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Abstract—802.11 localization algorithms provide the ability to
accurately position and track wireless clients thereby enabling
location-based services and applications. However, we show that
these localization techniques are vulnerable to non-cryptographic
attacks where an adversary uses a low-cost directional antenna
to appear from the localization algorithm’s perspective to be
in another arbitrary location of their choosing. The attacker’s
ability to actively influence where they are positioned is a key
distinguishing feature of the directional attack relative to prior
localization attacks that use transmit power control to introduce
localization errors. We implement a representative set of received
signal strength-based localization algorithms and evaluate the
attack in a real office building environment. To mitigate the
attack’s effectiveness, we develop and evaluate an attack detection
scheme that offers a high detection rate with few false positives.

I. I NTRODUCTION

Systems that use existing wireless infrastructure to locate
and track wireless clients are becoming ubiquitous and have
great potential to offer a wide variety of location-aware
services. In particular, security services such as rogue device
detection [1] and location-based access control [2] are emerg-
ing applications for localization systems. As such security
services become widely deployed, malicious users will have
increased incentive to spoof their locations with sufficient
precision to remain hidden or gain unauthorized access to
network resources.

To this end, we propose a physical layer localization attack
using inexpensive directional antennas. The key distinguishing
feature of the directional attack relative to prior localization
attacks that use transmit power control to introduce localiza-
tion errors [3]–[5] is the attacker’s ability to actively influence
where they are positioned. We call the attacker’s ability to
appear reliably at a location of their choice teleportation
effects. We demonstrate the efficacy of this attack using an
extremely low-cost directional antenna built from a tin can,
commonly called a “cantenna.”

Since most commercial localization systems use the re-
ceived signal strength (RSS) property of the wireless signals
and one of a number of localization algorithms to calculate a
location estimate [6]–[12], we limit our evaluation to RSS-
based algorithms. While other localization techniques have
been proposed using a variety of techniques including angle
of arrival (AOA) [13], [14], time of arrival (TOA) [15], and
time difference of arrival (TDOA) [16], these systems have
not seen the same level of deployment due to the requirement
that additional (and often non-commodity) infrastructuremust

be installed to collect the necessary information to perform
the localization.

We implement a representative set of RSS-based local-
ization algorithms and conduct experiments in a real office
building environment. The results show that the directional
attack enables an adversary to actively influence their location
prediction by focusing the directional antenna toward a desired
position. In addition, our results indicate that the directional at-
tack is capable of producing significant localization errors that
are greater than can be achieved using transmit power control
alone. Our results also indicate that even some secure RSS-
based localization techniques are vulnerable to the directional
attack.

We measure the localization errors and teleportation effects
that are produced under the directional attack and also explore
how adding transmit power control influences the attack’s
effectiveness. We find that an attacker who points the direc-
tional antenna down long corridors has the ability to appear
in the direction of their choice more than 75% of the time.
In addition, the results show that these attacks can produce
expected localization errors in excess of 18 meters. This is
an increase in error of approximately 300% over the expected
localization error without attack, and an increase of 200% over
previous transmit power control attacks.

Having demonstrated and evaluated the directional attack,
we present an attack detection technique based on our em-
pirical data. We show that it achieves a high attack detection
rate of over 90% against both directional and transmit power
control attacks while maintaining a low false positive rate(at
most 10%).
Contributions. This work contributes the following:

1) We propose a physical layer attack against RSS-based
802.11 localization techniques that utilizes an inexpen-
sive directional antenna and gives an attacker significant
control over where their position is estimated.

2) We evaluate the directional attack by implementing lo-
calization algorithms based upon thek-nearest neighbors
and Näıve Bayes classifiers and conducting experiments
in a real office building environment.

3) We present and empirically validate a technique to
identify directional attackers that offers a high detection
rate with few false positives.

II. BACKGROUND

In this section, we provide a brief introduction to the
problem of wireless device localization. We next describe the



localization algorithms used to evaluate the directional attack
strategy.

A. RSS-based Localization

Predicting a wireless device’s physical location in an indoor
environment has been accomplished using techniques based
on received signal strength (RSS) [6]–[12], angle of arrival
(AoA) [13], [14], time of arrival (ToA) [15], and time differ-
ence of arrival (TDoA) [16]. In this paper, we consider only
localization techniques that are based on RSS, as these can
be constructed with commodity 802.11 hardware and stock
drivers.

RSS-based localization refers to the task of estimating an
802.11 device’s physical location using only signal strength
information. Due to the inherently noisy nature of the RSS
measurements, RSS-based localization algorithms typically
apply statistical/machine learning techniques, and proceed in
two phases:

1) An offline training phaseis conducted in which sev-
eral received signal strength indication (RSSI) readings
~ti = (ri1, ..., rin) are collected over a set ofn passive
receivers and are labeled with the transmitter’s true
physical location and orientationpi = (xi, yi, θi).

2) During the onlinelocalization phase, the observed RSSI
readings ~oj = (rj1, ..., rjn) are used to produce the
device’s estimated location̂pj = (x̂j , ŷj).

B. k-Nearest Neighbors Localization

RADAR uses thek-nearest neighbors learning algorithm to
provide location estimates with minimal localization errors [6].
Using Euclidean distance, thek closest training points to
the observed RSS vector inn-dimensional vector space of
all signal strength measurements are chosen.1 The mean of
their physical coordinates is computed to produce a location
estimate.

In addition to the traditionalk-nearest neighbors algorithm,
we consider a variant that minimizes the median of the
distances in each dimension:medianni=1

(ri − r
′

i)
2. Prior work

has suggested that this approach is more resilient to transmit
power attacks [17].

C. Näıve Bayes Localization

Localization techniques that use the Naı̈ve Bayes classifier
have been proposed in [3], [9], [12], [18]. This approach is
based on the application of Bayes’ theorem to obtain a position
estimate. Using Bayes’ theorem, the conditional probability
of observing a signal strength vector from the training data
at a particular position is computed. During the localization
phase, the position estimate is the position that maximizesthis
probability for the observed signal strength vector.

We also consider a variant of Naı̈ve Bayes called theDiffer-
ence Method, where the mean signal strength at each monitor
is computed for a short observation period and the pairwise
difference in average signal strengths over the observation
period for each monitor is used to train a Bayesian classifier.
Prior work has suggested that the difference method is more
resilient to signal strength attacks during the localization
phase [3].

1The specific value ofk that produced minimal localization error on non-
training data in our experimental deployment wask = 10.
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Fig. 1. The layout of the experimental localization deployment

III. A TTACK MODEL

Our attack model assumes that there is an indoor 802.11
network and a localization system that attempts to physically
localize wireless clients within signal range of the network
without any cooperation from the clients. The localization
system is composed of passive monitors that collect RSSI in-
formation from locations that are different from the monitors’
locations.

The adversary’s primary goal is to produce significant local-
ization errors focused in a specific direction of their choosing.
Their secondary objective is to simply introduce a large
amount of error into the system’s location prediction, suchthat
the adversary’s wireless device appears to be significantlyfar
away from their true location. The adversary utilizes a single
commodity 802.11 wireless card and a low-cost directional
antenna, such as a “cantenna,” constructed from a discarded
tin can.

We finally assume that the attacker has no prior knowledge
about the placement of the passive monitors, the localization
algorithm being used, or the location of the training points.

IV. EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we describe the experimental process we
used to demonstrate and evaluate the effectiveness of the direc-
tional attack. We next present the results of our experiments.
As the first step toward understanding the consequences of
an adversary using a directional antenna, we examine how
directional antennas effect localization errors. Here,local-
ization error is defined as the Euclidean distance between
the user’s true physical location and the algorithm’s location
estimate. We next evaluate the extent to which an adversary
can influence their location prediction.

The site for our experiments is a standard office space
measuring 75 x 50 meters2. This indoor environment is
sufficiently large and diverse (i.e., it has long hallways, large
warehouse-like rooms, and small offices) to provide insight
into the attack’s behavior in general indoor environments.We
deployed five passive monitors with omni-directional antennas
throughout the building which recorded the 802.11 traffic
within range of them.
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(a) Non-attack data
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(b) Attenuation attack data
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(c) Directional attack data
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(d) Directional and attenuation attack
combination data

Fig. 2. Localization error CDFs

To train the RSS-based localization algorithms, we collect
packets at 179 training points chosen to provide uniform
coverage of the building. For each training point, we broadcast
500 packets using an omni-directional antenna facing each
of the four cardinal directions (since the human body tends
to attenuate the signal). The packets were generated by a
single wireless device transmitting at a constant power level
of 16 dBm. These points are tagged with the correct location
of the transmitting device.

The adversary’s device transmitted packets from 70 different
omni-directional testing points, varying the transmission power
between 10 dBm and 20 dBm. In addition, the adversary trans-
mitted packets at 18 different testing points using a directional
antenna pointed in the four cardinal directions. The cantenna
used in these experiments has a 12 dBi gain and a 30 degree
half-power beam width.

We assume that the training data is collected by the network
operators and localization phase data is generated by an
attacker. We further assume that these data sets are physically
disjoint, since the attacker has no prior knowledge of where
the training points are located. Figure 1 shows a floor plan
of the experimental site labeled with monitors, testing, and
training points.2

V. EXPERIMENTAL RESULTS

In order to establish the accuracy of the localization algo-
rithms in our experimental environment, we first demonstrate
that the k-nearest neighbors algorithms (abbreviated KNN
and KNN-MED) and Näıve Bayesian techniques (abbreviated
NB and NB-DIFF) produce low localization error on non-
attack data. We next evaluate the effect that transmit power
manipulation has on localization accuracy. We next demon-
strate the localization error that can be produced when an
adversary uses a directional antenna, and we also characterize
the localization error when the attacker’s transmit power is
varied in combination with a directional antenna.3 Finally,
we evaluate the extent to which an attacker can influence their
location prediction.

2Our data is available as part of the CRAWDAD wireless trace reposi-
tory [19]: http://crawdad.cs.dartmouth.edu/cu/rssi.

3We compare these attacks using different localization algorithms for
the sole purpose of establishing that the attacks have a similar effect on
characteristic RSS-based algorithms, not to argue that one algorithm performs
better than any other.

A. Localization Without Attack

In order to establish the validity and expected accuracy of
the localization algorithms, we first demonstrate that KNN
and both Näıve Bayes methods provide reliable room-level
localization with relatively low localization error. Using the
same omni-directional antenna transmitting at 16 dBm as in
the training phase, KNN and both Naı̈ve Bayesian algorithms
provided accurate location predictions. Using KNN, the me-
dian localization error was 3.6 meters. NB provided location
predictions with a median error of 4.3 meters and the NB-
DIFF method localized with a median error of 3.7 meters.
These localization errors are consistent with prior work [3],
[6].4 The localization error cumulative distribution function
(CDF) is provided in Figure 2(a).

Note that the baseline localization error for KNN-MED is
significantly higher than the other algorithms. At the median,
KNN-MED produced a localization error of 6.3 meters. This
is a result of the relatively low number of listening monitors
(n = 5) that are used in our experimental deployment.
Since this algorithm minimizes the median of the distances
in all dimensions, when the number of dimensions (i.e., the
number of passive listenersn) is small, the median provides
a poor distance metric. In fact, Liet al. [17] note that
additional listening monitors should be deployed in order for
this technique to be effective. Unfortunately, this approach
may be impractical due to its requirement for many additional
monitors.

B. Transmit Power Attacks

The first attack that we consider is where an adversary
manipulates their transmit power level in an attempt to intro-
duce additional localization error. Using an omni-directional
antenna, the wireless card’s power level varies from 10 to
20 dBm. Since training was conducted at a constant 16 dBm
transmit power level, we call the scenario in which the
adversary decreases the transmit power below 16 dBm an
attenuationattack. Transmit powers greater than 16 dBm are
referred to asamplificationattacks.

We found that amplification introduced no additional lo-
calization errors over those observed without attack (thisis

4Since we assume a continuous (not discrete) position space, our localiza-
tion errors are naturally higher for the Bayesian methods, since it requires
that the predicted location be a position from the training data.
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(a) Intelligent directional attacker
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(b) Intelligent directional attacker with
transmit power control
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(c) Näıve directional attacker
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(d) Näıve directional attacker with
transmit power control

Fig. 3. CDFs of the movement in the general direction in which the directional antenna is focused (Negative values indicatemovement in theopposite
direction of the directional antenna’s focus)

consistent with prior work [4]). However, the attenuation
effect introduced significant localization errors. This may be
because transmit power attenuation reduces the number of
sensors that can hear the signal. Transmitting at 10 dBm, at
the median KNN produced errors of 6.8 meters and KNN-
MED produced errors of 7.9 meters. NB showed errors of 8.1
meters and NB-DIFF had 6.7 meters of localization error. The
localization error CDF is given in Figure 2(b). Each algorithm
produced a localization error nearly double that which was
observed on non-attack data. Transmit power attenuation is
a simple technique for an adversary to negatively influence
the localization process; however, attenuation alone is not
a sufficient tool for allowing an adversary to appear in a
direction of their choice.

C. Directional Attacks

We next examine the effect of an attacker with a direc-
tional antenna on overall localization error. Testing points
are collected using 16 dBm transmit power and a directional
antenna. The directional attacker does not intelligently point
the directional antenna through hallways or open spaces, but
rather points the antenna in all four cardinal directional at each
testing point. We call this case thenäıve directional attack. For
KNN, the median localization error was 6.2 meters and KNN-
MED produced a median error of 8.5 meters. NB produced a
median error of 6.2 meters and NB-DIFF gave 4.7 meters of
error at the median. The error CDF for the naı̈ve directional
attack is given in Figure 2(c). In general, this attack performs
similarly to the attenuation attack.

D. Transmit Power and Directional Attacks

To maximize the expected localization error, an adversary
may combine the effects of attenuation attacks with a direc-
tional antenna. Here, we still consider the case of the naı̈ve
directional attacker. On a localization system based on KNN,
this attacker is able to produce an error of 10.6 meters at the
median and 11.0 meters for KNN-MED. The NB and NB-
DIFF methods produce 16.9 and 9.5 meters of error at the
median, respectively. The error CDF for the attenuation and
directional attack combination is given in Figure 2(d).

E. Attacker’s Ability to Control Position Estimates

We next consider an adversary that uses a directional
antenna intelligently,i.e., pointing it down long hallways and

through large open spaces. Here, we select directional testing
points only where the attacker has a clear line-of-sight view
of at least 10 meters before any physical obstruction (such as
walls, doors, etc.). We do not consider the directional effects
introduced in the KNN-MED algorithm since this technique
failed to produce sufficiently low localization errors on non-
attack data; thus, we consider the directional effects introduced
when the KNN, NB, and NB-DIFF algorithms are used.

Figure 3(a) shows a CDF of movement in the desired
direction for the intelligent directional attacker. Intelligently
pointing the directional antenna allows the attacker to have
more control over their estimated location. In the worst case
against the difference method, the smart attacker could move 3
meters in the desired direction half the time and 6 meters in the
desired direction 20% of the time. For comparison, Figure 3(c)
shows that movement in the intended direction is lower when
the directional antenna is pointed arbitrarily.
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Fig. 4. Localization error for an in-
telligent attacker with 10 dBm transmit
power

Figure 3(b) shows the
CDF of movement in the
attacker’s desired direction
when an attenuation at-
tack is applied in combi-
nation with the directional
attack. Since the majority
of position estimates exist
in the direction of the an-
tenna’s focus, the combina-
tion attack gives an adver-
sary the ability to reliably
teleport in a direction of
their choice. For compari-
son, Figure 3(d) shows that
the movement in the direc-
tion of the adversary’s choice is lower when the directional
antenna is pointed arbitrarily.

Figure 4 shows the localization error CDF for the intelligent
directional attacker who attenuated their transmit power.The
errors for KNN and the difference method are about the same
as for näıve attacker from Section V-D; however, the smart at-
tacker achieves far less localization error from NB. This shows
that it is not necessarily the case that using the directional
antenna intelligently results in additional overall localization
error. However, intelligently focusing the directional antenna



TABLE I
OBSERVED MEDIAN VARIANCE IN RSS

Non-attack Directional Attenuation & Directional
4.87 dB 19.67 dB 16.88 dB
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(a) Signal space distance threshold
ROC curve for the attenuation attack,
directional attack, and combination
attack data.
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(b) Variance threshold ROC curve
for directional and combination attack
data sets.

Fig. 5. ROC curves for the distance and variance-based test statistics asτ
varies.

in combination with transmit power does offer the ability to
reliably appear in a direction of the attacker’s choice.

VI. ATTACK DETECTION

Having demonstrated the threat of the directional attack,
we next turn our attention to solutions. We first consider
attack detection techniques that are agnostic to the localization
algorithm applied. These detection techniques work on raw
RSS data. We first attempt attack detection by examining
the distance between the expected RSS surface derived from
training data and an attack RSS vector. Having pointed out
the limitations of this method, we propose an improved attack
detection technique that is especially tailored to directional
attacks.

A. Prior Attack Detection Scheme: Signal Space Distance

Chen et al. [4] proposed a localization attack detection
framework to detect transmit power manipulation attacks.
In this work, the attack detection problem is formulated as
statistical significance testing. The detection techniqueworks
by first forming ann-dimensional RSS surfaceS using the
training data. Next, during the validation phase an RSS vector
s′ is observed and the minimum Euclidean distance from this
observed vector to the training surface is calculated as follows:
DistS = min{||s′ − sj || : ∀sj ∈ S}. A threshold valueτ is
derived from training data and the feature vector is classified
as an attack ifDistS > τ .

We applied this detection technique to our attack data
sets, but without success. The receiver operating characteristic
(ROC) curve — shown in Figure 5(a) — illustrates the
relationship between the probability of attack detection and the
false positive rate. While the probability of detection becomes
sufficiently high (nearly 0.8 for each attack data set), the false
positive rate is unacceptably high, approaching 0.8 for each
attack data set. This detection scheme produces results that
are not significantly different from uniformly random guesses.

The most plausible explanation for the high false positive
rate is that Chenet al. conduct trace-driven experiments and

adjust the transmit power levels significantly more — up to
25 dB — than we consider in our experiments. We assume an
attacker that adjusts their transmit power level byat most6 dB.
Thus, it is not surprising that this detection technique performs
poorly on our data. However, it is important to derive an attack
detection scheme that is more reliable under this attack, since
we show that even minimal transmit power manipulation in
combination with directional antennas can produce significant
localization errors.

B. Directional Attack Detection: Minimize RSS Variance

We adopt a similar framework for attack detection as Chen
et al. [4], but we consider a new test statistic. We assume
that the adversary uses a directional antenna as described in
Section III. Further, suppose that the attacker’s goal is to
conceal their true location by attempting to appear in several
arbitrary locations. To achieve this effect, the attacker points
the directional antenna in all four cardinal directions arbitrarily
as their packets are transmitted.

To detect such a directional attack, we first observe that the
RSS values across all passive monitors have higher variances
than in the non-attack case. Table I shows the expected
median in variance for non-attack, directional attack, and
directional/attenuation attack data. The attack data setsexhibit
more variance on average than the non-attack data set. We
leverage this observation in the design of an attack detection
scheme.

The attack detection works as follows: For each observation
window, the localization system records the RSS of all packets
received from each source (identified by a MAC address). For
an observation windowj, the mean and variance(µij , σ

2

ij)
of the RSS values observed is calculated for each monitor
i = 1, ..., n. We take the median of the RSS variances across
all n monitors for the observation window:

medj = medianni=1
(σ2

ij)

This single metric captures the degree of variability in the
signal strengths during the observation window. We use the
median to mitigate the influence of outliers. To determine
if an attack is occurring, we derive a variance threshold for
detection from our training dataτ . If medj > τ , then the data
is classified as an attacks.5

The ROC curve for this attack detection method is given in
Figure 5(b). Note that this method offers both higher detection
rates and fewer false positives than the signal space distance
test statistic. This variance-based detection scheme is a viable
strategy to detect an attacker who arbitrarily focuses the
directional antenna to produce large localization errors because
the resulting RSS values tend to vary differently for each
orientation of the directional antenna. Thus, such an attack
produces greater variance in the observed RSS values over
short time periods in comparison to the non-attack case, which
tends to produce more stable RSS values with low variances.

5It is possible that an attacker could use one MAC address to prepare
the attack and another address to launch the attack. More intelligent device
fingerprinting methods [20] could be applied to identify the device in this
case.



C. Toward Detecting the General Case of the Attack

Having demonstrated how to detect an attacker who points
the directional antenna in arbitrary directions, we now focus
on detecting the attack in the general case. Suppose that an
adversary wishes to appear at a location distant from their true
position. While detecting this form of the attack is difficult,
we propose using data smoothing techniques to mitigate its
effects. This can be done in combination with the distance-
based and variance-based detection schemes presented in
Sections VI-A and VI-B.

One promising strategy is to compute the location estimates
and then filter them through a smoothing mechanism, such
as a single exponential smoothing function. Such an iterative
smoothing function is defined as follows:

ŝi = αp̂i−1 + (1 − α)ŝi−1, for α ∈ (0, 1]

where p̂i−1 is the most recent location prediction,α is a
smoothing constant that influences how fast the smoothed
values change, and̂si−1 is the previous smoothed location
prediction. This dampens the location estimate’s movement
and mitigates the effects of outliers in the location predictions.
The impact of smoothing filters on the accuracy of location
estimates is left to future work.

VII. R ELATED WORK

Previous work has studied the performance of RSS-based lo-
calization algorithms in various adversarial scenarios. Chenet
al. [21] show that physical materials such as foil and even the
human body can be used to implement an attenuation attack.
Through trace-driven experiments, they evaluate the robustness
of a variety of RSS-based localization algorithms under this
attack and observe that performance generally degrades with
the severity of the attack. We confirm this observation in our
study of transmit power attacks in Section IV.

Taoet al. [3] study RSS-localization when the assumptions
made during the training phase are violated. This includes
introducing variation in transmit power level and changingthe
card itself. A variant of the naı̈ve Bayes classifier is proposed
and we confirm its robustness to transmit power control attacks
relative to other localization algorithms.

Our work proposes a variation of the transmit power attacks
whereby an adversary uses an inexpensive directional antenna
to manipulate signal strength properties. While the directional
attack can produce significant localization errors, it is the only
proposed attack to date that allows an adversary to actively
influencewherethey appear to be from the perspective of the
localization algorithm.

VIII. C ONCLUSION

We experimentally demonstrated that RSS-based localiza-
tion techniques are vulnerable to significant localizationer-
rors introduced by an adversary with a low-cost directional
antenna. In our evaluation, we implement several RSS-based
localization algorithms and conduct experiments in an office
space environment. In particular, we show that directional
attackers not only have the ability to introduce significant
localization errors, but also have the ability to reliablyteleport
in a direction of their choice. To address the directional attack,
we propose a new test statistic for attack detection based on

an analysis of the variance in RSS values. Since RSS-based
localization systems rely on training data and ranging, it is
unlikely that one can be built to accurately locate a directional
attacker.
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