A Stitch in Time and Frequency Synchronization
Saves Bandwidth

Anh Luong Peter Hillyard Alemayehu Solomon Abrar
Carnegie Mellon University Xandem University of Utah
Pittsburgh, PA Salt Lake City, UT Salt Lake City, UT
anhluong@cmu.edu peter@xandem.com aleksol.abrar@utah.edu
Charissa Che Anthony Rowe Thomas Schmid
University of Utah Carnegie Mellon University University of Utah
Salt Lake City, UT Pittsburgh, PA Salt Lake City, UT

charissa.che@utah.edu

agr@ece.cmu.edu

thomas.schmid@utah.edu

Neal Patwari
University of Utah & Xandem
Salt Lake City, UT
npatwari@ece.utah.edu

ABSTRACT

We specify and evaluate a new software-defined clock network
architecture, Stitch. We use Stitch to derive all subsystem clocks
from a single local oscillator (LO) on an embedded platform, and
enable efficient radio frequency synchronization (RFS) between
two nodes’ LOs. RFS uses the complex baseband samples from a
low-power low-cost narrowband transceiver to drive the frequency
difference between the two devices to less than 3 parts per billion
(ppb). Recognizing that the use of a wideband channel to measure
clock frequency offset for synchronization purposes is inefficient,
we propose to use a separate narrowband radio to provide these
measurements. However, existing platforms do not provide the
ability to unify the local oscillator across multiple subsystems. We
demonstrate Stitch with a reference hardware implementation on a
research platform. We show that, with Stitch and RFS, we are able
to achieve dramatic efficiency gains in ultra-wideband (UWB) time
synchronization and ranging. We demonstrate the same UWB rang-
ing accuracy in state-of-the-art systems but with 59% less utilization
of the UWB channel.

CCS CONCEPTS

« Computer systems organization — Sensor networks; Em-
bedded systems; - Hardware — Sensor devices and platforms;

KEYWORDS

syntonization, ultra-wideband, software-defined platform, sensor
networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IPSN 2018, April 2018, Porto, Portugal

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxX-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Anh Luong, Peter Hillyard, Alemayehu Solomon Abrar, Charissa Che, An-
thony Rowe, Thomas Schmid, and Neal Patwari. 2018. A Stitch in Time and
Frequency Synchronization Saves Bandwidth. In Proceedings of IEEE/ACM
Information Processing in Sensor Networks (IPSN 2018). ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Clock synchronization is a fundamental requirement for efficient
operation of a wide variety of wireless networks. Multiple access
methods can be made more efficient when a large-scale network
of devices is synchronized. Distributed MIMO systems must either
have zero carrier frequency offset (CFO) or incur additional channel
overhead and complex digital processing to compensate for non-
zero CFO [16]. A wide range of time-based localization systems
requires time-synchronized infrastructure devices to be deployed
across space. Although cables can be used to distribute a shared
clock to infrastructure devices, cabling is impractical for mobile
devices and often expensive. In addition, GPS-based synchroniza-
tion has limited availability when operating indoors or when it is
jammed. Wireless clock synchronization is often expensive since
most existing methods require large bandwidths that monopolize
the radio channel.

More efficient frequency synchronization is particularly com-
pelling for ultra-wideband impulse response (UWB-IR)-based rang-
ing. Although UWB-IR enables highly-accurate localization [27],
its transmission occupies gigahertz of spectrum, and due to the low
number of channels allocated [1], the UWB-IR channel is quite lim-
ited in terms of measurement rate. For example, a conventional ad
hoc localization scheme using a leading UWB-IR transceiver with
eight tags could have an update rate at most 3.5 times per second
[9, p. 21]. This update rate is insufficient for the real-time localiza-
tion of mobile devices in an ad hoc network. E.g., for quadcopters
moving at 5 m/s in a GPS-denied environment, a 3.5 Hz update rate
locates devices only every 1.4 m of translation, which may be too
infrequent for keeping rotorcrafts in a formation. In this paper, we
demonstrate a system that achieves the same ranging accuracy as

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IPSN 2018, April 2018, Porto, Portugal

Adaptive Clock Radio(s) for

puController Synthesis & Synch, Data,
Distribution Ranging
Controllable
Reference
Clock

Figure 1: Stitch is an architecture which generates the clock
for each subsystem from a single reference and enables that
reference to frequency synchronize with another device us-
ing a narrowband radio.

the state-of-the-art UWB-IR system with 59% less utilization of the
UWB channel, or equivalently, a 2.4 times higher update rate.

Hidden in plain sight, even low-cost, narrowband transceivers,
have the ability to synchronize to the carrier frequency of another
device. However, the CFO is rarely exposed, and if so, not with
sufficient accuracy, primarily because platforms are not expected
to make productive use of that information.

This paper contributes a mechanism for clock to be syntonized
(frequency synchronized) with other devices using transmissions
from a narrowband radio, a method we call radio frequency syn-
chronization (RFS). But unless the carrier is generated from the LO,
carrier frequency synchronization does not imply LO synchroniza-
tion. We introduce Stitch, a novel platform architecture designed
around a software-defined clock network. As depicted in Fig. 1,
Stitch adaptively generates the clock for each subsystem from a
single controllable reference clock. Combined with RFS and a high-
resolution tunable LO, Stitch provides the ability to synchronize
two devices’ LOs with high accuracy. We evaluate Stitch by devel-
oping a research platform and evaluating its use in a time-based
ranging system using UWB-IR signals.

In combination, the platforms that use Stitch and RFS can ex-
perience dramatic gains in synchronization efficiency, which then
allow an increase in the availability of the channel for its primary
purpose such as allowing higher data throughput or increasing the
number of devices in localization systems.

This paper provides three novel contributions to the synchro-
nization and time-based localization literature across a broad range
of wireless networking applications:

(1) We design, implement, and evaluate a new wireless frequency
synchronization system, called radio frequency synchroniza-
tion (RFS), which uses low-cost narrowband (NB) transceiv-
ers to measure the frequency offset and to synchronize the
local oscillators (LOs) on two devices to be within 3 ppb of
each other.

(2) We introduce Stitch, an architecture that allows clock unifica-
tion and adaptive distribution across a platform’s subsystems.
This proposed architecture allows the synchronization of
one subsystem to be propagated to the entirety of a platform.
Stitch allows the highly syntonized LO provided by RFS to
be shared across transceivers.

A. Luong et al.

(3) To demonstrate the advantage of using Stitch and RFS, we
implement and evaluate a new protocol, Eff ToF, which mini-
mizes the use of a UWB radio to achieve bandwidth-efficient
wireless time synchronization and time-of-flight (ToF) rang-
ing. For single-channel single-antenna UWB ranging, we
demonstrate ranging RMSE of 17.1 cm, which matches the
state-of-the-art [21], while using 59% less of the UWB chan-
nel compared to current state of the art.

We implement the three contributions on a research platform that
implements the Stitch architecture and provides the ability to adapt
the clock distribution network in software. We demonstrate clock
unification among multiple subsystems (microprocessors, FPGA,
narrowband transceiver, and UWB transceiver). Our platform is a
superset of subsystems which could potentially be useful in a range
of applications for wireless network synchronization research. The
hardware, firmware, and software are open source [3]. Although we
use a subset of subsystems on our platform for the UWB evaluation
presented in this paper, we anticipate the hardware being useful in
other applications.

We first introduce Stitch and RFS in Sections 2 and 3 to show how
they enable LO synchronization across subsystems and devices. We
motivate, in Section 4, as an example of how using a narrowband
radio for frequency synchronization can allow a streamlined UWB
ToF algorithm to use 59% less of the UWB channel. We describe a
platform for Stitch in Section 5 and use it in Section 6 to quantify
its performance.

2 STITCH

In this section, we describe the Stitch architecture and how we
use Stitch to enable Eff ToF. To enable Eff ToF, we are relying on a
secondary narrowband radio to measure the frequency offset of a
device’s LO compared to another device, and to drive that difference
to zero. There are two problems here, one with the clock network
on a wireless embedded device, and one with the ability to drive an
LO offset to zero. In this section, we describe our solution for the
first problem.

When independent oscillators for microcontroller and radio are
used, a node has disjoint clock domains. This architecture results in
uncertainty (quantization error) in timestamped events especially
when an event is generated by one subsystem and timestamped
by another [32]. While this is a standard architecture, any syn-
chronization of the radio’s LO simply would not benefit the whole
node.

One solution would be a single clock source with a bank of
frequency synthesizers to fulfill the requirement for a particular
combination of radios and microcontrollers contained in the sub-
systems that are known to be used with the platform. For each
combination of ICs and subsystems that could be used, a system
designer would need to design an optimal clock tree. This would
result in new hardware or a platform tuned around non-standard
frequencies impacting the usability of peripheral drivers, etc. Be-
cause of that disadvantage, we are motivated to create a platform
architecture that allows clock unification and adaptive distribution
of a shared clock across a platform’s subsystems regardless of what
future subsystems may be connected to the main board when it

A Stitch in Time and Frequency Synchronization
Saves Bandwidth

is designed. An example is when we want to attach a daughter-
board that requires a 38.4 Mhz clock to a platform with an existing
40 MHz oscillator. If the existing bank of frequency synthesizers on
the board cannot provide 38.4 MHz, the two clock domains could
not be aligned and hence the processor could not easily timestamp
radio events.

We introduce Stitch as a means for future wireless embedded
networks to provide highly synchronized clocks across subsystems
of a single wireless device and across a network of devices. Current
wireless embedded device platforms such as the Raspberry Pi and
the Beaglebone have enabled a wide variety of extensible IoT de-
vice prototyping, research, and development. However, specialized
daughterboards can experience synchronization challenges with
current architectures, such as those seen with audio capes for the
Beaglebone [2]. Future platforms which use Stitch can enable time
and frequency synchronization across a device’s subsystems and
across a network without prior knowledge of what subsystems will
be attached.

The key components of the Stitch architecture are:

(1) Adaptive clock synthesis: a field programmable gate array
(FPGA) is used for clock synthesis & distribution,

(2) Controllable reference clock: a digitally controllable local
oscillator which is shared across the entire system, and

(3) Frequency offset forwarding radio: a transceiver that al-
lows exportation of either frequency offset estimates or the
raw complex baseband samples.

The novelty of Stitch is in the coordination of these known com-
ponents to achieve the goal of efficient, system-wide and network-
wide synchronization. These components work together as fol-
lows. Stitch allows quick reconfiguration of hardware through a
reprogramming of the low-power low-cost FPGA. A developer can
reroute IOs and synthesize the required operating frequencies for
individual subsystems from the main reference clock. The FPGA
can also be used as a routing table for signal wiring, which increases
the adaptability of the platform for other applications.

The controllable reference clock works as an input to the FPGA in
order to derive the required clock for each subsystem. Further, any
subsystem can tune the reference clock for a particular application
requirement.

In combination, these three architectural components allow clock
unification across a device’s subsystems using commercial off-the-
shelf parts. Stitch, as a platform architecture, could be realized in a
variety of wireless platforms for a variety of applications. Further,
as long as one of the subsystems can tune the LO to match that
on another device, clock unification can extend across a wireless
network. We describe this wireless clock unification next.

3 RADIO FREQUENCY SYNCHRONIZATION

In this section, we describe a radio frequency synchronization (RFS)
mechanism that allows frequency synchronization of two devices’
local oscillators (LO) with commercial-off-the-shelf low-power nar-
rowband radios. In short, RFS is so accurate because of: 1) highly
accurate CFO estimation performed using the received radio sig-
nal; and 2) a unique implementation of a low-cost high-resolution
tunable clock source. We describe an implementation using the TI
CC1200 in combination with the Beaglebone Black (BBB).

IPSN 2018, April 2018, Porto, Portugal

3.1 Frequency Offset Estimation

Several commercially-available low-power radios (e.g., Atmel RF233,
Atmel RF215IQ, TI CC1200, Semtech SX1255/7, Silabs EFR32) allow
access to either a carrier frequency offset (CFO) measurement or
the raw complex baseband (IQ) signal samples, which can be used
to estimate the CFO. Since the carriers on the transmitting and
receiving devices are generated from the reference clock, this CFO
is proportional to the difference between their reference clocks. The
application can utilize the CFO estimate to frequency synchronize
the receiver’s reference clock.

In the case where the IQ signal samples are available, RFS op-
erates on the phase angle of each sample. Assuming that n bits of
phase are available, we propose and compare two algorithms to es-
timate the frequency offset. Both operate on the unwrapped phase
integer, which we refer to as py,, where one cycle corresponds to an
integer value between 0 and 2" — 1 (which is just a scaled version
of the angle in radians). Sample p, is measured at time t, = nT;
for sample period Ts, and we expect that it can be expressed as,

Pn = lq)mufotn + ﬂJ mod Ppyax, (1)

where @0 = 27, Ag is the carrier frequency offset between
the transmitter and receiver, and f is the phase offset. Frequency
synchronized clocks can be achieved through driving the differences
between LOs on the two devices to zero. In Fig. 2, we propose the
minimal structure for wireless syntonization with a narrowband

transceiver and VCTCXO.

Digital Voltage
Control

IQ Samples

Figure 2: A Beaglebone Black PRU collects complex base-
band samples from the narrowband transceiver, computes
the frequency offset and corrects the shared VCTCXO. The
algorithm iterates until the frequency difference between
two nodes is zero.

3.1.1 Naive Estimator. In the “naive” approach, we use the dif-
ference in phase over the entire period of N samples; hence, our
naive estimation of the carrier frequency is:

A% = PN —P1
f Pmax (N - 1)Ts
Due to the quantized nature of the phase measurements, the naive

approach has a frequency resolution of (Dfs—(iz]ﬂ)
is the IQ sampling rate. For example, with N = 1000, fs;q =
45.044 kHz, ®pqy = 219, the expected carrier frequency offset res-

olution is 0.044 Hz.

()

Hz, where f Siq

IPSN 2018, April 2018, Porto, Portugal

3.1.2 Linear Regression Estimator. Since the phase noise in p,
fundamentally limits the performance of the estimation of Af, we
also implement a low-complexity linear regression method which
improves performance with a noisy signal. In summary, we use
linear regression to estimate the slope of p, with n, to which Ag is
proportional. However, because we do not require the y-intercept
and the x-values are regular sampling times, we can significantly
reduce the computational requirements and limit the processing
to primarily integer multiplications and additions. Generally, a

linear regression slope estimate is given by #L")Z, where X,
t22—(t,

denotes the sample average of a sequence x, forn = 1,...,N.

Since we only care about the slope, any offset of the sampling time

axis does not impact the result. Thus we shift the time axis to be

zero-mean, in other words, t,, = T (n - %) With this, t, = 0

2 TiN(N?-1
and 2 = % Assuming N is odd, the linear regression

frequency estimate simplifies to

. 12 (N-1)/2
A =
f 7 ®pnaxN (N2 - 1T,

npn. (3)
=—(N-1)/2

Calculation of A as given in (3) requires N integer multiplies and

adds, and one floating point scale factor.

3.2 LO Frequency Correction

The CFO is a particular fractional multiplication of the reference
clock. This constant fraction is written by the application of the
transceiver’s configuration registers based on the desired carrier

frequency, fearrier- The PLL multiplier is thus % With this

relationship, the LO offset (xo,ffse;) is directly proportional to
the carrier frequency offset (A¢) by this PLL multiplier. We simply
translate this carrier offset into a corresponding LO offset and
increment the VCTCXO control voltage to achieve this LO offset.

Prior to syntonization, the Ay may be substantial. Nonlinearities
in the DAC and the VCTCXO prevent the algorithm from sending
the LO offset to zero in one attempt. Instead, after updating the re-
ceiver’s LO, the receiver iterates to collect another set of N samples
and compute the next LO offset, creating a closed-loop feedback
control.

4 EFFICIENT TIME-OF-FLIGHT

In this section, we quantify the benefit of having frequency syn-
chronization performed separately on a narrowband transceiver
for the goal of realizing efficient time-of-flight (ToF) ranging and
localization systems. We first discuss two existing methods for (ToF)
measurement and compare that to efficient time-of-flight (Eff ToF),
our protocol that offloads frequency synchronization and some data
communication to a narrowband radio. Using parameters from the
Texas Instruments CC1200 narrowband radio and the DecaWave
DW1000 UWB radio, Eff ToF requires 59% less utilization of the
UWB channel. For low-latency localization applications, the num-
ber of UWB devices is strongly limited due to the high bandwidth of
UWB and its relatively long packet duration. Any efficiency gains
in the use of the UWB channel allow more devices to be located, or
more frequent location measurements.

A. Luong et al.

4.1 Double-sided Two-way Ranging (DS-TWR)

A node (which we call node 1) requires five messages to estimate its
offset and skew with respect to the reference node (node 2) through
a simple messaging exchange method [15] referred to as the DS-
TWR method. As shown in Fig. 3, this method provides each node
with two timestamps used for clock offset and skew estimation.
Each message carries the previous timestamp; therefore, a “Final”
message is required to forward the final timestamp to the node that
computes the final solution.

The computation for skew A¢ and time of flight ToF in the DS-
TWR method is:
Trx, [i] = Trx,[i - 1]
Trx, [i] = Trx, [i - 1]
Trx, [i] = Trx, [i] = Trx, [i] + Trx, [i]

ToF = >
2

where Trx_ [n] is time of transmission of message n at node x, and
Trx, [n] is time of reception of message n at node y. The range
estimate between node 1 and 2 is simply the ToF multiplied by
the speed of light in air; therefore, we refer to both range and ToF
estimation interchangeably. Assuming the radio processing delays
TXp and RX), remain constant, the global time can represented as:

Trx, [i] Trx,[i] + TXp + ToF + RXp — € (5)
Trx, [i(] = Irx, [i] + TXP + ToF + RXP + €, (6)

Ag

4)

where € is the clock offset between the two nodes. Here, we still
assume the clocks are stable between message exchanges. As a
result, the remaining error is primarily limited by the timestamping
accuracy.

4.2 PolyPoint Approach

PolyPoint cleverly optimizes packet counts as shown in the middle
of Fig. 3 by transmitting a “REF” message immediately followed
by a “POLL” message [21]. Since the two messages are identical,
node 2 may immediately compute clock skew, which it sends back
to node 1. The skew and ToF are given by:
A = ?Tx1 [l:] - Trx, [l: -1] @
rx, (1] = Trx, [i — 1]
Trx, [i] = Trx, [i] = Ap(Trx, [i] - Trx, [i])
2

Compared to (4), the protocol in (7) requires floating point mul-
tiplication to compute ToF, and as such, requires a more capable
processing unit. However, the total number of UWB messages is
reduced from five to four, a 20% reduction.

ToF =

4.3 EffToF

We introduce the efficient time of flight (Eff ToF) protocol based on
the single-sided two-way ranging (SS-TWR) method. The SS-TWR,
as suggested in [11, Sec. 12.2], relies on one message exchange
which is more time and energy efficient [7]. However, SS-TWR
does not provide a means for frequency synchronization. Instead,
Eff ToF leverages the benefit of having frequency synchronized
clocks provided by RFS via a secondary narrowband transceiver.
Eff ToF also uses the narrowband radio as a backhaul for UWB
packet timestamps. However, a narrowband radio does not produce

A Stitch in Time and Frequency Synchronization
Saves Bandwidth

Node 1 Node 2 Node 1

Tafi-]] —— JTrx[i-2] Toafi-l] —

:

lad Teel-l L Trofirl] B
; T[] —— / °
E Toal] —— Jwali-1] E
a) ™~ B
Tel] o —f— Treli]
Tedl] —— \/

AN

FINAL

— REF
Trxa[i-1] Todl] —— mk 1 Trefi-1]
\ 1 Tref] 1 Treli]
RESP — T[]
Texl] —— /

IPSN 2018, April 2018, Porto, Portugal

Node 2 Node 1 Node 2

Toali] —— POLL

RESP

—— Tmxfi]
Texli] —— A‘?
INAL

EffToF

uwB

NB

Figure 3: ToF protocols: (Left) conventional message exchange; (Middle) PolyPoint; (Right) proposed Eff ToF scheme.

high-resolution timestamps; therefore, it can not eliminate the need

for messages from the UWB radio in a high-resolution ToF system.

By frequency synchronizing the two clocks, we can reduce the

UWB messages to just those required for time of flight estimation.

Eff ToF provides time synchronization and two-way ranging as
shown in Fig. 3(right). The red arrows denote transmissions with
the UWB transceiver while the blue arrows denote transmissions
of the narrowband transceiver. In Eff ToF, the reference node would
transmit a pure tone carrier wave (CW) for devices that wish to
frequency synchronize, as shown in Fig. 3(right). Those devices

would execute the RFS procedure to correct their frequency offset.

Then the SS-TWR operation would allow the node to compute its
offset and the ToF. For typical applications and environments, we
expect that frequency synchronization would be rare compared to
ToF estimation; hence, ToF messaging can be simplified to the 2-way
ranging operation. In other words, the POLL and RESP messages
are sent with the UWB and the FINAL message is exchanged with
the narrowband. The ToF and time offset estimate are given as:

. Trx, [i] - Trx, [i] ; Trx,[i] + Trx, [i] ‘ ®

Trx,[i] and 6 = Trx, [i] - Trx,[;] Will be sent to the node through
narrowband radio message in order to minimize the use of UWB
channel.

4.4 Numerical Comparison

For a quantitative comparison, we use the DecaWave DW1000
as our UWB-IR transceiver and the Texas Instruments CC1200
as our narrowband radio. Here we compare the duration of the
ToF measurement process for each method, and show that Eff ToF
reduces the UWB channel utilization by 59%.

Each DW1000 UWB’s packet contains a long preamble, a long
start of frame delimiter (SFD), and slow pulse repetition rate to im-
prove the accuracy of the packet reception’s timestamp estimation.
DecaWave recommends two settings for ranging [9]:

e Long-range: This mode achieves maximum range of as long
as 250 m. The data rate is set to 110 kbps with a 1024 symbol-
length preamble and a 64-byte SFD.

o Short duration: In this mode, the data rate is set to 6.81
Mbps, preamble length to 128 symbols, and SFD to 8 symbols.

With both configurations, the packet duration is calculated as
(Npre + Nspp)Rpre + NpHRRpHR + (8Ng + 48)Ry, ©)

where Npye is the number of symbols in the preamble, Ny, is
the number of symbols in the start frame delimiter (SFD). Rpye is
the symbol duration for the preamble (993.59 ns for long-range
configuration), Npgr and Rpgg are the number (21 symbols) and
symbol duration (8205.13ns for the long-range configuration) of
the PHR respectively, and N and R; are number of bytes in the
message and the bit rate respectively.

In Table 1, we show the content of what should be in the mes-
sage (function code, node identification and range set number) to
help associate timestamps to the round of IEEE 802.15.4 standard
exchange. These are the least amount of data for the message ex-
change in order to compute ToF, time offset (¢), and Af. For the
sake of simplicity, we have assumed that the target application
requires long-range two-way message exchanges. In the following
analysis, the DW1000 would be configured to 110 kbps, 1024 pre-
amble symbols, and 64 SFD symbols as the optimal configuration
for the long-range operation. In addition to timestamp for ranging,
the UWB channel is traditionally used to transfer timestamp data.
The final message contains the timestamping information of the
last transmission. The preamble and SFD are extraneous for this
final message since its timestamp is not utilized for synchronization.
The DecaWave DW1000 can be configured for 500 MHz or 1 GHz

IPSN 2018, April 2018, Porto, Portugal

A. Luong et al.

Contents ‘

H System H Msg Type H Bytes Duration (us) Channel H #msg per ToF ‘
|

| DSTWR [ALL [21 3026 UWB || 5 | fn, node#, Ttrx[i], range# |
REF / POLL 13 2501 UWB 2 fn, range#
PolyPoint RESP 29 3551 UWB 1 fn, node#, Trx[i-1], Trx[i], range#
FINAL 21 3026 UWB 1 fn, node#, Ttx[i], range#
POLL 13 2501 UWB 1 fn, range#
Eff ToF RESP 14 2566 UWB 1 fn, node#, range#
FINAL 29 186 NB 1 fn, node#, Trx[i], Ttx[i], range#

Table 1: Message exchange format and duration. Note: DecaWave occupies 500 MHz or 1 GHz bandwidth of an ultra-wide band

(UWB) channel, and CC1200 only occupies 12.5 kHz bandwidth of a narrowband (NB) channel.

bandwidth depending on the selection of the channel set. Due to
the availability of the channel, the duration of these UWB packets
is, in fact, the limiting factor in increasing the number of tags and
anchors in the network.

In the example system with n nodes, the ranging rate (rrange)
can be expressed as 1/ (pcomm (n—1)), where pcomm is the duration
of one round of communication as shown in Fig. 4. Here, we exclude
the guard band and discovery slots which further reduce the update
rate.

Although this section compares channel utilization for range
estimation, we note that generally ToA-based localization systems
must compute multiple ranges. If we take the number of ranges to
be computed to be A, we can also see that Eff ToF would similarly
make those localization methods more efficient. We compute the
channel utilization for a single round of A = 5 range measurements
in Table 2. Since the CC1200 radio occupies more than 2000x less
bandwidth than the UWB transmission, its time-bandwidth product
is relatively insignificant and is excluded from Table 2. We only
include the minimal duration for message exchanges and exclude
the guard time and any additional delays for robust operations.
In this particular example, we are able to achieve 69.9% less occu-
pancy of the UWB channel than the DS-TWR approach and 59.2%
less than the best-known method for a "Long-range" setup. With
"Short duration” configuration, Eff Tof still provides a 59% and 42%
improvement over DS-TWR and Polypoint, respectively.

3000 DS-TWR Long-range
Polypoint Long-range
2500 EffToF Long-range - -4
: DS-TWR Short duration -
~ : Polypoint Short duration
< 2000 ¢ EffToF Short duration -
C 1500
[=2)
c
°
S 1000
o
500
o RS

10 20 30 40 50 60 70 80 90 100

of sync’ing nodes

Figure 4: Expected localization update rate versus numbers
of synchronized nodes according to Table 2.

5 IMPLEMENTATION

5.1 Hardware

We implemented PlaStitch, an ambassador for Stitch, to be an adap-
tive low-cost low-power platform for sensor network clock-related
research as shown in Fig. 5. PlaStitch was designed as a playground
for a wide range of clock-related research and development, includ-
ing the unique ability to change and define the clock network in
software, and use multiple radio technologies based on the applica-
tion without fabricating a complete redesign. If a tested system like
Eff ToF is to be deployed for commercial use, specialized hardware
can be built based around the particular subsystems of PlaStitch
that are actually required for a target application.

5.1.1 FPGA. The flexibility of PlaStitch comes from a low-power
FPGA. We chose to use the Microsemi IGLOO AGL250. We see prod-
ucts such as the Altera SoC, Microsemi SmartFusion, and Cypress
PSoC as too large, expensive, and power hungry, for the applica-
tion requirements of the Stitch architecture. The FPGA is the main
mechanism for reconfiguration of the inputs and outputs of clocks
and other digital signals between various subsystems. As a result,
an FPGA does not need to have an on-chip microprocessor or state-
of-the-art performance to implement Stitch. The Microsemi IGLOO
optimally meets these requirements. With its 250 MHz 3K logic
elements, additional logic could be programmed if required for an
application.

5.1.2 Clock Sources. The Microsemi IGLOO FPGA comes with
the ability to tune the clock source through its PLL. However, this
combination of digital PLL and standard clock source has limited ad-
justment range. Therefore, PlaStitch uses an external stable 1 ppm
40MHz or 38.4MHz Voltage Controlled Temperature Compensated
Crystal Oscillator (VCTCXO) from Abracon, which draws 7.5 mW.
We combine the two 12 bit channels of the Microchip MCP4922
to create an overlapping 24 bit, effectively 20 bit, digital-to-analog
converter (DAC) to control the Abracon VCTCXO. Over the approx-
imately 800 Hz range of the VCTCXO, this 20-bit control provides
a step size of 7.63 x 10~% Hz. For a 40 MHz LO, this corresponds to
0.02 ppb.

5.1.3 Microprocessors. For raw processing power, PlaStitch of-
fers two main options: 1) Beaglebone-compatible headers, or 2)
a dedicated real-time microcontroller. The Beaglebone Black is a
popular open-source platform which can run Linux. It provides
access to significant pre-existing resources (source code, toolchains,

A Stitch in Time and Frequency Synchronization
Saves Bandwidth

IPSN 2018, April 2018, Porto, Portugal

H H Long-range H Short duration H

H Protocol H Duration (A, ms) Duration (A = 5, ms) H Duration (A, ms) Duration (A = 5, ms) H
DS-TWR 3.026 X (3A-1) 42.364 0.188 X (3A—-1) 2.632
PolyPoint || 2.501 X 2 + (3.551 + 3.026) X (A — 1) 31.310 0.179 X 2 + (0.195 + 0.188) X (A — 1) 1.89
RFS 2.501 + 2.566 X (A—1) 12.765 0.179 + 0.180 X (A—1) 1.085

Table 2: UWB ToF message duration for network of 5 nodes.

Microsemi IGLOO
(AGL250V2-VQ100)
Clock network
Custom Logics

Freescale Cortex M4
(MK22FN512VLH12)
mbed or KDS IDE
Low power

Beaglebone Black
Linux w/ 200MHz PRUs

Pre-existing MAC Layer supports External Clock 10

Texas Instruments CC1200
Multiple selectable sub-GHz
operating frequencies

1Q Samples

Nordic nRF51822
Bluetooth BLE
Nordic Gazell 2.4GHz

Texas Instruments CC2520
Well-known standard Zigbee

VCTCXO
Disciplinable 40MHz or 38.4MHz

Figure 5: PlaStitch: an adaptable research platform based on Stitch as a Beaglebone cape with a Freescale MK22, Microsemi
IGLOO FPGA, multiple radios, 1 ppm 40 or 38.4 MHz VCTCXO, and clock I/0.

communication protocol stacks, etc...). PlaStitch also includes a
120 MHz Freescale MK22 microcontroller for low-power real-time
applications. The MK22 is a Cortex-M4 with a floating point unit
(FPU) and a DSP unit, for that reason, it supports general-purpose
signal processing algorithms. The MK22 offers OpenSDA drag-and-
drop programming via an on-board Freescale MK20. Moreover,
the on-board joint test action group (JTAG) and serial wire debug
(SWD) header, and the Beaglebone-compatible SWD connection
can also be used as programming interfaces. The Microsemi IGLOO,
however, requires an LC Programmer; hence, FlashPro3/4 has to be
used with an additional adapter board.

5.1.4 Power. The PlaStitch contains a power management inte-
grated circuit (PMIC) to enable the use of a single cell Li-Po battery
for a short-term deployment. Alternatively, it can be powered via
micro-USB connection.

5.2 Radio Frequency Synchronization

For RFS, we utilize the Texas Instrument CC1200 on PlaStitch. The
TICC1200 does not directly provide an option to alter the frequency
of the local oscillator external to the radio. We rely instead on the
IQ sample feature of the CC1200. Our recent work has reported on
the IQ sample feature [25]; however, we did not use it to estimate
the phase. This feature allows the CC1200 to export two registers
for the angle of each sample after the CORDIC algorithm. The angle
is a 10-bit value, which corresponds to 0.35 degrees resolution.
The sample rate from the CC1200 is limited by the channel
bandwidth setting and the maximum speed of the SPI bus. A new
IQ sample can only arrive every Ts = 22.2pus, a sample rate of

45.044 kHz. The data is invalid if the sample is read out while
the buffer is being written with another sample. Hence, we check
the rising edge of CC1200 MAGN_VALID signal, which indicates the
availability of the new measurement.

We implement RFS with the Beaglebone Black as the processing
unit to demonstrate the feasibility of integrating a Linux-based user
application. Using a dedicated embedded microprocessor for RES is
also a possibility; in fact, it is more straightforward to use a real-
time processor. The Beaglebone’s main processor runs a preemptive
Linux OS and thus cannot record the IQ samples from the CC1200
at a precise regular interval. Therefore, we use one of the two real-
time co-processors in the programmable real-time processing unit
(PRU) sub-system to collect the timing-dependent samples. The PRU
supports a very simplified assembly instruction set, which does not
allow integer multiplications required for frequency estimation. In
this particular case, our user application first configures the radio,
then has the PRU store the IQ samples into the shared memory for
access by the main processor.

The CC1200 transceiver operates in any of the 169 MHz, 434 MHz,
and 900 MHz ISM frequency bands. In our experimental setup, the
matching network is populated for 434 MHz, which is our carrier

frequency. Our PLL multiplier is thus 432#.

5.3 EffToF

PlaStitch does not have an on-board UWB transceiver to implement
Eff ToF. We exploit the benefit of Stitch rather than completely
rebuild the hardware to include an on-board DW1000. We built a
DecaWave DW1000 daughter card that operates from an external

IPSN 2018, April 2018, Porto, Portugal

clock and can be stacked right on top of our platform. We generate
a 38.4 MHz to feed both CC1200 and DW1000 through a simple
reprogramming of the FPGA and reroute the necessary signals to
the microprocessor. Thus, the CC1200 has a PLL multiplication
factor of 11.3020833333.

Fig. 6 shows the proposed setup where we use the adaptive clock
and digital routing to connect up the subsystems of interest and
distribute 38.4 MHz LO to drive both of the subsystems (CC1200 &
DW1000).

IRQ
sPI

C - G

SPI

C)
C)

Figure 6: Proposed circuitry and submodules for accurate
time synchronization.

6 EVALUATION

In this section, we first present the evaluation of the performance of
RES. Secondly, we quantify the effect of frequency synchronization
on ToF measurement. Finally, we evaluate Eff ToF via four additional
experiments.

6.1 Radio Frequency Synchronization

6.1.1 Benchtop. We set a National Instruments vector signal
generator (NI VSG) to generate a carrier frequency at 434 MHz.
Because the NI VSG is itself not perfect, we must measure its actual
carrier frequency. With a Keysight 53230A 12 digits per second
frequency counter, we measure the generated frequency to be 434
MHz —62.27 Hz. Not all multiplying factors are possible with a PLL,
and with a 40 MHz LO, the closest achievable carrier frequency on
the CC1200 is 434 MHz —61 Hz, which occurs when the internal
CC1200 PLL has its multiplier and divisor registers set to the have
the factor of 10.849998475. We validate this factor by transmitting
a pure carrier wave with the CC1200 after setting the previously
computed factor and the various local oscillator frequencies. With
the aforementioned PLL factor, the target local oscillator frequency
should be at 40 MHz —0.117 Hz. Note that the CC1200 has a various
intermediate frequency (IF) settings available, we arbitrary select
an IF of 138.88 kHz.

As shown in Fig. 7 (left), we approach a frequency difference <
0.1 Hz after the sixth iteration of the naive algorithm (w/ N = 1000
samples per iteration) [26].

As seen in Fig. 7 (right), for N = 1001, the remaining LO fre-
quency offset is about 0.1 Hz after two cycles of RFS, which for the
40 MHz LO, corresponds to 2.5 ppb. However, we observe worse

A. Luong et al.

performance even with the linear regression method, as shown in
Fig. 7 (center), due to the noise in the phase measurement.

6.1.2 Long Term Performance. We first conduct a preliminary
experiment to quantify the performance of RFS. In this experiment,
the nodes are placed on the desk of a clustered office about 1 m
apart. The boards are powered on for some time before each ex-
periment to remove any instability during the warm-up period.
For this experiment, the two LOs of the two PlaStitch boards re-
main connected to the frequency counter to keep track of their
frequencies.

After just 20 minutes, the free-running uncompensated oscillator
skew apart more than 1 Hz (26 ppb) from the other oscillator as
shown in Fig. 8. Next, for the same physical setup, we perform
RFS once every 20 minutes. We achieve an RMSE of 0.136 Hz. The
freerunning method has RMSE of 0.773 Hz. As a result, RFS reduces
the clock offset to 3.54 ppb, while freerunning is 20.1 ppb, more
than 5x higher, as shown in Fig. 9.

6.1.3 Power and Cost. The power consumption of the Abra-
con VCTCXO dominates the power consumption budget of the
syntonization procedure, as long as syntonization is performed
infrequently. The CC1200 uses 46 mA for transmission of a carrier
wave at maximum power (14 dBm), which corresponds to 151 mW.
The receiver uses half of this power, 75 mW. The MCP4922 DAC
and processing unit require 1.5 mW and 2.5 W respectively. Since
each syntonization requires 22 ms, one syntonization every 20 min-
utes requires 454W. We justify a 20 minute syntonization period
with a 24-hour experiment in Section 6. Meanwhile, the Abracon
ASVTX-12 requires 7.5 mW.

PlaStitch is designed for research purposes, particularly for ex-
tending the hardware lifecycle for time synchronization research
by allowing an FPGA-based control of the clock network. The com-
ponent cost for PlaStitch at the time of publication is about $50.
To implement Eff ToF, however, an FPGA is not required. Since
both CC1200 and DW1000 can utilize a 38.4MHz LO, we can re-
duce cost, complexity, and power by removing the FPGA, which is
about $20. Most of the components for RFS are relatively inexpen-
sive compared to the other high stability oscillators we compare in
Fig. 13. For quantity one, at the current time, the CC1200, MCP4922,
and VCTCXO, cost $6.17, $2.70, and $3.58, respectively. This is $22
(for quantity 1) more than the standard DW1000 tag. For applica-
tions with mismatched LO frequencies, a $ 5 frequency synthesizer
is a better option than an FPGA, with the exception that it does
not allow the clock network to be changed in software. For all of
these estimates, high production manufacturing will significantly
decrease the costs, particularly for the passives. With that said, for
a research platform for applications that are unknown at the time
of design, the FPGA is the best option. An example would be a
single board IoT platform like the Raspberry Pi to which capes can
be attached. The FPGA enables longer hardware usefulness than a
single clock or a frequency synthesizer, as new hardware would not
need to be designed when a new application or technology must
be integrated.

A Stitch in Time and Frequency Synchronization
Saves Bandwidth IPSN 2018, April 2018, Porto, Portugal

~ 1000 ~40MHz . Linear Regression . ° 1001 1Q ——
z ~40MHz+400Hz q Naive - T o4 801 1Q :
= ~40MHz-400Hz - = = 601 1Q
£ = - 3
a g e
I3 o m 2
T 3 3
« g g
o N 8 VD N B L e e i]
2 g g °
o i i
x -2
0 2 4 6 8 10 2 4 6 8 10 0 2 4 6 8 10
Cycle # Cycles # Cycles #

Figure 7: Frequency difference vs. iteration & LO starting frequency (left). The naive algorithm (N = 1000) synchs the 40 MHz LO
within +0.1 Hz in < 6 iterations. Naive vs. linear regression algorithm performace in RFS (center). Frequency synchronization

accuracy vs. number of samples N, using the linear regression estimator (right).

Abs. Freq. Diff. (Hz)

1000 1200 1400

200 400 600 800
Time (min)

Figure 8: Absolute frequency difference of two uncompensated LOs over a 24 hour period. Typically less than 1 Hz in the first
25 minutes (sub-figure), and after 450 minutes, the frequency offset increases but stays relatively constant.
such operation with an oscilloscope. The ToF is measured following

I S e
0.91 ; et the two-way range message exchange as shown in Fig. 3.
4
0.81 /
—07{ 4 25
X II
>\2 0.6 1 '/ °
=051 / 2
w04l B
© 0.3 /' 5 15
i
0.21 ’,' s
0.14': — :rFeSerunning = 1 .
- 1%}
090 ! ! ! ! : <
0 5 10 15 20 25 30 0.5
Abs. Frequency Offset (ppb) . .
.
0
10 100

0.1 1

Figure 9: CDF of LO frequency error over 24 hours, freerun-
Frequency Offset (Hz)

ning vs. RFS. We achieve an RMSE of 3.54 ppb with RFS run-

ning once every 20 minutes while the freerunning method
Figure 10: Frequency offset vs. ToF: Absolute ToF error in-

has RMSE of 20.1 ppb.
creases with the LO frequency offset.

The frequency of the radio reference clock signal is increased by
0.1 to 50 Hz. At each offset, the ToF between the two UWB devices
is measured using SS-TWR. The results are shown in 10. As the
frequency offset between the two increases beyond 1 Hz, the ToF
(and thus ranging) error increases significantly.

6.2 Time of Flight
6.2.1 Frequency Offset versus ToF. We build up two DecaWave
DW1000 capes, as shown in Fig.11. In the first experiment, instead
of using the local oscillator on each of the PlaStitch, we use an
arbitrary waveform generator, Rigol DG4102, to generate 38.4 MHz
sinusoidal signal on each of the channel, which is connected to 6.3 EffToF Two-way Ranging
each of the cape as the radio reference clock signal. This allows us We use two identical PlaStitch, Beaglebone Black and DW1000
cape setups as shown in Fig. 11. The UWB antenna, however, is

to generate a known LO frequency offset between two devices. We
start each set of measurement by aligning the phase and validating mounted perpendicular to the board rather than parallel to the

IPSN 2018, April 2018, Porto, Portugal

RTINS

Figure 11: Eff ToF node: Beaglebone Black (bottom), PlaS-
titch board (middle), & DW1000 cape (top).

platform as shown in the picture. The devices are calibrated for
the correct antenna delay following the recommended procedures
[8]. These two nodes are each placed on top of a polymer tool cart,
the carts are placed at a distance apart in a large office building.
The true distance is measured with a Fluke 414D laser rangefinder
with a 50 m maximum range. The ranging error of our meter is
less than +3mm. In these experiments, we switch off between the
two devices as the reference to remove any device bias. On each
node, the FPGA on the PlaStitch synthesizes the LO frequency and
routes the required LO signal to both of the CC1200 subsystems
and the external DecaWave DW1000 cape. The Beaglebone Black
synchronizes the local oscillator with RES as described in Section 3.
The communication for ToF follows the Eff ToF protocol described
in Section 4. A ToF measurement is taken about 2 seconds apart.
We record 200 measurements at each true range. When the true
range is greater than 50 m, or the line-of-sight (LOS) is blocked, we
survey the area and obstructing walls to measure the true distance.
The LOS experiments are conducted in different hallways of an
office building and inside a partitioned office area. The NLOS tests
are conducted through the walls of multiple neighboring offices.
Surveying is used to come up with a true distance; hence, cm-level
errors will be introduced into the true distance.

Through all of these experiments, we achieve mean absolute
error (MAE) of 16.7 cm and root-mean-squared error (RMSE) of
17.1 cm for range measurement shown in Fig. 12. Note, when the
actual range is > 35 m, we observe a somewhat higher standard de-
viation. This may be due to the surveying method used to determine
a true distance between the antennas. On top of that, even though
the experiments were conducted during hours when few people
are present in the building, during the 60 m range experiment, a
person walked along the LOS the measurements. This was the only
data point with range standard deviation more than 0.13 cm.

SurePoint, an improved version of Polypoint, reports an 8 cm
median error in range estimation [20] with frequency and polariza-
tion diversity on UWB. In our setup, we have only a single antenna,
and we do not hop between channels to diversify measurements.
The problem with SurePoint is a dramatically increased number
of UWB messages required for each ToF measurement, by a fac-
tor of 27. When SurePoint is allowed to use one channel and one
antenna, it achieves at best 17 cm median error. Eff ToF is able to
achieve the same level of performance, a 17.5 cm median error

A. Luong et al.

P4

=

(@)

D
>

MAE (m)
o
w

RMSE (m)
o
N
2
2

0 10 20 30 40 50 60 70

Std. Dev. (m)
o

7“:’:0‘0:‘0.40‘0' ! ° o ° ®
0 10 20 30 40 50 60 70
Range (m)

Figure 12: MAE, RMSE, and Standard Deviation of LOS and
NLOS ranging experiments. In one experiment (*), a person
walked along the link line during the ToF measurement.

with a 3.15 cm standard deviation, across all the ranges in several
different environments.

7 RELATED WORK

Message Exchange: There has been a large body of research ad-
dressing time synchronization in wireless networks via radio mes-
sage exchange. The reference broadcast synchronization (RBS) sys-
tem [13] uses the transmission of a reference message and its recep-
tion on the nodes as a marker of epoch for time synchronization.
However, the protocol does not consider the propagation delay of
the message, which can introduce significant error. The timing sync
protocol for sensor networks (TPSN) creates a spanning synchro-
nization tree with nodes that perform pairwise synchronization by
two-way message exchange [15]. This then allows nodes to mitigate
transmitter and receiver bias. TPSN still assumes that their clock
drift during message exchange is negligible. While an additional
message exchange would allow a node to estimate its skew, it would
increase the utilization of the channel. Flooding-Time Synchroniza-
tion Protocol (FTSP), Glossy, and PulseSync address the problem
of time synchronization for multihop or sizable sparse network
with constructive interference through synchronous flooding, thus
achieving better synchronization [14, 23, 28]. Fundamentally, clock
synchronization still requires a significant amount of messages to
converge on an accurate clock’s offset and skew.

XO: Wireless devices rely heavily on oscillators for timekeep-
ing