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Background Decomposition System Design Experiments Definitions Scheduling Example Limitations of Separate Scheduling & Configuration

Background: Separate Scheduling and Configuration

Scheduling

Which transmissions occur when?

Partition transmissions into compatible groups.

Assign groups to times,

Or frequencies.

Configuration

How does each transmission (and reception) occur?

Transmission power,

Modulation / rate,

Antenna steering / selection,

Frequency (sometimes).
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Scheduling Example
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Constraints:
Link SINR,
Half-duplex,
...
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Intended signal:
D→A

B

D

A

C
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“Chicken and Egg” Example

Link demand:
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Interference:
B→A
D→C
(If both links were in use)
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Signal between
transmitters:
Not an issue
(Would matter for CSMA)
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Trivial Schedule:
Each link gets one
slot (TDMA).
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Slot 1
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Trivial Schedule:
Each link gets one
slot (TDMA).
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Slot 2
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Faster Schedule:
Concurrent links,
Interference

B

D

A

C

Slot 1

Slot 1
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Per-link best
(maximum SNR)
antenna choices:
Boosts interfering
signals, too.

C

A B

D
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“Chicken and Egg” Example

Link demand:
B→C: 1 slot
D→A: 1 slot

Scheduling-aware
antenna selection:
Low gain for inter-
ference.

C

A B

D

Anderson et al. Signal Quality Pricing



Background Decomposition System Design Experiments Idealized Lagrangian/RPP Example

Integration and decomposition

Configuration and scheduling can be expressed as a combined problem
— but the state space is huge: Θ(n22m) variables

Key Idea

Transform problem into many coupled subproblems.

Individually simple to solve

Naturally parallel

Iterate and update (not too many times)

Anderson et al. Signal Quality Pricing



Background Decomposition System Design Experiments Idealized Lagrangian/RPP Example

Decomposition Process (Idealized)

Goal: Optimize complete schedule

Given:
Subject to: Complete constraints (PHY, MAC, Network, user, . . . )

Goal: Marginally improving concurrent group

Given: Current schedule
Subject to: Link (set) compatibility (PHY, MAC constraints)

Goal: Best set of active links

Given: Estimated configurations
Subj. to: PHY, MAC constraints

Goal: Best configurations

Given: Estimated active link set
Subj. to: PHY constraints
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Decomposition Process

. . .

Goal: Marginally improving concurrent group

Given: Current schedule
Subject to: Link (set) compatibility (PHY, MAC constraints)

Lagrangian dual problem: Price PHY & MAC constraints
e.g.

Signal to Interference and Noise Ratio (SINR) threshold

Half-duplex requirement
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What do Constraint Prices Mean?
(Lagrangian relaxation in 60 seconds)

Original problem: Minimize objective subject to constraints.

min
x

f (x)

s.t. gi (x) ≤ ci

Lagrangian: Minimize (objective + penalty) w/o constraints.

min
x

f (x) + λi (gi (x)− ci )

Price (λi ): For each constraint i , marginal cost per unit of violation.

Dual: Find the lowest prices such that the degree of violation ≈ 0.
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Look up, this is important!

Scheduling Configuration
Avoid using link ij
or interfering with ij

Increase gain for ij
attenuate interference

High SINRij price
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Subgradient / Relaxed Primal Problem method

Solution of dual problem:

Link Activation Problem

Choose (estimate) link sets.

Given:

Estimated antenna
configuration
Estimated prices (dual
multipliers)

Antenna Reconfiguration
Problem

Choose (estimate) antenna
configuration.

Given:

Estimated link selection
Estimated prices (dual
multipliers)

Combined estimates may not satisfy complicating constraints.
Non-compliance determines subgradient. Update price estimates.
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Example (simplified)

C

A B

D
T = 1

node value
B 0
C 0
D 0

node value
A 0
B 0
C 0

node value
A 0
C 0
D 0

node value
A 0
B 0
D 0

off, SINR
price

=
0, SINR=

off, 0,
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Example (simplified)

C

A B

D
T = 2

node value
B 0
C 0
D 0

node value
A 0
B 0
C 0

node value
A 0
C 0
D 0

node value
A 0
B 0
D 0

on, 0, 10

off, 0,
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Example (simplified)

C

A B

D
T = 3

node value
B 0
C 0
D 0

node value
A 0
B 0
C 0

node value
A 0
C 0
D 0

node value
A 0
B 0
D 0

on, 0, 0.7

on, 0, 0.7
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Example (simplified)

C

A B

D
T = 4

node value
B 0
C 0
D 5

node value
A 5
B 0
C 0

node value
A -5
C 0
D 0

node value
A 0
B 0
D 0

on, 5, 0.7

on, 0
∗ , 0.7
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Example (simplified)

C

A B

D
T = 5

node value
B 0
C 0
D 8

node value
A 8
B 0
C -5

node value
A -8
C 5
D 0

node value
A 0
B 5
D 0

off, 8,

off, 5,
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Example (simplified)

C

A B

D
T = 6

node value
B 0
C 0
D 7.2

node value
A 7.2
B 0
C -4.5

node value
A -7.2
C 4.5
D 0

node value
A 0
B 4.5
D 0

off, 7.2,

off, 4.5,
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Example (simplified)

C

A B

D
T = 15

node value
B 0
C 0
D 1.6

node value
A 1.6
B 0
C -0.9

node value
A -1.6
C 0.9
D 0

node value
A 0
B 0.9
D 0

off, 1.6,

off, 0.9,
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Example (simplified)

C

A B

D
T = 16

node value
B 0
C 0
D 1.4

node value
A 1.4
B 0
C -0.8

node value
A -1.4
C 0.8
D 0

node value
A 0
B 0.8
D -0.8

on, 1.4, 10

off, 0.8,
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Example (simplified)

C

A B

D
T = 17

node value
B 0
C 0
D 1.3

node value
A 1.3
B 0
C -0.7

node value
A -1.3
C 0.7
D 0

node value
A 0
B 0.7
D -0.7

on, 1.3, 10

off, 0.7,
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Example (simplified)

C

A B

D
T = 20

node value
B -0.9
C 0
D 0.9

node value
A 0.9
B 0
C -0.5

node value
A -0.9
C 0.5
D 0

node value
A 0
B 0.5
D -0.5

on, 0.9, 5

on, 0.5, 7
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Example (simplified)

C

A B

D
T = 21 (done)

node value
B -0.8
C 0
D 0.8

node value
A 0.8
B 0
C -0.5

node value
A -0.8
C 0.5
D 0

node value
A 0
B 0.5
D -0.5

on, 0.9, 7

on, 0.5, 7
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Proof-of-Concept System

Dual problem: Node-local price and configuration estimates, distributed
consensus algorithm.

Asynchronous

Delay- and loss-tolerant

Eventually consistent

Global “restricted master” problem, flooding updates.

Passively observes dual problem results.

Recomputes (global) schedule when possible.

Local computation, but requires global data.

Implemented on top of 802.11 PHY with STDMA MAC using
switched-beam phased array antennas.
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Experimental Test Bed

Phase array antennas
installed around C.U.
campus
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Test Load

TDMA: 2 slots

Best case:
1 slot

Incompatible
when using
“obvious”
antennas

Algorithm
achieves best
case A

B

C

D
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Numerical Results

Numerical experiments: 1400 varying scenarios

Number of nodes (2 - 48)

Link density (1/2 - 3 per node)

Size of simulated area (1 - 16 sq. km)

Random seed
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Improvement

Acheived Speedup in Numerical Simulations

Speedup
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Running Time 1

Iterations to Specified Fraction of Optimality

Number of Minor Iterations
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Running Time 2

Time to Optimal Solution vs. Problem Size

Number of Nodes
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Conclusions

Tractable solution to optimal joint beam steering and scheduling

Mean 234% speedup over simple TDMA

Mean 150 iterations to optimality (90th %ile: 500)

Dual-decomposition based scheduling works in practice

More responsive on-line MAC in progress
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Master Problem (JBSS-MP)

Minimize total time

Allocate sufficient time to each
link

Half-duplex unicast operation

SINR on active links

Antenna selection convexity

Gain-antenna coupling

min

∑
l∈LA

xl

s.t.

∑
l∈LA

Sijl xl ≥ qij ∀i,j

∑
j :(i,j)∈A

Sijl +
∑

j :(j,i)∈A

Sjil ≤ 1 ∀i,l

Pil Dijl Djil

Lb(i, j)Nr
Sijl +

γ1(1 + Mijl )(1− Sijl ) ≥

γ1

1 +
∑

k∈N\{i,j}

Pkl Dkjl Djkl

Lb(k, j)Nr
Vkl




∀i,j,l

Sijl ≤ Vil ∀i,j,l∑
p∈P

Bjpl = 1 ∀j,l

Dik =
∑
p∈P

Gikp Bipl ∀i,k,l

xl ≥ 0 ∀l∈LA

Sijl , Bjpl ∈ {0, 1}
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Master Problem (JBSS-MP)

Symbol Interpretation
Sij Activation of

link ij

Vi Node i is active
(in current link
set)

Dij Directivity of
node i toward j

Bjp Indicator: beam
p used at node j

Table: Key Notation

full notation
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Decomposition Approach – Detailed

JBSS-MP

RMP CLAP

CLAP-dual-1

CLAP-dual-2FLAP

FARPRP-FLAP

SNRP-FLAP_0 SNRP-FLAP_1... SNARP_0 SNARP_1...

SDQ-FLAP_0 SDQ-FLAP_1...

Master problem

Dantzig-Wolfe
decomposition

Lagrangian
Relaxation on

SINR constraint

Lagrangian
Relaxation on

duplex constraint

Block separation

Block separation

Quadratic
approximation
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Dantzig-Wolfe Decomposition

Restricted Master Problem (RMP)
Given feasible link sets, allocates time to
each.
Produces capacity constraint dual values
(β̄).

Subproblem
Given β̄, finds improving link set.

Subproblem Complexity
Variables

Functional Degree S V D B

Objective: Reduced-Cost Column 1 X

Constraint:

Duplex 1 X
Coupling 1 X X

SINR 3 X X X
Antenna coupling 1 X X

Antenna uniqueness 1 X

Anderson et al. Signal Quality Pricing
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Lagrangian Dual Problem

SINR and duplex constraints relaxed; multipliers are λ, µ. Constraint
functionals are d s() and dd ().

L′(S ,D,V , λ, µ) = β̄TS − λTd s(S ,D,V )− µTdd (S)

φ′(λ, µ) = max
S,D,V

L′(S ,D,V , λ, µ)

[CLAP-dual-2]

min
λ,µ

φ′(λ, µ)

s.t. Sij ≤ Vi ∀i

Dik =
∑
p∈P

GikpBip ∀i ,k∑
p∈P

Bjp = 1 ∀j

Anderson et al. Signal Quality Pricing
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Block Separation

min
x

f (x1, x2)

s.t. g1(x) ≤ c1

g2(x) ≤ c2

↔

min
x1

f1(x1)

s.t. g1(x1) ≤ c1

min
x2

f2(x2)

s.t. g2(x2) ≤ c2

Anderson et al. Signal Quality Pricing
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Relaxed Primal Fixed-antenna Link Assignment Problem
(RP-FLAP)

[RP-FLAP]

max
S ,V

β̄TS + λ̄Td ′s(S ,V )− µ̄Tdd (S)

s.t. Sij ≤ Vi ∀ij

Anderson et al. Signal Quality Pricing



References Formulation Long Motivation Related Work Extra ResultsMaster Problem Decomp. Tree Dantzig-Wolfe Lagrangian Dual Block Separation Sub-problems Mathematical Components

Fixed-Link Antenna Reconfiguration Problem (FARP)

[FARP]

max
D,B



β̄T S̄ −
∑

ij

λ̄ij

(
PiDijDji

Lb(i , j)Nr
S̄ij +

γ1(1 + Mij )(1− S̄ij ) −

γ1

(
1 +

∑
k∈N\{i ,j}

PkDkjDkj

Lb(k, j)Nr
V̄k

))
s.t. Dik −

∑
p∈P

GikpBip = 0 ∀i ,k∑
p∈P

Bip = 1 ∀i

Anderson et al. Signal Quality Pricing
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Single-Node Antenna Reconfiguration Problem (SNARP) I

Let x denote the vector of all antenna gains D. Now let i partition x as:
xi = ∪k 6=iDik .

gi (x) =



∑
j

(
1

2
λ̄ij S̄ij

Pi

Lb(i, j)Nr
Dij D̄ji

)
+

k

|N|

if i is a transmitter∑
j

(
1

2
λ̄ji S̄ji

Pj

Lb(j, i)Nr
D̄ji Dij

)
+

k

|N|

if i is a receiver

hi (x) =



∑
j

( ∑
k,l∈N\{i,j}

(
1

2
γ1S̄ij λ̄kl

Pi

Lb(i, l)Nr
Dil D̄li

))
if i is a transmitter∑

j

( ∑
k,l∈N\{i,j}

(
1

2
γ1S̄ji λ̄ji

Pk

Lb(k, i)Nr
D̄ki Dik

))
if i is a receiver

fi (x) = gi (xi )− hi (x)

f (x) =
∑

i

fi (x) given
∑

j

S̄ij ≤ Vi ∀i

Anderson et al. Signal Quality Pricing
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Single-Node Antenna Reconfiguration Problem (SNARP) II

[SNARPi ]

max
D,B

1− fi (D)

s.t. Dik −
∑
p∈P

GikpBip = 0 ∀k∑
p∈P

Bip = 1

Bip ≤ 1 ∀p∈P

Bip ≥ 0 ∀p∈P

Anderson et al. Signal Quality Pricing
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Mathematical Components

Per-node:

Link activation problem

Antenna configuration problem

Incremental subgradient calculation

Primal estimate sequence

Inter-node exchange of:

Primal and dual estimates

Distributed, asynchronous, incremental optimization process

Anderson et al. Signal Quality Pricing
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Interference-Limited Wireless Networks

Shannon capacity of a narrowband Gaussian channel is given by:

C = B log2 (1 +
P

N
) (1)

B is a fixed resource.

P has practical and regulatory limits.

Your P may be someone else’s N.

Anderson et al. Signal Quality Pricing
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Interference-Limited Wireless Networks

Aggregate capacity of n interacting interference−limited Gaussian channels
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Interference-Limited Wireless Networks

Absent some other bottleneck, Signal-to-Interference and Noise Ratio
(SINR) limits throughput.

Concurrent links increase total
capacity,

If the links don’t unduly
interfere with each other.

Identify or create low
mutual-interference link sets.
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Spatial-Reuse TDMA (STDMA)

Goal: Select sets of links or broadcasts such that spatial separation
minimizes interference.

Old idea: (goes back to [Nelson 85]).

Which sets?

How much time for each?

What configuration?
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STDMA Scheduling

Optimal scheduling is NP-Hard.

Responses:

Relax objective X

Relax constraints X

Tighten constraints X

Measured
signal strengths?

Assumed
pairwise
conflict

no

Boolean SINR
requirement?

yes

Conflict
model

yes

Continuous
link quality

no

Pairwise
link conflict

Cumulative
set conflict

Low High
Realism and complexity
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Steerable, Switchable and Smart Antennas

Anderson et al. Signal Quality Pricing
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Complication

If each node has p patterns, each set of m links has p2m configurations.
Hairier than other adaptations:

Power change affects signal and interference equally.

Modulation change affects only the link in question.

Antenna change affects everyone arbitrarily.
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Antenna change affects everyone arbitrarily.
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STDMA Scheduling

Goal: Partition links into concurrently-feasible sets to achieve desired
throughput (delay, jitter, BER, etc.)

Ignoring RF interference: Nodes can only participate in one link at
a time. → Graph coloring-like algorithms (polynomial), e.g.
[Hajek 88].

Pair-wise RF interference: Link pairs are either compatible or not;
any combination of links not including a forbidden pair is OK. →
Polynomial graph algorithms, e.g.
[Chlamtac 87, Ephremides 90, Chen 06, Liu 09].

Cumulative RF interference: Combined interference from all other
links must be acceptable for every link. Optimality is NP-hard
[Arikan 84]. Greedy algorithms by, e.g. [Grönkvist 00, Brar 06].
Optimization algorithms by e.g. [Björklund 03, Johansson 06]. *

Continuous Interference Effect: Link capacity as a function of
SINR, not a threshold, e.g. [Radunović 04].
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Antenna Capabilities

Omnidirectional & Fixed Directional.

Switched Beam

Sectorized antennas or arrays with pre-computed patterns.
Control consists of selecting among available patterns.

Adaptive Array

Synthesizes beam patterns using on-line techniques.
Generally involves active measurement e.g. pilot tones.

NO wedges, cones, pencil beams, etc.

... and the environment would distort them if there were.
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Controllable Antennas in Wireless Networks

CSMA Protocols (not going to talk about)

“Deafness” problem, mixed directional/omni RTS-CTS, directional
NAV, etc..

Cellular (telephone or data)

One smart base station with many dumb clients.
≈ No client-client interference.
Linear problem size, information & control all at BS.
(Some limited inter-cell interference mitigation exists.)

STDMA
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Controllable Antennas in STDMA

Schedule then configure

[Lin 04]

Configure then schedule

[Sánchez 99, Dyberg 02] and others. Special case: [Sundaresan 07]

Schedule with assumed capabilities

Infinitesimal beam width [Cain 03]
Geometric rules e.g. significant signal propagates only in a wedge
[Deopura 07].
Arbitrary k nulls [Sundaresan 06].

Joint Scheduling and Configuration *

Pairwise configuration considered in scheduling [Sundaresan 07], DIRC
[Liu 09].
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“Bad Neighbor” links

Bad Neighbor SIR at Receiver
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Speedup by Node Density

Acheived Speedup in Numerical Simulations
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Time to Algorithm Termination

Running Time vs. Problem Size
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