp l ay { l in LinkSets } : {( i , j ) in Links } l i n k i n s e t [ l , i , j ] ;

449 d i sp l ay t r i a l S ;

450 } else {

451 l et num l ink se t s := num l ink se t s +1;

452 l et index := next ( index , LinkSets ) ;

453 l et {( i , j ) in Links } l i n k i n s e t [ index , i , j ] := t r i a l S [ i , j ] ;

454 l et s e t s t h i s dw i t e r := s e t s t h i s dw i t e r + 1 ;

455

456 # c l o s e (”run log . ” & dw i t e r & ”. t x t ”) ;

457 # c l o s e (”debug SNR . ” & dw i t e r & ”. t x t ”) ;

458 # c l o s e (”antenna log . ” & dw i t e r & ”. t x t ”) ;

459 # c l o s e (” g a i n l o g . ” & dw i t e r & ”. t x t ”) ;

460 # c l o s e (” l i n k l o g . ” & dw i t e r & ”. t x t ”) ;

461 # c l o s e (”rewards . ” & dw i t e r & ”. t x t ”) ;

462 # c l o s e (” d u a l f l a p . ” & dw i t e r & ”. t x t ”) ;

463

464 p r i n t ”Added l i n k s e t . Continuing ” ;

465 d i sp l ay t r i a l S ;

466

467 p r i n t ”Added l i n k s e t . Continuing ” >> dw log . txt ;

468 d i sp l ay {( i , j ) in Links } t r i a l S [ i , j ] >> dw log . txt ;

469

470 i f ( s e t s t h i s dw i t e r >= num set s per dw i te r ) then {
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471 #se t Sbar so t ha t r educed cos t parameter i s c o r r e c t .

472 l et {( i , j ) in Links } Sbar [ i , j ] := t r i a l S [ i , j ] ;

473 break ;

474 }

475 }

476 }

477

478

479 ## Try short−c i r c u i t c ond i t i on s

480 ##acg : c a l l s CLAP SINR constraint

481 ##acg : c a l l s d up l e x c on s t r a i n t

482 ##acg : c a l l s r educed cos t

483 i f ( ( i t e r a t i o n > abs min i t e r ) and

484 ( r educed cos t < r c t h r e sh ) and

485 ( f o ra l l {( i , j ) in Links } CLAP SINR constraint [ i , j ] > 0) and

486 ( f o ra l l { i in Nodes} dup l ex con s t r a i n t [ i ] <= 0) and

487 ( f o ra l l {( i , j ) in Links } ( Sbar [ i , j ] == 0 or Sbar [ i , j ]==1) ) #no

f r a c t i o n a l a c t i v a t i o n

488 ) then {

489

490 for { l in LinkSets } {

491 i f (not exists {( i , j ) in Links } ( Sbar [ i , j ] > l i n k i n s e t [ l , i , j

] ) ) then {

492 p r i n t l ;

493 p r i n t ”LinkSet >= Sbar ” ;

494 d i sp l ay Sbar ;

495 d i sp l ay {( xi , x j ) in Links } l i n k i n s e t [ l , xi , x j ] ;

496 }

497 }

498
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499 i f ( exists { l in LinkSets } (not exists {( i , j ) in Links }

500 ( Sbar [ i , j ] > l i n k i n s e t [ l , i , j ] ) ) ) then { #must not be

equa l to OR DOMINATED BY e x i s t i n g l i n k s e t

501

502 p r i n t ”Rejected l i n k s e t ! ” ;

503 d i sp l ay { l in LinkSets } : {( i , j ) in Links } l i n k i n s e t [ l , i , j ] ;

504 d i sp l ay Sbar ;

505 } else {

506 l et num l ink se t s := num l ink se t s +1;

507 l et index := next ( index , LinkSets ) ;

508 l et {( i , j ) in Links } l i n k i n s e t [ index , i , j ] := Sbar [ i , j ] ;

509 l et s e t s t h i s dw i t e r := s e t s t h i s dw i t e r + 1 ;

510

511 # c l o s e (”run log . ” & dw i t e r & ”. t x t ”) ;

512 # c l o s e (”debug SNR . ” & dw i t e r & ”. t x t ”) ;

513 # c l o s e (”antenna log . ” & dw i t e r & ”. t x t ”) ;

514 # c l o s e (” g a i n l o g . ” & dw i t e r & ”. t x t ”) ;

515 # c l o s e (” l i n k l o g . ” & dw i t e r & ”. t x t ”) ;

516 # c l o s e (”rewards . ” & dw i t e r & ”. t x t ”) ;

517 # c l o s e (” d u a l f l a p . ” & dw i t e r & ”. t x t ”) ;

518

519 p r i n t ”Added l i n k s e t . Continuing ” ;

520 d i sp l ay Sbar ;

521

522 p r i n t ”Added l i n k s e t . Continuing ” >> dw log . txt ;

523 d i sp l ay {( i , j ) in Links } Sbar [ i , j ] >> dw log . txt ;

524

525 i f ( s e t s t h i s dw i t e r >= num set s per dw i te r ) then break ;

526 }

527 }
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528

529 ## Termination cond i t i on s : Note t ha t count ing up to max i ter s t e p s

w i l l a l s o break

530 i f ( ( i t e r a t i o n > e a r l y e x i t m i n i t e r ) and

531 ( Lbar step l2 norm <= sma l l enough lba r s t ep ) and

532 ( mu step l2 norm <= small enough mu step ) ) then {

533

534 ## Make sure HatS g e t s to catch up , and va l u e s are s t a b l e .

535 d i sp l ay Lbar step l2 norm ;

536 d i sp l ay Lbar step l2 norm >> dw log . txt ;

537 d i sp l ay mu step l2 norm ;

538 d i sp l ay mu step l2 norm >> dw log . txt ;

539 c l o s e ( ”runlog . ” & dw i te r & ” . txt ”) ;

540 c l o s e ( ”debug SNR . ” & dw i te r & ” . txt ”) ;

541 c l o s e ( ”antenna log . ” & dw i te r & ” . txt ”) ;

542 c l o s e ( ”ga i n l o g . ” & dw i te r & ” . txt ”) ;

543 c l o s e ( ” l i n k l o g . ” & dw i te r & ” . txt ”) ;

544 c l o s e ( ”rewards . ” & dw i te r & ” . txt ”) ;

545 c l o s e ( ”dua l f l a p . ” & dw i te r & ” . txt ”) ;

546 p r i n t ”Breaking : s tep s i z e l 2 norm −> 0 . ” ;

547 p r i n t ”Breaking : s tep s i z e l 2 norm −> 0 . ” >> dw log . txt ;

548 break ;

549 }

550

551

552 #break ;

553

554 } #End ”f o r i t e r a t i o n in Steps ”

555 c l o s e ( ”runlog . ” & dw i te r & ” . txt ”) ;

556 c l o s e ( ”debug SNR . ” & dw i te r & ” . txt ”) ;
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557 c l o s e ( ”antenna log . ” & dw i te r & ” . txt ”) ;

558 c l o s e ( ”ga i n l o g . ” & dw i te r & ” . txt ”) ;

559 c l o s e ( ” l i n k l o g . ” & dw i te r & ” . txt ”) ;

560 c l o s e ( ”rewards . ” & dw i te r & ” . txt ”) ;

561 c l o s e ( ”dua l f l a p . ” & dw i te r & ” . txt ”) ;

D.2.2 Off-Line Evaluation

Listing D.15: compare-versions.ampl

1 ## Basic command f i l e

2 reset ;

3

4 # 1: JBSS−FLAP

5 # 2: Cen t ra l i z ed Dantzig−Wolfe

6 # 3: Pseudo−d i s t r i b u t e d

7 param exec mode ;

8

9 data compare−mode . dat ;

10

11

12 ##acg : i n c l ude cen t ra l ea s tdma .mod

13 model cent ra l ea s tdma .mod ;

14 ##acg : i n c l ude stdma auto . dat

15 data stdma auto . dat ;

16

17 param sna rp not f a rp = 1 ;

18

19 ## Res t r i c t e d Master Problem

20

21 d i sp l ay q ;

22
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23 # I n i t i a l i z e columns wi th s imple TDMA

24 ##acg : c a l l s index

25 ##acg : c a l l s L inkSets

26 param index in LinkSets ;

27 for {( i , j ) in Links }{

28 ##acg : c a l l s num l ink s e t s

29 l et num l ink se t s := num l ink se t s +1;

30 i f ( num l ink se t s == 1) then let index := f i r s t ( LinkSets ) ;

31 else let index := next ( index , LinkSets ) ;

32 l et l i n k i n s e t [ index , i , j ] := 1 ;

33 }

34

35 param dw i te r integer >0;

36 l et dw i te r := 1 ;

37 param o ld num l ink s e t s integer >0;

38 param r c a l i a s default 0 ;

39 p r i n t f ”D−W Log :\n−−−−−−−−−−−−−\n\n” > dw log . txt ;

40 repeat{

41 p r i n t f ”DBG 0!\n” ;

42 p r i n t f ” I t e r a t i o n : %d\n−−−−−−−−−−−−−−−\n” , dw i t e r >> dw log . txt ;

43 p r i n t f ”DW I t e r a t i o n : %d\n−−−−−−−−−−−−−−−\n” , dw i t e r ;

44 ## d i s p l a y l i n k i n s e t >> dw log . t x t ;

45 ##acg : c a l l s RMP

46 solve RMP;

47 p r i n t f ”Beginning Object ive : %d\n” , RMP obj >> dw log . txt ;

48 p r i n t f ”DW i t e r a t i o n beg inn ing ob j e c t i v e : %d\n” , RMP obj ;

49 d i sp l ay x >> dw log . txt ;

50 ## Use r e a l dua l va l u e s f o r b e t a t !

51 l et {( i , j ) in Links } beta t [ i , j ] := max( demand coverage [ i , j ] . dual , 0 ) ;

52
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53 ##acg : d i s p l a y c a l l s b e t a t

54 d i sp l ay be ta t >> dw log . txt ;

55 ##acg : c a l l s o l d num l i n k s e t s

56 ##acg : c a l l s num l ink s e t s

57 l et o ld num l ink s e t s := num l ink se t s ;

58

59 ## Mode dec i s i on here !

60 i f ( exec mode == 3) then {

61 ##acg : i n c l ude stdma subproblem . ampl

62 commands stdma subproblem . ampl ;

63 }

64 i f ( exec mode == 2) then {

65 commands s o l v e c l a p . ampl ;

66 }

67 p r i n t f ”Subproblem terminated \n” >> dw log . txt ;

68 p r i n t f ”Subproblem terminated \n” ;

69

70 ##acg : c a l l s r c a l i a s

71 ##acg : c a l l s r educed cos t

72 ##acg : r c a l i a s c a l l s r educed cos t

73 l et r c a l i a s := reduced cos t ;

74 p r i n t f ”DBG 1!\n” ;

75 ##acg : c a l l s num l ink s e t s

76 ##acg : c a l l s o l d num l i n k s e t s

77 i f ( num l ink se t s != o ld num l ink s e t s ) then {

78 p r i n t f ”Number o f new l i n k s e t ( s ) : %d\n” , ( num l ink se t s −

o ld num l ink s e t s ) >> dw log . txt ;

79 }

80 else {
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81 p r i n t f ”No new l i n k s e t s ( even with good reduced co s t ) −> no

primal f e a s i b l e s o l u t i o n . ” >> dw log . txt ;

82 break ;

83 }

84 #d i s p l a y Sbar >> dw log . t x t ;

85 p r i n t f ”DBG 2!\n” ;

86 ##acg : c a l l s dw i t e r

87 l et dw i te r := dw i te r +1;

88 p r i n t f ”DBG 3!\n” ;

89 ##acg : d i s p l a y c a l l s dw i t e r

90 d i sp l ay reduced cos t >> dw log . txt ;

91 p r i n t f ”DBG 3 . 5 ! \ n” ;

92 ##acg : c a l l s r c a l i a s

93 ##acg : c a l l s r c t h r e s h

94 } while ( r c a l i a s < −0.9) ; #XXX made−up t h r e s h o l d . Otherwise , j i t t e r i n g

b e t a t a l l ow s i n f i n i t e stream of i n f i n t e s s ima l improvements .

95 p r i n t f ”DBG 4!\n” ;

96

97 p r i n t f ”\n” >> dw log . txt ;

98 p r i n t f ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” >> dw log .

txt ;

99 p r i n t f ” | Execution Complete | \n” >> dw log .

txt ;

100 p r i n t f ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n” >> dw log .

txt ;

101 p r i n t f ”Post−loop s t a tu s ( I t e r a t i o n s=%d) \n−−−−−−−−−−−−−−−−−−−−−−−−−\n” ,

dw i t e r >> dw log . txt ;

102

103 d i sp l ay {z in LinkSets } : {( i , j ) in Links } l i n k i n s e t [ z , i , j ] >> dw log . txt ;

104
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105 d i sp l ay x >> dw log . txt ;

106 ##acg : d i s p l a y c a l l s l i n k i n s e t

107 ##acg : d i s p l a y c a l l s x

Listing D.16: solve clap.ampl

1 ## Compute M[ i , j ]

2 ##acg : c a l l s o t h e r l i n k s

3 ##acg : c a l l s i n t e r f e r e n c e o b j

4

5 for {( i , j ) in Links }{

6 l et {(k , l ) in Links } t a r g e t p [ k , l ] := 0 ;

7 l et t a r g e t p [ i , j ] := 1 ;

8 solve o t h e r l i n k s ;

9 l et max i [ i , j ] := i n t e r f e r e n c e o b j ;

10 }

11 l et {( i , j ) in Links } M[ i , j ] := Mij [ i , j ] ;

12

13 d i sp l ay NodesUsed ;

14

15 d i sp l ay be ta t ;

16 d i sp l ay M;

17

18 d i sp l ay pat ga in ;

19

20 d i sp l ay Lb ;

21 expand CCLAP OBJ;

22 solve CCLAP;

23 write gcc lap ;

24

25 d i sp l ay CCLAP OBJ; #ob j e c t i v e va lue
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26

27 d i sp l ay logS , logS . s lack , logS . rc ;

28 d i sp l ay logD , logD . s lack , logD . rc ;

29 #d i s p l a y logV , logV . s l ack , logV . rc ;

30 d i sp l ay B, B. s lack , B. rc ;

31

32 l et {( i , j ) in Links } i n f e r r e dS [ i , j ] := exp ( logS [ i , j ] ) ;

33 d i sp l ay logS ;

34 #d i s p l a y der ivedS ;

35 d i sp l ay i n f e r r e dS ;

36

37 # l e t {( i , j ) in Links } in ferredT [ i , j ] := exp ( logT [ i , j ] ) ;

38 # d i s p l a y logT ;

39 # d i s p l a y in ferredT ;

40

41 # l e t { i in Nodes} in ferredV [ i ] := exp ( logV [ i ] ) ;

42 # d i s p l a y logV ;

43 # d i s p l a y in ferredV ;

44

45 #d i s p l a y CCLAP SINR1. s l a c k ;

46 #d i s p l a y CCLAP SINR2. s l a c k ;

47

48 expand CCLAP SINR NEW;

49

50 d i sp l ay CCLAP SINR NEW;

51 d i sp l ay CCLAP SINR NEW. s l a ck ;

52

53 # d i s p l a y CCLAP SV;

54 # d i s p l a y CCLAP SV. s l a c k ;

55
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56 d i sp l ay CCLAP DUPLEX;

57 d i sp l ay CCLAP DUPLEX. s l a ck ;

58

59

60 d i sp l ay CCLAP DUPLEX PAIRWISE;

61 d i sp l ay CCLAP DUPLEX PAIRWISE. s l a ck ;

62

63 # d i s p l a y {( i , j ) in Links } : {k in Nodes : ( i , k ) in Links and k<>i and k <> j }

CCLAP DUPLEX PAIRWISE1[ i , j , k ] ;

64 # d i s p l a y CCLAP DUPLEX PAIRWISE1. s l a c k ;

65

66 # d i s p l a y CCLAP DUPLEX PAIRWISE2;

67 # d i s p l a y CCLAP DUPLEX PAIRWISE2. s l a c k ;

68

69 # d i s p l a y CCLAP DUPLEX PAIRWISE3;

70 # d i s p l a y CCLAP DUPLEX PAIRWISE3. s l a c k ;

71

72 # d i s p l a y CCLAP DUPLEX PAIRWISE4;

73 # d i s p l a y CCLAP DUPLEX PAIRWISE4. s l a c k ;

74

75

76 l et { i in Nodes , j in Nodes} i n f e r r edD [ i , j ] := exp ( logD [ i , j ] ) ;

77 d i sp l ay logD ;

78 d i sp l ay in f e r r edD ;

79

80 d i sp l ay B;

81

82 #so l v e CLAP;

83

84 # # Informat ion output
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85 # d i s p l a y b e t a t ;

86 # d i s p l a y Links ;

87 # d i s p l a y VBIN;

88 # d i s p l a y SBIN ;

89 # d i s p l a y D;

90 # d i s p l a y B;

91

92 l et {( i , j ) in Links } Sbar [ i , j ] := i n f e r r e dS [ i , j ] ;

93 # l e t { i in Nodes} Vbar [ i ] := in ferredV [ i ] ;

94 l et { i in Nodes , j in Nodes} Dbar [ i , j ] := in f e r r edD [ i , j ] ;

95

96 d i sp l ay Sbar ;

97 d i sp l ay Dbar ;

98

99 d i sp l ay CLAP SINR constraint real ;

100

101 d i sp l ay rx signal MW ;

102 d i sp l ay rx nonsignal MW ;

103 d i sp l ay better inter f e re MW ;

104 d i sp l ay betterSINR ;

105 d i sp l ay betterSINR dB ;

106

107 #Forcing to boo lean

108 #l e t {( i , j ) in Links } Sbar [ i , j ] := i f ( i n f e r r edS [ i , j ] >= almost one ) then 1

e l s e 0 ;

109 #l e t { i in Nodes} Vbar [ i ] := i f ( in ferredV [ i ] >= almost one ) then 1 e l s e 0 ;

110 #l e t { i in Nodes , j in Nodes} Dbar [ i , j ] := in ferredD [ i , j ] ;

111

112 d i sp l ay Sbar ;

113 d i sp l ay Dbar ;
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114

115 ## Add r e s u l t s to D−W master problem

116 l et num l ink se t s := num l ink se t s +1;

117 l et index := next ( index , LinkSets ) ;

118 l et {( i , j ) in Links } l i n k i n s e t [ index , i , j ] := Sbar [ i , j ] ;

There are no further listings.


