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Abstract—802.11 localization algorithms provide the ability to be installed to collect the necessary information to penfor
accurately position and track wireless clients thereby enabling the localization.
{hoss Iocalzaiion t6CTIqUGS are vuInerable 1o non-ciyptographic.  WWE implement a representative set of RSS-hased local-

izati - s . . . .

attacks where an advergary uses a low-cost directio);lgl gntgnna 'Za_“c?“ algor_lthms and conduct experiments in a r(_aal office
to appear from the localization algorithm’s perspective to be building environment. The results show that the directiona
in another arbitrary location of their choosing. The attackers attack enables an adversary to actively influence theititmta
ability to actively influence where they are positioned is a key prediction by focusing the directional antenna toward areds
|dIStI?g;tlisohr:ne?tt;iaktsu;ﬁact)fu?ee t?a:;escrmnacl) V\E/‘gf‘é'énrﬁgt;‘c’)eig?ro%r&%; position. In addition, our results indicate that the diieual at-
ocaliz . . P N
localization errors. We implement a re[[))resentative set of receivk tack is capable of pmducmg_s'gmf'ca_nt Iocallzat_lon esrtirat
signal strength-based localization algorithms and evaluate the are greater than can be achieved using transmit power ¢ontro
attack in a real office building environment. To mitigate the alone. Our results also indicate that even some secure RSS-
attack’s effectiveness, we develop and evaluate an attack @etion  pased localization techniques are vulnerable to the dineait
scheme that offers a high detection rate with few false positives. 5450k

We measure the localization errors and teleportation &ffec
that are produced under the directional attack and als@expl
how adding transmit power control influences the attack’s

Systems that use existing wireless infrastructure to ocatffectiveness. We find that an attacker who points the direc-
and track wireless clients are becoming ubiquitous and hawenal antenna down long corridors has the ability to appear
great potential to offer a wide variety of location-awarén the direction of their choice more than 75% of the time.
services. In particular, security services such as roguiEele In addition, the results show that these attacks can produce
detection [1] and location-based access control [2] arer@meexpected localization errors in excess of 18 meters. This is
ing applications for localization systems. As such seguritan increase in error of approximately 300% over the expected
services become widely deployed, malicious users will halscalization error without attack, and an increase of 208%r o
increased incentive to spoof their locations with suffitiemprevious transmit power control attacks.
precision to remain hidden or gain unauthorized access toHaving demonstrated and evaluated the directional attack,
network resources. we present an attack detection technique based on our em-

To this end, we propose a physical layer localization attaglrical data. We show that it achieves a high attack detectio
using inexpensive directional antennas. The key distsigng rate of over 90% against both directional and transmit power
feature of the directional attack relative to prior locatibn control attacks while maintaining a low false positive réaé
attacks that use transmit power control to introduce laeali most 10%).
tion errors [3]-[5] is the attacker’s ability to activelyfinence Contributions. This work contributes the following:

where they are pOSitiOHEd. We call the attacker’s abl'lty to 1) We propose a physica| |aye|’ attack against RSS-based

appear reliably at a location of their choice teleportation = 802.11 localization techniques that utilizes an inexpen-

effects. We demonstrate the efficacy of this attack using an  sjve directional antenna and gives an attacker significant

extremely low-cost directional antenna built from a tin can control over where their position is estimated.

commonly called a “cantenna.” 2) We evaluate the directional attack by implementing lo-
Since most commercial localization systems use the re-  calization algorithms based upon thaearest neighbors

ceived signal strength (RSS) property of the wireless signa  and Nave Bayes classifiers and conducting experiments

and one of a number of localization algorithms to calculate a  in a real office building environment.

location estimate [6]-[12], we limit our evaluation to RSS- 3) We present and empirically validate a technique to

based algorithms. While other localization techniques have identify directional attackers that offers a high deteatio

been proposed using a variety of techniques including angle rate with few false positives.

of arrival (AOA) [13], [14], time of arrival (TOA) [15], and

time difference of arrival (TDOA) [16], these systems have Il. BACKGROUND

not seen the same level of deployment due to the requiremenin this section, we provide a brief introduction to the

that additional (and often non-commodity) infrastructomast problem of wireless device localization. We next descrie t

I. INTRODUCTION
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A. RSS-based Localization - A d
Predicting a wireless device’s physical location in an iodo “" . ) & 1 "_'ﬁ

environment has been accomplished using techniques base @ e 4 1

on received signal strength (RSS) [6]-[12], angle of atriva \z% PO -1 .. —

(A0A) [13], [14], time of arrival (ToA) [15], and time differ — S e i

ence of arrival (TDoA) [16]. In this paper, we consider only
localization techniques that are based on RSS, as these ¢t
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be constructed with commodity 802.11 hardware and stock| .« .~ * PR 25
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RSS-based localization refers to the task of estimating ar;

802.11 device’s physical location using only signal stthng e Al :ﬁﬁ |
information. Due to the inherently noisy nature of the RSS f F TTT T]j” a
measurements, RSS-based localization algorithms tWJicalm0 L L e Ll Aéo I

apply statistical/machine learning techniques, and mdda
two phases; Fig. 1. The layout of the experimental localization deploymen
1) An offline training phaseis conducted in which sev-
eral received signal strength indication (RSSI) readings
t; = (rq1,...,7in) are collected over a set of passive Ill. ATTACK MODEL
receivers and are labeled with the transmitter’s true Our attack model assumes that there is an indoor 802.11
physical location and orientation, = (x;,y;, 0;). network and a localization system that attempts to phyical
2) During the onlindocalization phasgthe observed RSSI localize wireless clients within signal range of the netiwor
readingso; = (rj1,...,7;») are used to produce thewithout any cooperation from the clients. The localization
device's estimated locatiop; = (2, ¥/; ). system is composed of passive monitors that collect RSSI in-
B. k-Nearest Neighbors Localization }‘g(r:r;t?ct:r?; from locations that are different from the monito
RADAR uses the:-nearest neighbors learning algorithm to The adversary’s primary goal is to produce significant local
provide location estimates with minimal localization es{6].  jzation errors focused in a specific direction of their clings
Using Euclidean distance, thk closest training points to Thejr secondary objective is to simply introduce a large
the observed RSS vector in-dimensional vector space ofamount of error into the system’s location prediction, stz
all signal strength measurements are chds@he mean of the adversary’'s wireless device appears to be significéatly
their physical coordinates is computed to produce a looatigyay from their true location. The adversary utilizes a lging
estimate. - ) ) commodity 802.11 wireless card and a low-cost directional
In addition to the traditionak-nearest neighbors algorithm,gntenna, such as a “cantenna,” constructed from a discarded
we consider a variant that minimizes the median of th& can.
distances in each dimensiomediarj_, (r; —r;)*. Prior work  \we finally assume that the attacker has no prior knowledge
has suggested that this approach is more resilient to tiinsghout the placement of the passive monitors, the locatizati

power attacks [17]. algorithm being used, or the location of the training paints
C. Ndve Bayes Localization

Localization techniques that use theiXaBayes classifier
have been proposed in [3], [9], [12], [18]. This approach iﬁs
based on the application of Bayes’ theorem to obtain a positi
estimate. Using Bayes’ theorem, the conditional probghbili
of observing a signal strength vector from the training da
at a particular position is computed. During the localizati
phase, the position estimate is the position that maxinttziss
probability for the observed signal strength vector.

IV. EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we describe the experimental process we
ed to demonstrate and evaluate the effectiveness ofrée di
tional attack. We next present the results of our experiment
As the first step toward understanding the consequences of
% adversary using a directional antenna, we examine how
directional antennas effect localization errors. Hdoxal-
ization error is defined as the Euclidean distance between

. . ) . the user’s true physical location and the algorithm’s lmrat
We also consider a variant of N& Bayes called thBiffer- Py 9

. . estimate. We next evaluate the extent to which an adversary
ence Methodwhere the mean signal strength at each MONItAL i fuence their location prediction
is computed for a short observation period and the pairwiserha site for our experiments is a standard office space

difference in average signal strengths over the Obse"’ati&easuring 75 x 50 meters This indoor environment is
pe.r|od for each monitor is used to train a Bayesian Cl"’.‘ss'f'gﬁfficiently large and diverse.¢., it has long hallways, large
Prior work ha_s suggested that the dlffergnce method IS MQf&rehouse-like rooms, and small offices) to provide insight
resilient to signal strength attacks during the localimati into the attack’s behavior in general indoor environmewts.
phase [3]. deployed five passive monitors with omni-directional anten

LThe specific value of: that produced minimal localization error on non-throughout the building which recorded the 802.11 traffic
training data in our experimental deployment was- 10. within range of them.
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Fig. 2. Localization error CDFs

To train the RSS-based localization algorithms, we colleét Localization Without Attack

packets at 179 trair_ﬂng points chqsep to 'provide uniform |, order to establish the validity and expected accuracy of
coverage of the building. For each training point, we brastc o '|ocalization algorithms, we first demonstrate that KNN

500 packets using an omni-directional antenna facing eaghy hoth Nae Bayes methods provide reliable room-level
of the four cardinal directions (since the human body ten

. alization with relatively low localization error. Usinthe

to attenuate the signal). The packets were generated by, omnj.directional antenna transmitting at 16 dBm as in
single wireless device transmitting at a constant powesxellevme training phase, KNN and both Ne Bayesian algorithms
of 16 dBm. These points are tagged with the correct Iocaﬂ?ﬁovided accurate location predictions. Using KNN, the me-

of the transmittin,g device. : .__dian localization error was 3.6 meters. NB provided loaatio
The adversary's device transmitted packets from 70 differe, o gictions with a median error of 4.3 meters and the NB-

omni-directional testing points, varying the ranSmisgWer e method localized with a median error of 3.7 meters.
between 10 dBm and 20dBm. In addition, the adversary trafgyese |ocalization errors are consistent with prior work [3

mitted packets at 18 different testing points using a dioeell 51 4 The |ocalization error cumulative distribution function

antenna pointed in the four cardinal directions. The cardgen CDF) is provided in Figure 2(a).

used in these experiments has a 12dBi gain and a 30 deg €Rote that the baseline localization error for KNN-MED is

half-power beam width. significantly higher than the other algorithms. At the meclia

We assume that the training data is collected by the netwqZkin-MED "produced a localization error of 6.3 meters. This

operators and localization phase data is generated by i€ result of the relatively low number of listening mongtor

attacker. We further assume that these data sets are physi — 5) that are used in our experimental deployment.
disjoint, since the attacker has no prior knowledge of Whé%nce this algorithm minimizes the median of the distances

the training points are located. Figure 1 shows a floor plan 5| gimensions, when the number of dimensione.(the
of the experimental site labeled with monitors, testingd an,, mper of passive listeners is small, the median provides

training points? a poor distance metric. In fact, Lét al. [17] note that
additional listening monitors should be deployed in ordar f
this technique to be effective. Unfortunately, this appftoa

In order to establish the accuracy of the localization algenay be impractical due to its requirement for many additiona
rithms in our experimental environment, we first demonstragnonitors.

that the k-nearest neighbors algorithms (abbreviated KNN
and KNN-MED) and N&e Bayesian techniques (abbreviate®. Transmit Power Attacks

NB and NB-DIFF) produce low localization error ON NON- The first attack that we consider is where an adversary
attack data. We next evaluate the effect that transmit POWRE nin lates their transmit power level in an attempt toointr
manipulation has on localization accuracy. We next demofjyce additional localization error. Using an omni-direntl
strate the localization error that can be produced when @enna  the wireless card’s power level varies from 10 to
adversary uses a directional antenna, and we also chazacteéo dBm. Since training was conducted at a constant 16 dBm
the localization error when the attacker's transmit poveer j.onsmit power level, we call the scenario in which the
varied in combination with a directional antenrfaFinally, adversary decreases, the transmit power below 16dBm an
we evaluate the extent to which an attacker can influence thefienationattack. Transmit powers greater than 16 dBm are
location prediction. referred to ammplificationattacks.

20ur data is available as part of the CRAWDAD wireless traceosep We -found that amplification mtroduceq no additional '|0-
tory [19]: http://crawdad.cs.dartmouth.edu/cu/rssi. calization errors over those observed without attack (this

SWe compare these attacks using different localization #lyos for
the sole purpose of establishing that the attacks have aasireffect on 4Since we assume a continuous (not discrete) position spacépaaliza-
characteristic RSS-based algorithms, not to argue thatIgoeithm performs tion errors are naturally higher for the Bayesian methods;esit requires
better than any other. that the predicted location be a position from the trainiagad

V. EXPERIMENTAL RESULTS
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Fig. 3. CDFs of the movement in the general direction in whiah directional antenna is focused (Negative values indioatgement in theopposite
direction of the directional antenna’s focus)

consistent with prior work [4]). However, the attenuatiorthrough large open spaces. Here, we select direction@hgest
effect introduced significant localization errors. Thisyrt@ points only where the attacker has a clear line-of-sightvvie
because transmit power attenuation reduces the numberobft least 10 meters before any physical obstruction (ssch a
sensors that can hear the signal. Transmitting at 10 dBm,vadlls, doors, etc.). We do not consider the directionalatffe
the median KNN produced errors of 6.8 meters and KNNrtroduced in the KNN-MED algorithm since this technique
MED produced errors of 7.9 meters. NB showed errors of 8fdiled to produce sufficiently low localization errors onnro
meters and NB-DIFF had 6.7 meters of localization error. Tratack data; thus, we consider the directional effectsthiced
localization error CDF is given in Figure 2(b). Each algomit when the KNN, NB, and NB-DIFF algorithms are used.
produced a localization error nearly double that which was Figure 3(a) shows a CDF of movement in the desired
observed on non-attack data. Transmit power attenuationdigsection for the intelligent directional attacker. Idigéntly

a simple technique for an adversary to negatively influengeinting the directional antenna allows the attacker toehav
the localization process; however, attenuation alone is rmaore control over their estimated location. In the worstecas
a sufficient tool for allowing an adversary to appear in against the difference method, the smart attacker coulderBov
direction of their choice. meters in the desired direction half the time and 6 metersdn t
desired direction 20% of the time. For comparison, Figum 3(

C. Directional Attacks . . . Lo
. . _shows that movement in the intended direction is lower when
We next examine the effect of an attacker with a dlreqhe directional antenna is pointed arbitrarily.

tional antenna on overall localization error. Testing p®in ¢
are collected using 16 dBm transmit power and a directionay
antenna. The directional attacker does not intelligendinp
the directional antenna through hallways or open spacés,
rather points the antenna in all four cardinal directiortaach

testing point. We call this case theive directional attackFor

KNN, the median localization error was 6.2 meters and KN
MED produced a median error of 8.5 meters. NB produced
median error of 6.2 meters and NB-DIFF gave 4.7 meters
error at the median. The error CDF for theiveadirectional

attack is given in Figure 2(c). In general, this attack perf®

similarly to the attenuation attack.

igure 3(b) shows the
F of movement in the
ttacker's desired direction
en an attenuation at-
tack is applied in combi-
ation with the directional
ittack. Since the majority
of position estimates exist
A the direction of the an- — N
tenna’s focus, the combina- /r T Ne-biference
tion attack gives an adver- A R
Sary the ablllty to reliably Localization Error (meters)
D. Transmit Power and Directional Attacks teleport in a direction of

To maximize the expected localization error, an adversafyei’ choice. For compari- rig 4. Localization error for an in-
may combine the effects of attenuation attacks with a direg®™ Figure 3(d) shows thattelligent attacker with 10dBm transmit
. . . .. i i _ power
tional antenna. Here, we still consider the case of thigena e movement in the direc- PO%e o
directional attacker. On a localization system based on KNRPN Of the adversary's choice is lower when the directional
this attacker is able to produce an error of 10.6 meters at f&l€nna is pointed arbitrarily. o
median and 11.0 meters for KNN-MED. The NB and NB- Figure 4 shows the localization error CDF for the intelligen
DIFF methods produce 16.9 and 9.5 meters of error at tHiectional attacker who attenuated their transmit powee
median, respectively. The error CDF for the attenuation adrors for KNN and the difference method are about the same
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directional attack combination is given in Figure 2(d). as for nave attacker from Section V-D; however, the smart at-
, N . ) tacker achieves far less localization error from NB. Thigveh
E. Attacker’s Ability to Control Position Estimates that it is not necessarily the case that using the diredtiona

We next consider an adversary that uses a directioraitenna intelligently results in additional overall lazation
antenna intelligentlyi.e., pointing it down long hallways and error. However, intelligently focusing the directionaltamna



TABLE |

OBSERVED MEDIAN VARIANCE IN RSS adjust the transmit power levels significantly more — up to
Non-atfack  Directional _Attenuafion & Directional 25 dB — than we consider in our experiments. We assume an
4.87dB 19.67dB 16.880B

attacker that adjusts their transmit power levebibynost6 dB.
Thus, it is not surprising that this detection techniqudqrens
poorly on our data. However, it is important to derive anckta

g 7 s T T >~ detection scheme that is more reliable under this attankgesi
E : g 7 we show that even minimal transmit power manipulation in
x L x I combination with directional antennas can produce sigaitic
I IR e £ localization errors.

2 S R d 2 S
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a -+ Boih s - Both B. Directional Attack Detection: Minimize RSS Variance
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We adopt a similar framework for attack detection as Chen
et al. [4], but we consider a new test statistic. We assume

(a) Signal space distance threshdlj Variance threshold ROC curve i i S i
ROC curve for the attenuation attadky directional and combination attack that the adversary uses a directional antenna as described i

False positive rate False positive rate

directional attack, and combinaticiata sets. Section Ill. Further, suppose that the attacker's goal is to
attack data. conceal their true location by attempting to appear in sdver
Fig. 5. ROC curves for the distance and variance-based tatistics asr ~ arbitrary locations. To achieve this effect, the attackeints
varies. the directional antenna in all four cardinal directionsitsbily

as their packets are transmitted.

. o i ) . To detect such a directional attack, we first observe that the
in combination with transmit power does offer the ability tRss values across all passive monitors have higher vasance
reliably appear in a direction of the attacker’s choice. than in the non-attack case. Table | shows the expected
median in variance for non-attack, directional attack, and
directional/attenuation attack data. The attack dataesdtibit

Having demonstrated the threat of the directional attackore variance on average than the non-attack data set. We
we next turn our attention to solutions. We first considedeverage this observation in the design of an attack detecti
attack detection techniques that are agnostic to the lkataih scheme.
algorithm applied. These detection techniques work on rawThe attack detection works as follows: For each observation
RSS data. We first attempt attack detection by examiniRgndow, the localization system records the RSS of all pecke
the distance between the expected RSS surface derived fi@i@eived from each source (identified by a MAC address). For
training data and an attack RSS vector. Having pointed o4fi observation windowj, the mean and Varianc@ij7gl2j)
the limitations of this method, we propose an improved &ttagf the RSS values observed is calculated for each monitor
detection technique that is especially tailored to die@l ; — 1 . n. We take the median of the RSS variances across
attacks. all n» monitors for the observation window:

VI. ATTACK DETECTION

A. Prior Attack Detection Scheme: Signal Space Distance med; = mediarjl’zl(o'gj)

Chenet al. [4] proposed a localization attack detectionrpis single metric captures the degree of variability in the
framework to detect transmit power manipulation attackgignal strengths during the observation window. We use the
In this work, the attack detection problem is formulated agedian to mitigate the influence of outliers. To determine
statistical significance testing. The detection techniyoeks f an attack is occurring, we derive a variance threshold for

by first forming ann-dimensional RSS surfacg using the getection from our training data If med; > 7, then the data
training data. Next, during the validation phase an RSSovecis ¢|assified as an attacRs.

s’ is observed and the minimum Euclidean distance from this-l-he ROC curve for this attack detection method is given in

observed vector to the training surface is calculated d8Ws! i re 5(1). Note that this method offers both higher dédect
Dists = min{||s" — s/|| : ¥s/ € S}. A threshold valuer is ateq and fewer false positives than the signal space distan
derived from training data and the feature vector is classifiyeqt statistic. This variance-based detection scheme iistiev
as an attack iDists > 7. , strategy to detect an attacker who arbitrarily focuses the
We applied this detection technique to our attack dafgrectional antenna to produce large localization errexsbse
sets, but without success. The receiver operating chaisiite e regulting RSS values tend to vary differently for each
(ROC) curve — shown in Figure 5(a) — illustrates theientation of the directional antenna. Thus, such an lattac
relationship between the probability of attack detectiod e o4y ces greater variance in the observed RSS values over
falsg positive rate. While the probability of detection b@es ot time periods in comparison to the non-attack casectwhi
sufficiently high (nearly 0.8 for each attack data set), #i8€f (onds to produce more stable RSS values with low variances.
positive rate is unacceptably high, approaching 0.8 foheac
attack data set. This detection scheme produces resutts tha

are not significantly different from uniformly random guess _ °It is possible that an attacker could use one MAC address ¢pape
the attack and another address to launch the attack. Mce#igent device

The most plausible explanation for the high false positiMgerprinting methods [20] could be applied to identify thevide in this
rate is that Chemt al. conduct trace-driven experiments andase.



C. Toward Detecting the General Case of the Attack an analysis of the variance in RSS values. Since RSS-based

Having demonstrated how to detect an attacker who poif@salization systems rely on training data and rangingsit i
the directional antenna in arbitrary directions, we nowufoc Unlikely that one can be built to accurately locate a dicewl
on detecting the attack in the general case. Suppose thaPdRCKer.
adv_e_rsary Wi_shes to appear at a location distant frpm t_h_ﬂért IX. ACKNOWLEDGEMENTS
position. While detecting this form of the attack is difficult We thank J Martin f i ¢ i
we propose using data smoothing techniques to mitigate jts. ¢ thank James Martin Tor granting access 1o our office
effects. This can be done in combination with the distancﬁ_’y".d'ﬂgltisf'bed' We also ;cjhank the _anonyn;]pus re\lgewerrs fo
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