
Power-Performance Simulation and
Design Strategies for Single-Chip
Heterogeneous Multiprocessors

Brett H. Meyer, Student Member, IEEE, Joshua J. Pieper, JoAnn M. Paul, Member, IEEE,

Jeffrey E. Nelson, Student Member, IEEE, Sean M. Pieper, and Anthony G. Rowe

Abstract—Single chip heterogeneous multiprocessors (SCHMs) are becoming more commonplace, especially in portable devices

where reduced energy consumption is a priority. The use of coordinated collections of processors which are simpler or which execute

at lower clock frequencies is widely recognized as a means of reducing power while maintaining latency and throughput. A primary

limitation of using this approach to reduce power at the system level has been the time to develop and simulate models of many

processors at the instruction set simulator level. High-level models, simulators, and design strategies for SCHMs are required to

enable designers to think in terms of collections of cooperating, heterogeneous processors in order to reduce power. Toward this end,

this paper has two contributions. The first is to extend a unique, preexisting high-level performance simulator, the Modeling

Environment for Software and Hardware (MESH), to include power annotations. MESH can be thought of as a thread-level simulator

instead of an instruction-level simulator. Thus, the problem is to understand how power might be calibrated and annotated with

program fragments instead of at the instruction level. Program fragments are finer-grained than threads and coarser-grained than

instructions. Our experimentation found that compilers produce instruction patterns that allow power to be annotated at this level using

a single number over all compiler-generated fragments executing on a processor. Since energy is power*time, this makes system

runtime (i.e., performance) the dominant factor to be dynamically calculated at this level of simulation. The second contribution arises

from the observation that high-level modeling is most beneficial when it opens up new possibilities for organizing designs. Thus, we

introduce a design strategy, enabled by the high-level performance power-simulation, which we refer to as spatial voltage scaling. The

strategy both reduces overall system power consumption and improves performance in our example. The design space for this design

strategy could not be explored without high-level SCHM power-performance simulation.

Index Terms—System architectures, integration and modeling, power management, low-power design, energy-aware systems,

performance analysis, design aids.

�

1 INTRODUCTION

SINGLE chip heterogeneous multiprocessors (SCHMs) are
becoming more commonplace for embedded and semi-

custom portable devices. The complexity and variety of
SCHM architectures will likely increase as no single
standard platform has emerged [1], [2]. Multiprocessor
frameworks like the Hyperprocessor [3] motivate how
collections of heterogeneous processors might be organized,
but also leave a large design space to be explored—and
exploited. There are two primary reasons for this. First, it
will soon be possible to place a hundred ARM-equivalent
processors on single chips. The selection of numbers and
types of processing elements (PEs) is not straightforward.
Second, the applications these systems will execute will

have unprecedented forms of heterogeneous parallelism
that can be exploited in new ways.

Applications that previously used to be considered in
isolation are beginning to be integrated for simultaneous
execution on the same computing device, creating entirely
new application sets. The merging of increasingly sophis-
ticated Human Computer Interface (HCI), Computer-
Computer Interface (Networking), and Environment-Com-
puter Interface (Classic Embedded or real-time applica-
tions), along with many of the applications previously
associated with desktop computers, will form new classes
of applications. A common example of this kind of system is
the cell phone, which can also serve as a Web browser and,
with more sophisticated HCI, a personal digital assistant
(PDA), executing functionality previously associated with
laptops or even desktop computers.

Models, simulators, and design methodologies that
target the instruction-level of individual PEs (or below)
will be inadequate to capture the rich set of design trade-
offs required in this new design space. This is true not only
because of prohibitively large simulation times when
instruction set simulator-level (ISS) simulations have even
a few PEs, but because of the time to develop each ISS-level
model. The design of these next generation SCHMs is more
appropriate at the thread level instead of at the instruction
level, i.e., when the unit of execution is thought of as a

684 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

. B.H. Meyer, J.M. Paul, J.E. Nelson, and A.G. Rowe are with the Electrical
and Computer Engineering Department, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213.
E-mail: {bhm, jpaul, jnelson, agr}@ece.cmu.edu.

. J.J. Pieper can be reached at 129 Franklin St., Apt. #421, Cambridge, MA
02139. E-mail: jjp@pobox.com.

. S.M. Pieper is with the Electrical and Computer Engineering Department,
University of Wisconsin-Madison, 2414 Engineering Hall, 1415 Engineer-
ing Dr., Madison, WI 53706-1691. E-mail: spieper@wisc.edu.

Manuscript received 27 Feb. 2004; revised 2 Aug. 2004; accepted 8 Oct. 2004;
published online 15 Apr. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0067-0204.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

thread instead of an instruction. (Here, we use thread as a
fundamental unit of concurrency most analogous to a
superinstruction since it is a sequence of instructions that
has the potential to be scheduled and also share common
state with other threads.) Beyond this, registers, cycles, and
instructional units must be elevated to new design elements
appropriate for this level of design. New design elements
for physical resources and functional execution are re-
quired, along with new relationships between them.
Further, execution speed can no longer be distilled to a
single number for worst-case or average behavior, but will
result from trade-offs between application sets that simul-
taneously execute in the system in a variety of situations [4].

A primary motivation for designing SCHMs is to exploit
new design strategies at the system level to save power.
There are two well-known examples for this: substituting
multiple PEs at lower clock rates for one at a higher clock
rate and turning off PEs when they are not needed. Both of
these approaches may become even more important as
leakage current begins to dominate power consumption
and, instead of reducing transitions, the goal is to reduce
the number of unnecessary, powered-on transistors. Here,
the use of collections of smaller, simpler cooperative PEs
executing at lower frequencies is attractive for three
reasons. First, transistors that support the performance for
general purpose computation are eliminated as processor
types can be more suited to application types. Second, the
cost of multiplexing many unrelated or loosely related
threads on a high-speed processor can be eliminated by
instead executing the threads in parallel. Third, the
intelligent management of collections of processors that
can satisfy peak loading, but be turned off otherwise, can
satisfy different levels of demand on the system while
reducing overall power consumption.

The discovery of new strategies for exploiting this new
design space will be enabled only if performance and power
can be meaningfully and accurately modeled, manipulated,
and simulated at a new level of design. Toward this end,
this paper has two main contributions. First, we start from
the basis of an existing high-level performance simulator
and investigate how to extend it into a power-performance
simulator. MESH (Modeling Environment for Software and
Hardware) can be thought of as a thread-level simulator for
an SCHM instead of an instruction-level simulator for a
microarchitecture. Using MESH, we have had success
exploring SCHM design well above the level of the ISS,
where designers manipulate threads, processors, schedul-
ing, and communications strategies instead of instructions,
functional units, and registers. We have compared our
performance results with ISS-level models and found
reasonable accuracy while execution is typically two orders
of magnitude faster than ISS-level models. However, in
extending MESH to model power as well as performance,
we found a lack of consensus for how MESH threads might
be annotated for power modeling. Our hypothesis was the
intuitive assumption that different program fragments,
which are finer grained than threads, would have different
instruction mixes and, so, require the annotation of different
power consumption values in the MESH threads. Thus, we
sought a method for identifying different fragment types
and calibrating the high-level model to their individual
power consumptions. We ran experiments over a subset of
the SPEC CPU2000 [5] and MiBench [6] benchmarks. Across

a wide variety of programs types, we found that compilers
tend to produce patterns of instructions that generate a mix
of both instruction sequences and instruction types. This
allows a single, average power consumption, calibrated
once to each PE type, to sufficiently model the execution of
all compiler-generated program fragments that execute on
that processor type. The exception is when designers
generate extraordinary instruction mixes by hand, such as
when a processor is in an idle state. But, in these cases,
threads are performance-tuned, or even power-tuned, such
that designers can readily calibrate power consumption at
the time the thread is designed as a one-time measurement.
Since energy is power*time, this simplification of power
modeling leads to system runtime (i.e., performance) being
the dominant factor to be dynamically calculated at this
level of simulation. Our experimental results also suggest
that the power characteristics of interprocessor coordination
and interactions, in the form of scheduling, memory
hierarchies, and on-chip network communications, will
likely be far more important than the power consumption of
instructions or instruction sequences of individual proces-
sor cores in an SCHM.

High-level modeling is most beneficial when it opens up
new possibilities for organizing designs. Thus, our second
contribution is a new design strategy enabled by the high-
level power-performance simulation. We refer to this as
spatial voltage scaling, one design strategy of many that can
be enabled by providing power-performance simulation at
the new level of design provided by MESH. Spatial voltage
scaling reduces both overall system power consumption
and improves performance over a baseline design in our
example. The design space for this strategy could not be
explored without high-level SCHM power-performance
simulation. Not only would the simulation time have been
prohibitive, an additional barrier to creative design organi-
zation exists when designers are thinking in terms of
instructions, registers, and cycles instead of threads,
processors, and synchronization. Thus, the two contribu-
tions are related.

2 DESIGN SPACE COMPLEXITY

Future SCHMs will be design hybrids, containing char-
acteristics of processor design as well as hardware design
[7]. Models and simulators that support the exploration of
the new design space of SCHMs must capture essential
features while eliminating unnecessary detail. The central
question in the support of high-level design is always what
detail can be eliminated and what is essential. The
examination of this for power annotation is one of the
contributions of this paper. In order to understand the type
and amount of detail required in any new model, the design
space must first be understood.

For future SCHMs, the design space arises from at least
four distinct parts: the application, the testbench, the
architecture, and the schedulers. None of these need to be
given up front, but the amount that is known in advance
about each part can have a large impact on how to
strategize design exploration. For example, the broader
the application space, the more the solution requires
architectures and schedulers that handle a variety of
situations well. Many future SCHMs will have more

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 685

application specificity than general purpose processors, but
less application specificity than pure hardware design.

At a high level, the design space may be broken into four
variables: system architecture configuration (R), system
scheduling policy (S), system application (A), and testbench
composition (T). In general, R, S, A, and T are vectors
which may contain either vectors of numerical parameters
representing configurations, specifications of physical sys-
tem elements, or full software programs. This constitutes a
rich set of design possibilities. A point in this layered design
space is shown in Fig. 1.

Even when the application set is known in advance, the
remaining design space is large. The testbench merely
models the inputs that exercise the system, but the data
values, data sizes, and arrival rates of these inputs can
prompt a variety of interactions in SCHMs. Thus, T may be
amenable to parameterization in terms of data content, data
size, and data arrival times, but it cannot be parameterized
into a finite set of cases without some knowledge of the
system it is exercising. Further, T itself is a vector since it
contains both data and time values. Unlike traditional
benchmarking, where data is an untimed input to the
system, future portable devices will be evaluated against a
variety of timed input sets [7], more like the testbench of a
hardware design language (HDL) such as Verilog or VHDL.

Each instance of the system architecture R can be thought
of as a vector which includes

R ¼ fnumbers of processors; processor types; frequency of

each processor;method of interprocessor communicationg:

While the specification of the physical architecture is
clearly important to any design space exploration, an
equally important aspect of the design is the system
scheduling algorithms; when collections of processors are
used to solve a common problem (or set of problems), they
must cooperate in an intelligent manner and schedulers are
responsible for ensuring this happens. Scheduling is often
implicit when single processors are used to execute
applications; the scheduling is contained right in the
program. When exploiting thread-level parallelism over a
collection of processor resources, however, cooperative
scheduling must often be developed in conjunction with
the application and the features of the underlying archi-
tecture and possibly anticipating the way the system will be
exercised. Further, the cost of cooperation must be
evaluated. Interprocessor coordination is not free, but
comes at the price of the overhead to support a common
scheduling or communications domain.

Since schedulers, like other software programs, are
designable algorithms that execute in the final design, S
can represent an infinite set of programs. While some
scheduling parameters can be specified—for example, how
long a scheduler waits before shutting down a processor

—the design of programs that make data-dependent
decisions cannot be distilled to numerical sets of values
generated by other programmatic, analytical models.

This blend of software and hardware and the level of
design complexity result in the need for mixed software and
hardware simulation above the ISS-level. We have been
developing the basis for a high-level simulator to capture
the performance trade-offs in this design space, which we
discuss in the next section. This will be the basis from which
we will approach high-level power-performance modeling.

3 MESH

This section provides an overview of MESH as a preexisting
performance simulator that permits the designer to effi-
ciently explore the design space described in Section 2, at
the thread-level as opposed to the instruction-level. MESH
has been previously described and evaluated [7], [8], [9],
[10], [11]. In MESH, system performance is simulated by
resolving software execution into physical timing using
high-level models of processor capabilities, with thread and
message sequence determined by schedulers. The central
question to be asked of all simulators is what is in control of
sequencing the system. By interleaving heterogeneous PEs
on the basis of physical time intervals, we capture the
physical timing basis all performance simulators require
without resorting to a global simulation tick. However,
software does not contain physical timing properties, but,
rather, coordinates state update logically, with performance
determined only by the relative computational capabilities
of the underlying resources upon which it executes. Thus,
the most significant feature of MESH is that the amount of
computation complexity advanced by a given PE in its
execution interval is calculated at simulation time according
to the amount and form of the software eligible to execute
on that PE. Performance modeling of the entire SCHM is, in
turn, calculated by how logical state is coordinated as it is
advanced by a collection of PEs. Thus, MESH captures the
different sequencing of software and hardware, resolved
though scheduling and communication with new design
elements. These elements are based upon thread types
which capture the contributions to overall system perfor-
mance of both logical and physical sequencing [12] as well
as the layered resolution of the two fundamental kinds of
sequencing, also captured as thread-based design elements.

Fig. 2 illustrates theprimitivemodeling elements ofMESH
at a high level. This view provides the essential modeling
elementsofdesignof SCHMsat the thread level as opposed to
the instruction or cycle level. At the lower left of the figure, an
SCHMis illustrated interactingwith some external testbench.
The SCHM includes n PEs, with n separate clocks. The
cooperation of the PEs in the SCHM is illustrated as a layer of
“scheduling and arbitration,” shown as a solid, thick line.
Many overlapping layers of scheduling and arbitration may
exist in SCHMs; the single domain is shown to simplify the
illustration of the main design elements of MESH. Also, the
label “scheduling and arbitration” may represent networked
communications as well as shared buses; the label in the
figure simply illustrates processors grouped into a logical,
cooperative domain.

In Fig. 2, PE1 is expanded into a MESH “thread stack.”
The thread stack illustrates all of the design elements
contributed by PE1 (each PE contributes a similar thread

686 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

Fig. 1. A point in the design space.

stack to the SCHM). At the bottom is a model of the
physical capabilities of the processor resource, modeled as
physical thread ThP1. Each unique PE represents a different
physical capability within the SCHM, which can be
programmed to carry out concurrent behavior. This
programming is captured as a collection of logical threads,
ThL11; . . . ; ThL1n, shown at the top of the expanded view. The
logical threads represent the untimed, logical sequencing of
software. This simply captures the effects of software
executing on hardware, where physical timing is not
determined until the software executes on a model of or a
real physical machine. Each PE may execute an unbounded
number of software (logical) threads, with scheduling
decisions potentially made dynamically in response to
different data sets. This per-processor, thread-level decision
making is modeled by a physical scheduler, UP1.

Taken alone, this might represent a main program or OS
executing on a single processor resource. However, the key
to the design of SCHMs is the design of cooperation among
a variety of PEs. The cooperation of the various PEs as state
is exchanged and scheduling decisions are made is modeled
by the cooperative, or logical scheduling domain, UL1.
Because UL1 represents a cooperative scheduling domain,
the threads that execute on any given resource may also be
eligible to execute on any other resource that belongs to the
same logical scheduling domain. This is true even if the
processors are heterogeneous (we will utilize this in our
example in Section 7).

It is significant that each logical thread at the top of the
diagram need not have a one-to-one correspondence to the
underlying hardware elements. It may be desirable for
some threads to be mapped to processor resources and even
be guaranteed to be available to always execute on them,
while other groups of threads can execute on groups of
possibly heterogeneous processor resources and, so, are
considered mapped to a logical scheduling domain instead.
In either case, the number of logical threads may even be
unknown until the system is executing, responding to
different data sets.

Because UL1 captures the penalty of resource sharing and
cooperation [11], we can model what is perhaps the key

design challenge of the design of SCHMs at a greatly
reduced level of modeling and simulation detail—the trade-
off between a few powerful, complex, PEs that execute
more threads locally or more less-powerful, simple, PEs
with the additional cost of global cooperation.

The middle scheduling layer (UP1, which executes on
PE1 and contributed to the common scheduling domain
ULi) serves an additional purpose in the simulator. MESH’s
schedulers and resource models enable performance mod-
eling by resolving the different timing of software and
hardware—logical and physical timing. The key here is that
the schedulers and logical threads use consume calls to
resolve the logical computation of the software threads to
the physical resource power provided by the resource
thread. Consume calls are tuples of information, represent-
ing the amount of software complexity within a program
fragment. We define a program fragment, which we will
sometimes refer to in this paper as a fragment, as the
granularity of performance annotation (speed or power) in
a simulation. Fragments may be as large as the thread-level
or as fine as the instruction-level, but, in general, are finer-
grained than individual threads and coarser-grained than
individual instructions. If fragments are too coarse-grained,
accuracy suffers. If fragments are too fine-grained, simula-
tion performance and, potentially, design time suffer.
However, the important point is that the annotation of
consume values within threads is flexible and an important
part of creating a good model.

Another important point about consume calls is that they
represent timing that is relative to the physical capabilities
of the resource upon which the fragment executes. As a
simple example, an annotation of “consume(9)” indicates
that nine units of computational complexity have been
consumed by the fragment since the preceding consume
call. However, the nine units of complexity may result in a
different amount of actual execution time on different
physical (processor) resources. Given a more powerful
processor or a processor that was capable of executing
functionality unique to the logical thread (such as if the
processor had a floating-point unit and the logical thread
contained many floating-point instructions), it would
execute more logical events per activation, giving a different
state trajectory to the system. Thus, processor heterogeneity
is modeled as threads execute on different resources
(scheduled both statically and dynamically).

The basic types of threads in MESH are summarized as:

. ThLij—One of j logical threads (software) that will
execute on processor i.

. ThPi—A model of the ith physical resource in the
system, such as a processor.

. UPi—A scheduler that selects logical threads in-
tended to execute on resource ThPi.

. ULi—A logical scheduler that can scheduleM threads
to N resources.

Wehavedoneprior experimentationwithhow to annotate
software for reasonable accuracy at high-level modeling.
MESH has been previously shown to enable designers to
evaluate the performance effects of design trade-offs in the
software, hardware (numbers and types of PEs), scheduling
decisions, and communications (memory arbitration and
network-style protocols) across multiple PEs on a chip, with
accuracy typicallywithin 10 percent of ISS-level simulations,

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 687

Fig. 2. Layered logical and physical design elements in MESH.

but which execute two orders of magnitude faster [9], [10].
We will now examine the necessary granularity of power
annotation required in MESH. This will form the basis of
the first contribution of this paper.

4 POWER-PERFORMANCE MODELING PRIOR WORK

We begin our investigation of how to include power
modeling in MESH with an overview of prior work in
power modeling and simulation. We will ultimately use this
to draw a set of parallels between instruction-level power
modeling and thread-level power modeling.

Analytical power models rely on known worst-case
execution times, averages, or statistical properties to quickly
determine power consumption in a system which can be
completely parameterized [13], [14], [15], [16], where
programmatic decision making does not affect overall
performance. Because of the need to model schedulers as
programs, analytical models remove too much detail for our
purposes.

At a much lower, microarchitectural level ISS models
and even RTL-level models can inherently capture data-
dependent and processor-specific execution unless the
design space is otherwise restricted [17]. The cost of models
at this level is in the effort required to develop them and the
time required to execute them. Projects like Wattch [18],
SimplePower [19], and Sim-Panalyzer [20] are frameworks
for evaluating trade-offs in microarchitecture power dis-
sipation and performance. All three are based on the
SimpleScalar microarchitecture simulation platform [21]
and each performs power estimation by combining device
capacitance models with measures of switching activity.
The microarchitecture-level focuses on simulating the
affects of minor functional changes on performance; they
are also becoming the reference models against which high-
level models are evaluated in lieu of actual hardware.

Our objective lies somewhere in between analytical
models and ISS-level models and, thus, we will pay the
most attention to prior work in this area. These models
estimate power based on information about instructions or
whole applications a priori. We are most interested in these
techniques to inform power modeling in MESH since they
estimate the power of dynamic instruction sequences
without actually simulating the instruction sequence.

We observe that there are four fundamental approaches to
power estimation between analytical models and ISS-level
models, which we will number for later use in the paper:

A1. Using a single power value to model all instructions in a
given processor. This approach has been proposed to be
sufficient when it can be assumed that there is little
interinstruction dependency and variations in the
energy per cycle cost of instructions do not coincide
with the variation in instructionmix across programs.
Prior work here is exemplified by [22], in which
measurements were taken of instruction and inter-
instruction costs on a RISC machine. Based on these
measurements, the conclusionwas drawn that, with a
single power value, we can model the overall power
consumption of a processor with 8 percent error.

A2. Measuring classes for groups of instructions (without
regard to underlying structure). In this approach, after
exhaustive measurements are taken, instructions

with similar energy cost per cycle are then grouped
to reduce the number of power values needed to
characterize the system [23], [24]. For example,
instruction clustering is shown to model power for
a VLIW processor with less than 2 percent error in
[23]. This method is certain to reduce the error
inherent in using a single power value to character-
ize a processor.

A3. Assigning power values to structural features related to
the underlying architecture. In this approach, knowl-
edge of the underlying processor architecture in-
forms the estimated cost of instructions. In [13], a
processor is divided into functionalities, or indepen-
dent operations, like Fetch and Decode, Branch,
Load and Store, ALU, for example. Once the cost of
each functionality is determined, the cost of an
instruction is derived from the cost of the function-
alities it requires for execution. This information can
be easily used to group instructions that all use the
same set of architectural elements.

A4. Using context to inform power modeling. This approach
is based on the presumption that the power
consumption of instructions executed in sequence
may be different from that of the instructions
considered (and measured) individually. The basic
idea of [25] is to measure the average power
consumption of each instruction and instruction pair
in the target processor (in this case, a DSP) and then
apply this information to determine the total cost of
an application. This method modeled power in the
DSP with 11 percent error. This method requires the
evaluation of each instruction pair, including com-
binations of addressing modes.

Based upon this set of prior work, we were faced with
choosing which method would be most appropriate for
annotating the power consumption of program fragments
in MESH. Since there is no clear consensus, we performed
our own set of experiments to determine which method
should be used and to guide future work so that power may
be modeled at the new level of design provided by MESH.

5 EXPERIMENTS FOR HIGH-LEVEL POWER

ANNOTATION IN MESH

Our objective was to understand how to obtain the
individual power values that should be assigned to
individual program fragments in MESH under the hypoth-
esis that different fragment types would lead to different
power values and, possibly, different techniques for assign-
ing power values. We began with the goal of identifying
which fragments exhibited different average power con-
sumption so that we would be able to classify fragments as
having different power signatures (or just “signatures”). A
power signature is an energy per cycle value in effect while
a given fragment is executing on a given processor. Thus, if
the execution time of a fragment with a certain power
signature is calculated by the simulation, its energy cost can
be easily calculated by the simulation.

For our experimentation, we developed a custom-design
board and used an ISS-level power simulator. These were
intended to obtain calibration values for the power
modeling on a per-fragment basis, as well as to help us to
obtain measurements on a per-fragment basis over a variety

688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

of fragments so that we could draw some conclusions about
fragment type and power annotation. In this section, we
describe the experimental set-up, our experiments, and our
experimental results for high-level power calibration and
annotation.

5.1 Experimental Setup

We used Sim-Panalyzer v.2.0 [20], with the default config-
uration for the ISS-level simulator. This includes the use of
default power consumption characteristics, as well as the
default memory model, issue width, and instruction
window. The simulator was necessary in order to provide
fine-grained control and monitoring of instruction execu-
tion. However, because many ISS-level simulators must also
be calibrated to actual architectures, we also obtain some of
our energy measurements through the use of the Energy
Measurement Unit (EMU), a custom device that permits
power measurement on an actual processor.

The architecture of the EMU is shown in Fig. 3. The
target ARM board is a Phillips LPC2106, an ARM7TDMI-S-
based development board. The ARM has 128 kB of on-chip
FLASH and 64 kB of on-chip SRAM. In our experiments,
test binaries were uploaded to the FLASH and then
executed from the FLASH. The LPC2106 has a memory
acceleration module that performs prefetching to ensure
that one instruction is available for issue each clock cycle.

The EMU offers several advantages over multimeters
(used in [27], [28], [29] among others) for microprocessor
energy measurement and avoids some methodological
errors common in previous work. Unlike previous work,
which assumed a constant input voltage to the device under
test, the EMU simultaneously measures current and
voltage. Assuming that the supply voltage is constant
creates a source of error and inflates the measured energy of
high-current instructions. By measuring both current and
voltage on the output of the power supply, we eliminate a
source of variation and can be more certain of relationships
such as “Branch takes four times the energy of Add.” As
power supplies may leak current and have slow response
times, such statements are hard to justify otherwise. The
data logs generated by the EMU show fluctuation in the
voltage provided to the core, which is inversely related to
change in consumed current, validating the need to
measure both supply voltage and current.

To isolate the input current from the measurement

circuitry, we use a Maxim 4372h current to voltage
converter with built-in gain and internal current mirror.

This device’s 3dB cutoff is near 200KHz. Thus, we sample at

only 100 KHz to avoid a significant loss of precision. We
observed less than 0.1 percent variation between nearby

measurements of identical code segments (more distant

measurements show a variation of approximately 1 percent
due to thermal differences).

In order to identify code segments on the EMU, we use
an 8-bit tag port (output pins driven by a global I/O register

on the LPC2106) connected to the system under test. When

the EMU detects a change on the port, it transfers the data
off-board to a logging program. This transfer requires that

the program running on the system under test must pause

for approximately 2.8 ms between changes in state.
While the EMU is very precise for code segments that

execute over a long period of time, it is not suitable for
creating energy profiles of code that rapidly shifts between

key segments. It is necessary to use code segments that

execute for several thousand cycles in order to amortize the

effects of last measurement slack. Therefore, we use the
EMU so that we can compare the execution of specific

program fragments against both an ISS-level simulator and

real hardware. Typically, these fragments were constructed
in such a way as to isolate the power consumption of

individual instructions.

5.2 Experiments

The first set of experiments measured the cost per cycle of

individual instructions. On the LPC2106, instructions were
executed 10,000 times in a row, with operands held

constant, and the average power calculated using the power

monitor described in Section 5.1. On Sim-Panalyzer,
instructions were executed 10 and 10,000 times, with the

average power calculation resulting from a line fit to these

two points. This was done to account for startup and
shutdown overhead.

We also ran a variety of benchmarks on Sim-Panalyzer.
Together with instruction mix information that was

gathered using the GDB/ARMulator, a GNU ARM ISS,

these experiments were conducted to test how much
instruction mix and the related energy dissipation per cycle

varied from application to application. The benchmarks

chosen included the applications used in the example in
Section 7, selections from MiBench [6], and SPEC CPU2000

[5]. From MiBench, we used FFT, lame, jpeg, rijndael, and

rsynth. From SPEC, we used crafty, vortex, and vpr. Finally,
we also ran a custom set of applications that we used later

in our example: gzip, wavelet, and zerotree. These bench-

marks were all compiled in gcc with optimization O3. The

MiBench and custom benchmarks were executed with
typical and pathological input data where possible. All

SPEC benchmarks were executed using the MinneSPEC

workloads [30]. We anticipated that we would be able to bin
program fragment by average power consumption, leading

to a further narrowing of the problem of deciding when and

how to obtain different power annotations for program
fragments in MESH.

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 689

Fig. 3. Architecture of energy measurement unit (EMU).

5.3 Experimental Results for High-Level Power
Annotation

We sought to understand how prior work in power
modeling between the RT-level and analytical models, as
described in Section 4 as approaches A1-A4, might be
applied to the high-level annotation of program fragments
in MESH. By applying the general form of the A1-A4
approaches, we are also able to point in the direction of how
high-level power annotation might be achieved for both
processor cores and at the system level.

We discovered that, for compiler-generated tasks, over
the wide range of benchmarks we tested, a single power
value sufficiently modeled the power consumption of all
threads executing on a given processor. Thus, approach A1
in Section 4 holds with reasonable accuracy for compiler-
generated code over all of the benchmarks we tested since
these were compiler-generated fragments. We found this to
be the case because, across instructions, the energy per cycle
is relatively invariant, across fragments the instruction
distribution is relatively invariant, and the interinstruction
and architectural effects are small across all of the bench-
marks that we executed.

To see this, first consider the variation in instruction
costs in Fig. 4 and Fig. 5. Fig. 4 shows the minimum and
maximum energy per cycle cost of several classes of
instructions measured by the EMU board. Fig. 5 shows
the same results when measured using Sim-Panalyzer. The
two results are very similar and show a similarly small
variation, with approximately 22 precent difference be-
tween the overall minimum and maximum in Fig. 5.

Next, consider the variation in instruction mixes in Fig. 6.

In this figure, 75 percent of the benchmarks fall into the
boxes for each instruction class; the lines indicate maximum
and minimum percent occurrence of a particular instruction
class. The instruction class that showed the largest variation
in occurrence, memory operations, changed from 32 percent
to 50 percent over the middle 75 percent of all our tested
benchmarks. The average energy per execution cycle across
all benchmarks is 1.13 units as can be seen in Fig. 7, which
shows the processing core energy per cycle cost of each
benchmark. Using this average value of 1.13 tomodel power,
the average error for each individual benchmark is 6 percent,
while the maximum error is 15 percent. The measurements
for each benchmark were taken in Sim-Panalyzer.

We conclude that, when modeling the power consump-
tion of compiler-generated threads executing on processor
cores on SCHMs, a single power signature may be used to
represent all compiled programs for a given processor with
reasonable accuracy. This is based on the observation that a
variety of different benchmarks, compiled under gcc, vary
only slightly in their mix of instructions. With only minor
variation in benchmark instruction mix, the individual cost
of instructions must differ dramatically to impact the
average cost of a program as a whole—and we observed
through direct experimentation that they do not. This result
is supported by the observation in [35] that a low
proportion of system power is dissipated in the actual
execution of instructions; the majority of the power is
dissipated in actions that occur for each instruction, such as
fetch and decode. Additionally, compilation plays a key

690 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

Fig. 4. Instruction cost variation in the LPC2106.

Fig. 5. Instruction cost variation in Sim-Panalyzer.

Fig. 6. Instruction mix variation on GDB/ARMulator.

Fig. 7. Benchmark core energy/cycle cost.

role in smoothing out the types of instructions that execute
on a processor. In retrospect, this is not surprising since
compilers use patterns to generate code. It is unlikely,
therefore, that an ARM executing gcc-compiled code would
require more power signatures when executing most real
applications.

While we did not extend our experiments for different
processor types or different compilers for the same
processor, our investigation was not intended to be an
exhaustive survey of all possible compilers, cores, and
SCHM architectures. Rather, we are motivating some basic
findings that we believe will extend to many if not most
other situations. It is intuitive, in light of these experimental
results, that compilers play a key role in smoothing out
variations in instruction mixes across a wide variety of
behavior types, similar to the way architectural features
common to all instructions that consume large amounts of
power tend to smooth the variation in power consumption
of individual instructions. Modeling at the program frag-
ment level, we experience both of these effects for compiled
fragments.

We had assumed multiple power signatures could be
used and applied to separate program fragments, as in
approach A2 of Section 4, in order to improve accuracy.
Using two power signatures to group the benchmarks in
Fig. 7 in this manner, for example, could decrease the
average error in power estimation to only 3 percent per
benchmark.

However, using an extra signature to model the power of
a group of fragments that do not frequently execute will
have little impact on the overall error. Since compilers tend
to smooth instruction mixes generated from source-level
code, the need for multiple classes of power signatures will
most likely arise from some extraordinary condition, such
as a fully hand-coded thread. Under these conditions, a
designer is likely hand-tuning a thread with great knowl-
edge of the underlying architecture. The thread is likely
being performance-tuned or power-tuned (if not both). In
this case, the average power consumption will not likely
hold, but the reason it does not hold is because some unique
situation is being exploited. Presumably, the reason it is
being exploited is because the situation arises frequently
enough for it to beworth the customdesign time tobypass the
compiler.Whenapplications are tuned to architectures in this
way, designers can assign signatures to fragments as a part of
the design process, based upon knowledge of the unusual
instruction mix. One important example of this is when a
processor is in an idle state. In this case, designers may
develop threads that execute nops or other instructions that
limit memory access and so are designed to consume less
power while the processor is waiting for something to
happen, but not turned off. We use this type of signature in
our example of Section 7. For other extraordinary situations,
evenwhenprocessors or fragmentsdonot yet exist, designers
may predict the effects of a code fragment executing on a
processor resource so long as unique relationships can be
drawn between physical systems and high-level models. For
example, the use of a custom superinstruction such as aDCT
(Discrete Cosine Transform) instruction might warrant a
different power signature when that instruction is used
frequently. This is analogous to the use of approach A3
from Section 4. At the system-level, this involves the
identification of “super patterns” of instructions, which is

clearly more difficult, in general, than the identification of
traditional architectural classes of instructions such as
Branch, Multiply, or Add. However, as with the previous
example of software that is not compiler-generated, these
superinstructions are likely known at design time and,
therefore, will be built into high-level models instead of
automatically recognized.

We also theorized that memory access patterns would
prove to be a differentiator of thread types. Fig. 8 compares
the total energy per cycle cost of the core and memory
subsystem together to the energy per cycle cost of the core
alone. When the power used by the memory subsystem is
considered, the variance in energy per cycle cost is on the
scale of 1.11 units, compared to 0.24 units when only the
core power dissipation is considered; the cost of the
memory subsystem dominates, suggesting that fragments
could be grouped by their expected behavior given the
characteristics of a memory subsystem, ignoring the power
consumption behavior of the core entirely. This generalizes
to any subsystem with which a fragment may interact in
some way.

Since interinstruction interaction at the microarchitectur-
al level is analogous to interfragment interaction at the
system level, we examined the effects of interinstruction
interaction on our results. We have observed in our
experiments that only one-third of the variation in the core
energy in Fig. 7 is attributable to differences in the counts of
instructions executed. It follows that the remaining two-
thirds must be due to interinstruction and other instruction-
architecture dependencies, e.g., the frequency of pipeline
stalls. While, in this case, the overall impact of the variation
is quite small, again leading to the conclusion that the same
mix of interinstruction patterns appear across all compiled
benchmarks, it indicates that instruction dependencies are a
significant source of error in power modeling. At the system
level, the cache state may be the most likely system-level
analogy to capture interfragment effects. If, as was the case
when considering a core and memory system, the power
consumption of cache systems dominates that of cores,
improved modeling of interfragment effects may reduce to
improved modeling of caches at high levels. The application
of knowledge of interfragment interaction, which is
analogous to the application of context to inform power
modeling at the system level (A4 of Section 4), may
ultimately prove to be the most important factor in
achieving acceptable high-level modeling. In any case, our

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 691

Fig. 8. Benchmark core and memory energy/cycle cost.

results show that it may be far more important to model the
system-level effects of interfragment interaction than the
instruction-level power consumption on individual cores.

5.4 Summary of Power Annotation Experimentation

Many problems remain to be solved in accurate high-level
performance modeling. Our objective was not to solve all of
the problems, but to discover those approaches that would
likely have the most impact so that we could begin with a
high-level modeling basis and work toward the next steps.
Interestingly, from both our experimental results and as
leakage current comes to dominate, the key to both power
modeling and powermanagement at this level of designmay
be the ability to characterize how long a processor is on or off,
rather than what it is processing. The only exception may be
whenaprocessor is in somesort of sleepor idle state, inwhich
case, it is processing a pathological set of instructions or
reduced to even less activity, or when custom hardware is
included well above the traditional instruction level. In both
cases, power annotation may be a by-product of the design
customization instead of a number automatically determined
from source code. However, and as with performance trade-
offs of the use of multiple, cooperating PEs in lieu of single
PEs, the cost of the cooperationwill be a key factor tomodel in
these designs. Thus, high-level power modeling may best
focus efforts on modeling memory access patterns for a
variety of parallel processing architectures, instead of
modeling the PEs at the ISS-level.

6 ENERGY MODELING IN MESH

Based upon the results of the previous section, we have
added extensions to MESH that estimate energy consump-
tion, resulting in a first-generation high-level power-
performance simulator. While there is more work to be
done, we show in Section 7 how MESH’s foundation
enables designers to explore SCHMs in new ways by using
a new design strategy.

Energy is calculated in MESH as the power signature
associated with a given fragment, multiplied by the time
that fragment is executed over the duration of simulation,
i.e., the performance of the fragment. All processors are
modeled with at least one power signature. Execution time
is determined by our high-level performance model, MESH.
While the average power dissipation (signature) of a given
fragment is assumed to be constant over the fragment, the
execution time of all fragments can be data-dependent,
affecting the execution time and, thus, the power dissipa-
tion calculated by MESH. Total system power is then
summed over all PEs.

In the case of the example described in Section 7, we
found two signatures were sufficient for each processor in
the system (this is discussed in Section 7.2). One represents
all software compiled for a given processor, while the other
represents an idle, but still “on” condition.

Current ISS-level tools such as Sim-Panalyzer include the
overhead associated with accessing memory external to a
chip. When considering multiple processor cores on a single
chip, the memory overhead would be far less. The cost of
accessing memory (in terms of both time and power) will
likely be the single largest differentiating factor in a
designer’s decision to use multiple, coordinated cores in
lieu of one, which is the central question in low-power

system-level design. In MESH, we currently include the
ability to model time penalties associated with memory
contention [10]. Since our power calibration currently
includes off-chipmemory access penalty, ourmemory access
overhead is worse than for PE cores on a single chip. In order
to provide a basis for evaluating awider class of system-level
design strategies than are included in this paper, the thread-
level modeling of memory access power consumption and
other interprocessor communications patterns will need to
be addressed. And yet, one of the contributions of this paper
is tomotivate that referencemodels (or reference designs) for
the calibration and verification of high-level powermodeling
of on-chip interprocessor coordination and interactions may
be more important than instruction-accurate processor
power models.

In the example in the next section, we model the impact
of memory accesses as if they were off-chip, under the
somewhat idealized workload of largely independent jobs
(as part of an overall document). Our objective at this early
stage is to make the case for simulation that supports the
development and application of higher level approaches to
optimization of performance and power on single chip
designs by pointing in the direction of gains that can be
achieved there that could not be exploited otherwise.

7 EXAMPLE DESIGN STRATEGY: SPATIAL VOLTAGE

SCALING

The real value of MESH is more than simply showing how
one design point can be achieved faster than at the ISS-level
or below, but in permitting designers to think in entirely
new ways. New levels of modeling and simulation open up
possibilities for new design strategies because of the ability
to manipulate design elements at drastically reduced levels
of detail. We introduce one such strategy, spatial voltage
scaling, around which we orient a set of experiments that
show how the design space described in Section 2 might be
narrowed for one example system. Dynamic voltage scaling
is a technique that matches the execution frequency (and,
so, voltage level) of a given processor to the demands of the
application at runtime [26]. When performance is less
critical, the processor voltage is scaled down so that it takes
longer for a portion of the application to execute. The result
is a finite set of voltage levels and a dynamic decision-
making strategy for when the different voltage levels
available in the processor are applied.

Spatial voltage scaling is inspired by a blend of dynamic
voltage scaling and processor-rich design. We describe
processor-rich design as the well-known hypothesis that
n processors executing at a frequency f=n (and, thus, a
lower voltage) can be substituted for a single processor
executing at frequency f for nearly equivalent overall
performance and greatly reduced overall power. Of course,
this is the case only if the application lends itself to parallel
execution and if the cost of the parallelization does not
exceed the benefits. However, this is the reason for needing
a simulation environment that can permit designers to
effectively explore this space. In spatial voltage scaling,
instead of dynamically scheduling different voltage levels
on a single processor, multiple processors operate at a
variety of statically determined voltage levels that match
the anticipated demands of the system under a variety of

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

testbench scenarios; operating voltages are spatially dis-
tributed instead of multiplexed in time.

Spatial voltage scaling starts with the observation that
many systems process sets of homogeneous job types.
However, data-dependent execution times, variation in the
job sizes, and variation in the arrival rates of jobs can lead to
system power inefficiencies if a homogeneous set of
processor resources is utilized. Thus, instead of substituting
n processors executing at f=n in place of a single processor
executing at f , spatial voltage scaling seeks to find not only
n, but a set of fi, one for each processor in the system. Thus,
n processors may be substituted for a single processor
where the set of processors has a set of frequencies,
ff1; . . . ; fng. The frequency of each processor in the system
is fixed at design time, potentially resulting in a hetero-
geneous set of frequencies on homogeneous processor
types. In reality, if the frequency reduction is drastic, a
processor would likely be replaced by a simpler processor
consisting of a less complex architecture.

7.1 Experiments

We ran a set of experiments to test the hypothesis that a
spatially voltage scaled design could reduce overall power
consumption while maintaining performance. While it is
intuitive that this would be the case for some designs, the
ability to efficiently explore this hypothesis for a given
design has been limited without the high-level power-
performance simulator, MESH.

Our experimental system is part of a document manage-
ment system designed to compress documents that consist
of a variable mixture of text and image elements. A
document is not considered processed until all of its
constituent parts are compressed. We begin with a design
space related to Fig. 1 as:

A ¼ fgzip; wavelet transform; zerotree quantizationg;
T ¼ fT1; T2; T3g;
S ¼ fjob-type-aware ðSJTÞ ½with dynamic shutdown ðSJTDSÞ�;

job-size-aware ðSJSÞ ½with dynamic shutdown ðSJSDSÞ�g;
R ¼ ffnumber of; type of; and operating frequency of

processorsg; shared memory communicationg;

where there is a rich set of design trade-offs in the
hardware, software, and scheduling decisions of the
system. Document arrival times, job sizes, and data content
are all variable as well. We create a baseline design around
which we focus on validating our spatial voltage scaling
hypothesis, which, in turn, demonstrates the value of our
high-level simulator.

The baseline architecture consists of one ARM and one
DSP, each executing at 233 MHz with a 1.65 V supply
voltage, consuming 4.49 W and 4.62 W for the ARM and
DSP, respectively. The performance of the DSP is modeled
based on a Renesas M32R that contains various DSP class
instructions such as a MAC; the power consumption of the
DSP is modeled after that of the ARM, but adjusted to
account for the presence of DSP class instructions. Through-
out the paper, we simply refer to this type of PE as a DSP.

The baseline software design consists of three thread
types that can execute on either processor type. The text
portions are processed by a thread that runs gzip compres-
sion. Each image compression requires two threads: wavelet

transform and zerotree quantization. The execution time of a
given gzip job is approximately twice as fast on an ARM as
it is on a DSP. Conversely, the execution time of the wavelet
is approximately twice as fast on a DSP as on an ARM. An
ARM and a DSP are equally adept at quantization. An
SCHM consisting of an ARM processor and a DSP has been
previously shown to provide performance improvement
when jobs are sometimes scheduled on nonideal processors
[10]. The signatures of each thread on a given processor did
not vary enough to warrant the use of more than two
signatures on a single processor.

Each document is injected into the system at a Poisson
rate defined by the arrival rate in T . T1 represents a class of
documents where job size is evenly distributed; it contains
three text-image pairs: one large, one medium, one small. T2

represents a class of documents where the amount of data
in each size category is evenly distributed; it contains seven
text-image pairs: one large, two medium, four small. T3,
which contains 15 large images, represents a worst-case
document. T3 is worst case because each processed image
requires two jobs and each job is large. These testbenches
were chosen to expose the weaknesses of particular classes
of architecture configurations.

SJT and SJS are designed to reduce overall document
latency by making intelligent job-to-processor mapping
decisions. SJT attempts only to map jobs to optimal
processors based on job type. SJS extends SJT by taking
into account the size of the job when making mapping
decisions. Each PE is assigned an ideal range of job sizes
(job size bin) proportional to PE operating frequency and
expected job sizes. If SJS cannot find a processor of optimal
type and job size bin, it behaves exactly like SJT. Both SJT

and SJS are extended with dynamic shutdown [33]. SJTDS

and SJSDS are designed to dramatically reduce energy
consumption by turning off whole PEs if they have been
idle longer than a threshold. A typical cost associated with
restarting processors that have been turned off is on the
order of milliseconds; we conservatively use a value of
20 ms in our experiments.

The majority of our design exploration takes place in R.
All configurations, Rk, had the same number of ARM as
DSP processors, organized in pairs according to operating
frequency. The devices complement each other in computa-
tional ability with respect to the application, naturally
leading to pairing. The architecture configurations we
tested can be broken into four classes: base, static voltage
scaling, spatial voltage scaling, and static/spatial hybrid
configurations. Base configurations consisted of one to three
pairs of processors operating at 233 MHz. Statically scaled
configurations consisted of three to five pairs of processors
operating at some f < 233 MHz. Base and statically scaled
configurations use SJT (or SJTDS) for job scheduling.
Spatially scaled configurations consisted of three pairs of
processors operating at some f < 233 MHz, 2f=3, and f=3.
The final class of hybrid configurations consisted of four
pairs of processors, two of which operated at some
f < 233 MHz and two of which operated at 2f=3 and f=3,
respectively. Note that spatial scaling as defined above need
not be restricted in this fashion; spatial voltage scaling is a
design heuristic, as is our specific application of it. Spatially
scaled and hybrid configurations use SJS (or SJSDS) for job
scheduling.

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 693

7.2 Power Model

Using the results of our investigation, we used two power
signatures to model a processor that was considered “on.”
Processors were modeled to consume no energy when they
were off. The first power signature characterizes the cost of
executing the different programs in the example application.
This signature was calculated by taking the average energy
per cycle cost of the programs. This is reasonable since these
programs differ by no more than 3 percent in their power
consumption and were all compiled with gcc. A second
power signature was used to model the power consumption
of processors that are not turned off, but are not computing
anything useful, i.e., they are idle, waiting for something to
happen, such as a job to appear in the queue. This signature
captures processor behavior when portions of the processor
go relatively unutilized, but the processor is not asleep and,
therefore, dissipatespower. Inourmodel, the idle jobchecked
the job queue periodically, but otherwise executed instruc-
tions that didnot require externalmemory accesses. Thus, the
processor had a different power signature during idle
behavior. The power dissipation of this signature is deter-
mined using Sim-Panalyzer and is a measure of the energy
dissipated per cycle when the processor is executing an
instructionmix uniquely characteristic of when it is idle. This
mix is represented in our example as the continuous
execution of nops.

In our experiments, we have two PE types: an ARM and
a DSP. Sim-Panalyzer is limited to modeling power in an
ARM. Because of this restriction, we first determined the
power consumption of an ARM using Sim-Panalyzer and
assumed that the power behavior of the DSP was the same
as that of the ARM, except for the power consumption of
DSP class instructions such as a multiply-accumulate
(MAC). To determine the impact of this instruction, we
estimated the cost of a MAC and measured with a Reneasas
M32R ISS how often the MAC is executed and adjusted the
power signature of the DSP accordingly.

7.3 Model Parameters

Determining valid processor operating points is essential
for calculating processor power dissipation. In our experi-
ments, we chose the minimum supply voltage possible for a
given clock frequency. In modern technologies, maximum
clock frequency varies approximately linearly with supply
voltage [32]. Using this, we determined the correct
frequency to voltage relationship using data available for

two modern processors capable of dynamic voltage scaling
[33], [34]. This relationship is shown in Fig. 10.

Since the voltage and frequency ranges for the two
processors are different, the data for each processor was
self-normalized. Each processor therefore has a data point
at (voltage, frequency) = (1, 1). To make our linear
approximation valid across the entire range of possible
frequency and voltage values, the line is constrained to pass
through the point (1, 1). These constraints yield the linear
approximation frel ¼ 2:32vrel � 1:32, where frel and vrel
represent fractions of the maximum frequency fmax and
supply voltage vmax. For example, if fmax ¼ 100 and f ¼ 50,
then frel ¼ 0:5. With this equation, we can determine the
operating voltage v for any f , given fmax, vmax. With v and
maximum power dissipation Pmax (determined as outlined
in Section 7.2), it is possible to determine the power
dissipation P for a processor operating at f .

Once f is chosen, we find v by first substituting f=fmax

and v=vmax for frel and vrel, respectively, then solving for v.

v ¼ 1:32þ f

fmax

� �
vmax

2:32
:

Then, we substitute into P ¼ Cfv2, yielding

P ¼ Cf 1:32þ f

fmax

� �
vmax

2:32

� �2

;

where C is determined a priori to be

C ¼ Pmax

ðfmaxvmaxÞ2
:

In this fashion P can be found for a processor operating
at an arbitrary f , given we know fmax, vmax, and Pmax.

7.4 Results

Weranall three testbenches on10architectures andabaseline
architecture. The subset of architectures with the best latency
in these first testswas then chosen for a second round of tests.
In the second set of tests, the dynamic shutdown scheduling
policies, SJTDS and SJSDS, were applied to the subset of
configurations found in the first set of tests and a set of
enhanced base cases. The architecture deemed optimal at this
stage using a combination of normalized latency, energy, and
latency-energy product measurements was judged the over-
all optimal design.

In the charts that follow, the legend shows the architecture
parameters Rk and the scheduling parameter Sj, when
relevant. Each number in the legend represents a pair of

694 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

Fig. 9. Latency across all testbenches.

Fig. 10. Linear fit of frequency to voltage relationship.

ARM and DSP PEs. For example, for the base case R0, “233”
denotes two PEs: one ARM and one DSP, each operating at
233 MHz. Table 1 shows the groupings of architectures by
design strategy.

We begin by eliminating all designs where normalized
average latency, as shown in Fig. 9, is worse than the base
case’s for any of the three testbenches. The only architec-
tures that perform as well as or better than the base case
across all Tn are R4, R8, and R9. The entire statically scaled
class of architectures (R1-R3) was eliminated because of its
performance in T1.

Once the set of architectures is narrowed, we introduce
dynamic shutdown so individual PEs are turned off and
consume no power after a period of inactivity. As shown in
Fig. 11, we add two new architectures (R11 and R12) that
consist of four and six PEs operating at 233 MHz using
SJTDS and retain the original base case, R0, that does not use
dynamic shutdown. We ran these new configurations on all
three testbenches and show the results from T1 in Fig. 11.
While R0, R11, and R12 using SJTDS have good latency, there
is a significant energy penalty for having so many high-
power PEs. The three architectures that met the latency
requirement in Fig. 9 (R4, R8, and R9) clearly also outper-
form all architectures using 233 MHz PEs (R0, R11, and R12)
in terms of latency-energy product when SJTDS and SJSDS

are applied, respectively.
While we do not show the results for T2 using dynamic

shutdown due to space limitations, the general trends were
the same as in Fig. 11. The results from T1 and T2 are so
similar when dynamic shutdown is applied that we only
consider results for T1 and T3 when choosing the final
optimal solution.

Fig. 12 shows the energy and latency-energy product for
our final candidate architectures exercised by T1 and T3. R9

consumes only 45 percent as much energy as the base case
under T3 and 27 percent under T1. Its latency-energy product
is 26 percent of the base case’s for T3—a 49 percent
improvement over the next best performer. R9 using SJSDS

is the overall optimal solution, performing as well as R4 and
R8 under T1, while excelling in comparison to themunder T3.

In summary, our design tool and spatial voltage scaling
design strategy enabled us to converge on an optimal system
design that achieves both an average 15 percent latency
improvement andanaverage 66percentpower improvement
over the baseline design of a singleARM/DSP pair executing
at 233 MHz, even when each design uses a dynamic
shutdown scheduling policy. This optimal design is a hybrid
statically/spatially scaled system consisting of four ARM/
DSPpairs capable of dynamic shutdown: twopairs operating
at 120 MHz, one pair at 80 MHz, and one pair at 40 MHz. It
would have been highly unlikely to discover, via intuition,
analytical models or at the ISS-level.

8 CONCLUSION

We formed the basis for a set of experiments that enabled us
to reach some conclusions about the level of detail required
to achieve thread-level power-performance simulation of
SCHMs and where researchers should focus the develop-
ment of detailed reference models that can be used to
calibrate high-level models. Contrary to our original
hypothesis that we would need to classify and annotate
program fragments by type, we found that it can be
sufficient to use only a single number that characterizes the
power consumption of a given compiled code fragment on
a given processor in a system. Modeling power in this
fashion results in an average per benchmark error of
6 percent, with a maximum error of 15 percent, largely
due to the role compilers play in smoothing out instruction
mixes and because microarchitectures tend to consume a
high percentage of power in fetch and decode. The use of
additional power annotations, or power signatures, for
different fragments can arise when code is developed by
designers by hand, such as when a processor is executing a
custom, low-power, idle thread. However, in this case,
power signatures can be obtained at the time the custom
fragment is developed. Thus, the dominant factor required
to calculate energy consumption in a multiprocessor is the
performance of the thread executing on that PE, i.e., the
time it spends executing.

The challenge does not lie in modeling the power
consumptions of individual instructions or instruction
sequences on a processor model since power can be

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 695

TABLE 1
Architecture Classes

Fig. 11. Dynamic shutdown results for T1.

Fig. 12. Energy and latency-energy for T1 and T3.

obtained by measuring average values over representative
benchmarks. The challenge lies in developing reference
models for calibration and modeling, at the thread level, of
the power and performance of the coordination and
interactions of collections of PEs, whether via a memory
hierarchy or an on-chip network.

We also introduced a novel design strategy, spatial
voltage scaling, enabled by the early, high-level power-
performance simulator, MESH. The power modeling exten-
sions to MESH as described in this paper enabled the
application of this design strategy. The final design was
discovered using spatial voltage scaling and dynamic
shutdown. It reduces both power and latency over a
baseline design that used dynamic shutdown, but did not
use spatial voltage scaling. Our optimal design achieves an
average of 66 percent energy improvement over a baseline
case and an average of 15 percent latency improvement. The
latency-energy product of our final design is a 49 percent
improvement over the next best performer. The optimal
design is a hybrid statically/spatially scaled system. Its
discovery required a combination of a strategic way of
exploring the design space, enabled by high-level simula-
tion. Analytical models would not have captured the
scheduling decisions, which were an important part of the
design space, and ISS-level simulation would have been
prohibitively detailed to develop and slow to execute, even
for this relatively simple design.

ACKNOWLEDGMENTS

This work was supported in part by ST Microelectronics,
General Motors, and the US National Science Foundation
(NSF) under Grants 0103706 and CNS-0406384. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF. The authors
would like to thank the other members of the MESH team,
Donald E. Thomas and Alex Bobrek, in particular, for their
careful reading of this paper. The authors would also like to
thank the reviewers for their suggestions. They made the
paper better.

REFERENCES

[1] R. Bergamaschi, I. Bolsens, R. Gupta, R. Harr, A. Jerraya, K.
Keutzer, K. Olukotun, and K. Vissers, “Are Single-Chip Multi-
processors in Reach?” IEEE Design and Test of Computers, vol. 18,
no. 1, pp. 82-89, Jan./Feb. 2001.

[2] W. Wolf, “How Many System Architectures?” Computer, vol. 36,
no. 3, pp. 93-95, Mar. 2003.

[3] F. Karim, A. Mellan, A. Nguyen, U. Aydonat, and T. Abdelrah-
man, “A Multilevel Computing Architecture for Embedded
Multimedia Applications,” IEEE Micro, vol. 24, no. 3, pp. 56-66,
May-June 2004.

[4] J.M. Paul, “Programmer’s View of SoCs,” Proc. Int’l Conf.
Hardware/Software Codesign and System Synthesis (CODES-ISSS),
pp. 159-161, Oct. 2003.

[5] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in
the New Millennium,” Computer, vol. 33, no. 7, pp. 28-35, July
2000.

[6] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” Proc. 2001 IEEE Int’l Workshop
Workload Characterization (WWC-4), pp. 3-14, Dec. 2001.

[7] J.M. Paul, D.E. Thomas, and A. Bobrek, “Benchmark-Based Design
Strategies for Single Chip Heterogeneous Multiprocessors,” Proc.
Second IEEE/ACM/IFIP Int’l Conf. Hardware/Software Codesign and
System Synthesis, 2004, pp. 54-59, 2004.

[8] A.S. Cassidy, J.M. Paul, and D.E. Thomas, “Layered, Multi-
Threaded, High-Level Performance Design,” Proc. Design, Auto-
mation and Test in Europe Conf. and Exhibition, 2003, pp. 954-959,
2003.

[9] J.M. Paul, A. Bobrek, J.E. Nelson, J.J. Pieper, and D.E. Thomas,
“Schedulers as Model-Based Design Elements in Programmable
Heterogeneous Multiprocessors,” Proc. Design Automation Conf.,
2003, pp. 408-411, June 2003.

[10] A. Bobrek, J.J. Pieper, J.E. Nelson, J.M. Paul, and D.E. Thomas,
“Modeling Shared Resource Contention Using a Hybrid Simula-
tion/Analytical Approach,” Proc. Design, Automation and Test in
Europe Conf. and Exhibition, 2004, vol. 2, pp. 1144-1149, Feb. 2004.

[11] J.M. Paul, S.N. Peffers, and D.E. Thomas, “A Codesign Virtual
Machine for Hierarchical, Balanced Hardware/Software System
Modeling,” Proc. Design Automation Conf., pp. 390-395, 2000.

[12] C.L. Seitz, “System Timing,” Introduction to VLSI Systems, C. Mead
and L. Conway, eds., Reading, Mass.: Addison-Wesley, 1980.

[13] C. Brandolese, W. Fomacian, F. Salice, and D. Sciuto, “An
Instruction-Level Functionality-Based Energy Estimation Model
for 32-Bits Microprocessors,” Proc. Design Automation Conf.,
pp. 346-350, 2000.

[14] X. Liu and M.C. Papaefthymiou, “A Static Power Estimation
Methodology for IP-Based Design,” Proc. Design, Automation and
Test in Europe, 2001, Conf. and Exhibition, pp. 280-287, 2001.

[15] E. Macii, M. Pedram, and F. Somenzi, “High-Level Power
Modeling, Estimation, and Optimization,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, no. 11,
pp. 1061-1079, Nov. 1998.

[16] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and A.
Sivasubramaniam, “EAC: A Compiler Framework for High-Level
Energy Estimation and Optimization,” Proc. Design, Automation
and Test in Europe Conf. and Exhibition, 2002, pp. 436-442, 2002.

[17] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno, “Cosimula-
tion-Based Power Estimation for System-on-Chip Design,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 10, no. 3,
pp. 253-266, June 2002.

[18] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
27th Int’l Symp. Computer Architecture, 2000, pp. 83-94, 2000.

[19] W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin, “The
Design and Use of Simplepower: A Cycle-Accurate Energy
Estimation Tool,” Proc. Design Automation Conf., 2000, pp. 340-
345, 2000.

[20] N. Kim, T. Kgil, V. Bertacco, T. Austin, and T. Mudge,
“Microarchitectural Power Modeling Techniques for Deep Sub-
Micron Microprocessors,” Proc. In’tl Symp. Low Power Electronics
and Design (ISLPED), pp. 212-217, Aug. 2004.

[21] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” SIGARCH Computer Architecture News, vol. 25, no. 3,
pp. 13-25, 1997.

[22] J.T. Russell and M.F. Jacome, “Software Power Estimation and
Optimization for High Performance, 32-Bit Embedded Proces-
sors,” Proc. Int’l Conf. Computer Design: VLSI in Computers and
Processors (ICCD ’98), pp. 328-333, Oct. 1998.

[23] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R.
Zafalon, “Energy Estimation and Optimization of Embedded
VLIW Processors Based on Instruction Clustering,” Proc. Design
Automation Conf., pp. 886-891, 2002.

[24] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-Level
Power Estimation Methodology for Microprocessors,” Proc. Design
Automation Conf., pp. 810-813, 2000.

[25] M.T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis
and Minimization Techniques for Embedded DSP Software,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol. 5, no. 1,
pp. 123-135, Mar. 1997.

[26] T.D. Burd, T.A. Pering, A.J. Stratakos, and R.W. Brodersen, “A
Dynamic Voltage Scaled Microprocessor System,” IEEE J. Solid-
State Circuits, vol. 35, no. 11, pp. 1571-1580, Nov. 2000.

[27] V. Tiwari and M.T.-C. Lee, “Power Analysis of a 32-Bit Embedded
Microcontroller,” Proc. Design Automation Conf., 1995, Proc. ASP-
DAC ’95/CHDL ’95/VLSI ’95, IFIP Int’l Conf. Hardware Description
Languages; IFIP Int’l Conf. Very Large Scale Integration, Asian and
South Pacific, pp. 141-148, 1995.

[28] V. Tiwari, S. Malik, A. Wolfe, and M.T.-C. Lee, “Instruction Level
Power Analysis and Optimization of Software,” Proc. Ninth Int’l
Conf. VLSI Design, pp. 326-328, Jan. 1996.

696 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 6, JUNE 2005

[29] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications,” Proc. Second
IEEE Workshop Mobile Computing Systems and Applications
(WMCSA ’99), pp. 2-10, Feb. 1999.

[30] A.J. KleinOsowski and D.J. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architec-
ture Research,” Computer Architecture Letters, vol. 1, June 2002.

[31] M.B. Srivastava, A.P. Chandrakasan, and R.W. Brodersen, “Pre-
dictive System Shutdown and Other Architectural Techniques for
Energy Efficient Programmable Computation,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol. 4, no. 1, pp. 42-55, Mar.
1996.

[32] A. Waizman and C. Chee-Yee, “Package Capacitors Impact on
Microprocessor Maximum Operating Frequency,” Proc. 51st
Electronic Components and Technology Conf., pp. 118-122, 2001.

[33] Intel PXA26x Processor Design Guide, ftp://download.intel.com/
design/pca/applicationsprocessors/manuals/27863902.pdf, Oct.
2002.

[34] Transmeta Crusoe Processor Model TM5500 Processor Product
Brief, http://www.transmeta.com/pdfs/TM5500_product
brief_030206.pdf, Feb. 2003.

[35] T. Weiyu, R. Gupta, and A. Nicolau, “Power Savings in
Embedded Processors through Decode Filter Cache,” Proc. Design,
Automation and Test in Europe Conf. and Exhibition, pp. 443-448,
2002.

Brett H. Meyer received the BS degree in
electrical engineering from the University of
Wisconsin-Madison in 2003. He is currently a
graduate student in the Electrical and Computer
Engineering Department at Carnegie Mellon
University, working on energy efficient designs
of single chip heterogeneous multiprocessor
systems. He is a student member of the IEEE.

Joshua J. Pieper received the BS degree in
computer engineering from the University of
Missouri-Rolla in 2002 and the MS degree in
electrical and computer engineering from Car-
negie Mellon University in 2004.

JoAnn M. Paul received the BS degree in
electrical engineering from the University of
Pittsburgh (summa cum laude) in 1983, the
MS degree in electrical and computer engineer-
ing from Carnegie Mellon University in 1988,
and the PhD degree in electrical engineering
from the University of Pittsburgh in 1994. She
has been a member of the Research Faculty at
Carnegie Mellon University since 2000. She has
prior industrial experience in the development of

hardware and software for a variety of computer systems and, since
entering academia, has published more than a dozen papers. Her
research interests are in high-level modeling, simulation, and design of
single chip heterogeneous multiprocessors. She is a licensed Profes-
sional Engineer in the Commonwealth of Pennsylvania, a member of the
IEEE and the IEEE Computer Society.

Jeffrey E. Nelson received the BS degree in
electrical and computer engineering from Rut-
gers University, New Brunswick, New Jersey, in
2002 and the MS degree in electrical and
computer engineering from Carnegie Mellon
University (CMU) in 2003. He is currently a
graduate student in the Electrical and Computer
Engineering Department at CMU with research
interests in modeling, test generation, design for
manufacturing, and yield learning. He is a

student member of the IEEE.

Sean M. Pieper received the BS and MS
degrees, both in electrical and computer engi-
neering, from Carnegie Mellon University in 2003
and 2004, respectively. He is currently a gradu-
ate student in electrical and computer engineer-
ing at the University of Wisconsin-Madison with
research interests in low power architectures for
embedded applications.

Anthony G. Rowe received the BS degree in
electrical and computer engineering from Car-
negie Mellon University (CMU) in 2003. He is
currently a graduate student in the Electrical and
Computer Engineering Department at CMU,
working on embedded real-time systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MEYER ET AL.: POWER-PERFORMANCE SIMULATION AND DESIGN STRATEGIES FOR SINGLE-CHIP HETEROGENEOUS ... 697

