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SUMMARY

Much progress has been achieved in defining methods, techniques, and tools for software architecture
reconstruction (SAR). However, less progress has been achieved in constructing reasoning frameworks from
existing systems that support organizations in architecture analysis and design decisions. These reasoning
frameworks are necessary, for example, to assemble existing components and deploy them in new system
configurations. We propose a model-centric approach where this kind of reasoning is driven by the analysis
of quality attribute scenarios. The scenarios and the related quality attribute models guide the SAR effort by
focusing on the elicitation of model relevant artifacts. The approach further drives the model construction
towards the analytical support of What If scenarios that explore responses stimulated by new requirements,
such as new deployments of existing components. The paper provides two real-world case studies. The first
case study introduces the model-centric reconstruction approach in the context of a large satellite tracking
system. The second case study provides the construction of a time performance model for an existing
embedded system in the automotive industry. The model allows us to perform cost-efficient predictions
of component assemblies in new customer configurations. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Software Architecture Reconstruction (SAR) supports organizations in understanding and analyzing
software in situations where, for example, existing:
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Figure 1. SAR context.

software implementations have to conform to design descriptions;

systems hit their architectural boundaries [1,2];

software products have to evolve into product lines [3];

software components have to be assembled and deployed in new system configurations, as
described in the case study in Section 4.

The typical method to carry out a SAR effort is to extract information from various sources, provide
collapsing strategies to aggregate implementation details into architectural abstractions and visualize
them in architectural views. Much research has been done on the methods and techniques, resulting
in a variety of approaches, such as manual reconstruction with tool support [4], query languages for
writing patterns that automatically build aggregations [5], clustering [6], data mining [7], and the use
of architecture description languages [8].

In the cases we are aware of, SAR is usually a facet in a much broader organizational context where
software architectures play an important role in achieving particular business goals. The organization
requires information from an existing system in order to support its decision-making processes.
The support for business or design decisions is provided by reasoning frameworks which process and
query for information about existing systems, as illustrated in Figure 1. Consequently, architecture
reconstruction has to comprise the elicitation of information from the system as well as the provision
of reasoning frameworks to support a particular application context in which decisions are made.
The latter activity is the key for successful SAR applications. At the heart of SAR are the reasoning
frameworks that embody models of existing systems, and not primarily the reconstruction techniques
and tools themselves. Someone who carries out a SAR in a business context is foremost experienced
in models and provides them in the context of an organization’s decision support process.

The major ingredient of a reasoning framework is the model. In our approach, architecture relevant
models are driven by quality attributes. Quality attributes are formulated in scenarios, typically growth
scenarios for the system in SAR efforts. Growth scenarios may include:

e porting a system to a different operating system;
e increasing the throughput for transactions;
e exchanging legacy components with components-of-the-shelf.
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The stimulus of each scenario is given by the particular application context; the constructed models
provide the response. It is important to note that a single model does not provide responses to all
scenarios. Typically, a model is tied to a particular quality attribute. For example, a portability model is
not concerned about all components but is rather interested in components that have dependencies to the
system platform. The automotive case study in this paper will introduce a model for time performance
for a particular distributed embedded system. The performance model will not respond to other quality
attribute scenarios, such as safety scenarios. In addition, the particular model instance of the case study
is most likely not suitable for other types of systems. It is limited to the performance quality attribute
and application context.

Our approach to architecture reconstruction centers the activities on the construction of models
that provide response to business situations that are articulated in growth scenarios, such as new
requirements for an existing product. With this, SAR is a means of constructing models obtained
from existing systems that allow architectural understanding and analysis. Architectures are primarily
manifested in models that support qualities. These models require program understanding of existing
systems in order to be constructed and analyzed in the context of a reasoning framework.

Once a model is constructed from the existing system it provides a powerful base for additional
prediction expertise, such as the support of What If scenarios. What If scenarios capture new stimuli
of an organization. The model—with additional expertise—provides ways to predict the response.
The automotive case study introduces an example time performance model-expert on top of a
constructed model with formalized expertise to evaluate new design settings, such as time performance
explorations in new deployment settings. With this, the organization is able to provide cost-efficient
performance predictions before the real system is built.

The SAR reasoning frameworks, illustrated in Figure 1, consist of the following major parts:

e quality attribute scenarios;

e models;

e model experts;

e SAR methods and techniques.

Model experts are optional, because not every context requires support for What If scenarios, for
example conformance measurements. This paper focuses on models and model experts in SAR.
The interested reader is referred to [9] for more information about quality attribute scenarios and related
elicitation techniques.

The remainder is organized as follows. In Section 2 we will relate our work to existing research.
Then, we will illustrate the approach by using two case studies.

e In Section 3 we introduce the model-driven approach along a SAR project that we carried out
for a satellite tracking agency.

e Section 4 provides an in-depth case study about time performance that we carried out in the
automotive industry. This case study will further illustrate the usefulness of building a model
expert in a commercial setting.

Finally, Section 5 summarizes the paper and outlines our future work.
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2. RELATED WORK

From our experience we believe that the model-centric approach driven by quality attributes is the right
mechanism for performing a SAR of existing systems. Indeed, Tahvildari et al. [10] outline an approach
that uses non-functional requirements or quality attributes, such as performance and modifiability, to
guide the reengineering process. Bengtsson and Bosch [11] outline a similar approach for reengineering
based upon quality attribute scenarios that drive architecture transformation.

In our case we apply a quality attribute driven approach to architecture reconstruction and goal-
based system understanding. The goal of the reconstruction is to provide information that will assist in
the analysis of the quality attributes and provide further analysis for predictions in the form of What If
scenarios.

In the past, several SAR efforts have related their work with more common/standard notations such
as UML [12]. The goal of our approach is not to align architecture visualizations with mainstream
notations, such as UML. The key to our approach is to enable architecture analysis of existing systems
via a quality attribute driven approach. The analysis is motivated by the knowledge that software
architectures are driven by business goals that incorporate quality attribute scenarios [9]. The work
outlined in this paper describes progress that we have made since we started the work on Quality
Attribute Driven Software Architecture Reconstruction (QADSAR) [13]. The work underpins the
QADSAR approach by providing a more in-depth case study on a performance model. In addition,
it goes beyond the QADSAR approach by illustrating the prediction capabilities of model experts for
What If scenarios.

3. MODELS ESSENTIALLY

As outlined in the introduction, our approach to architecture reconstruction centers on the
reconstruction activities for the construction of models that provide responses to particular business
contexts articulated in quality attribute scenarios. We formulate our approach in the following
way: SAR is a means to construct models obtained from existing systems that allow architectural
understanding and analysis. The approach describes the activity (construction), reasoning (models),
and the goal (understanding and analysis). The three parts will be explained using a real-world example,
which we will refer to in subsequent sections.

Example. A Satellite Tracking Agency (STA) supports efforts to develop, acquire, and deploy satellite-
tracking systems. In our example, the STA wanted to better understand the architecture of one of its
legacy systems, the Satellite Tracking System (STS), so as to be able to port the system to a new
environment. The STS consists of about SO0KLOC, which is a mixture of C, C++, and Fortran that
currently runs in a Silicon Graphics environment. The system has been in operation for many years
and certain people know parts of the system for which they are responsible, though no one knows the
architecture of the entire system, thus the need to apply architecture reconstruction techniques.

3.1. The goal

The starting point for this effort came from the business context of the STA organization. This context
required the existing software to operate on a different platform. However, the software was not
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Figure 2. Model/system.

designed to support a portability scenario in the first place. At this point the STA has a couple of
questions. For example, what is the effort to redesign the existing STS? Are there other complexity
issues that require building parts of the STS from scratch? Is the whole system or only part of the
system affected?

The impact of the business context required understanding and analysis: understanding the existing
STS software in order to analyze the impact of the business goal. We conducted a SAR for the STA
with the STS since no one was available who understood the architecture of the entire system and who
could deal with the portability scenario.

Architecture reconstruction is not about effective partitioning algorithms, graphical visualization
tools, and source code parsers. It is about answering business objectives. Stakeholders are interested
in understanding or verifying architectures for re-documentation, architecture conformance, reuse
investigations, product line migration efforts, trade-off analysis, comparisons, and reengineering.
Each context has different objectives to accomplish that are primarily driven by the stakeholder
interests. Consequently, not every possible architecture model is constructed but rather models that are
important for the stakeholder context. Architecture reconstruction is therefore a goal-driven approach.

Although the application contexts and objectives differ, there is a common goal in reconstruction
efforts: gaining of architecture understanding that enables architecture analysis. Understanding and
analysis are complementary: understanding those system aspects that are relevant for the analysis of
the business case impact. Architectural understanding of an existing system is not an isolated effort,
but rather a necessary activity to enable an analysis or design effort justified by a business situation.

3.2. The reasoning

The construction of models is the core activity in every architecture reconstruction. Models are
abstractions or conceptions of the existing system that closely match stimulus/response pairs as
illustrated in Figure 2.

In our example, STA had to estimate the effort of exchanging the platform of an existing system.
The stimulus is the demand to change the platform; the response is the effort to perform this change.
Prior to a potential platform migration the architect has to estimate the effort and therefore needs a
model that closely predicts reality. The technical part of the model will probably provide information
such as the dependencies to the Silicon Graphics platform. The dependencies will have different
weights in terms of cost of change. Dependencies of the current platform to other parts of the
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system will uncover high or low probability of change and therefore have to be carefully analyzed.
Models allow analyzing, exploring, and verification of architectures. They provide a foundation to
evaluate change scenarios, performance predictions, and even project management considerations.

It is critical that models adequately reflect the reality of an existing system. Otherwise they may
be used to generate the wrong conclusions. Representative candidates are mental models that are
sufficiently adequate during the early phases of a software design but erode over the course of the
product’s lifetime due to growing complexity and people change.

In the STS example, portability is designed in terms of early documentations but the intention did not
make it into the realization. A model that does not sufficiently match the existing system is a prominent
reason to consider a reconstruction effort in the form of a conformance measurement.

3.3. The activity

Our approach intentionally uses the word ‘construction’ instead of ‘reconstruction’ in order to reflect
the typical situation. In the majority of cases there is no explicit model initially but rather distributed
mental models documented in box and arrow drawings. It is not the intent to reconstruct these mental
models but rather looking at a snapshot of existing sources and construct models that probably did not
already exist explicitly. In the STS case there was no existing model for portability. The reconstruction
of an architecture for portability would be less helpful. However, a model to reason about a portability
scenario would identify dependencies on the platform and be used to analyze the cost of change when it
comes to replacing, adding, or emulating functionality. This analytical capability provides an important
advantage over informal box and arrow drawings as often used in architectural views. We illustrate this
by providing a few myths regarding architectural views in the following subsection.

3.4. The view myths

Software architectures are presented as views [14]. Views are a major vehicle to communicate
architectures to stakeholders. Although they are of importance, their emphasis leads to side discussions
that underestimate and undermine the purpose of reconstruction efforts. Here are three myths that are
the result of such side discussions.

1. Architecture reconstruction is the generation of views in appropriate notations.
2. Views are models.
3. There is a set of common views for each class of systems.

The first myth is in fact the reduction of architecture reconstruction to a re-documentation activity.
The re-documented views should accurately reflect the architecture of a system, which sometimes did
not have an architecture documentation from the beginning. There are two implications to this opinion.

1. The re-documented views are the result of the constructed models. Views are difficult to analyze
because the semantic context and traceability to existing facts is difficult to obtain from drawings.
This is also valid for simplistic views, such as directory and file views. Even in this case it is
frequently up to the ‘viewer’ to determine the mental model of why files are located in particular
directories.
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2. Secondly, understanding and analysis are complimentary tasks. It is not an efficient approach to
re-document existing architectures without knowing the intention for which the resultant artifacts
are used. In addition, the re-documented architecture can be eroded by the time a later analysis
is required. In the majority of cases both tasks are therefore intertwined.

The second myth has at its core that views are a sufficient vehicle for architectural analysis.
Views are not models; they are representations of models in a particular notation. For example, views
can visualize performance aspects. However, they do not describe the performance algorithms or
the reasoning that leads to the construction of a particular view. Moreover, they hardly reveal the
consequences of adding or changing units of concurrency.

The third myth addresses the illusion that a particular set of views characterizes a larger system
category such as a set for object-oriented systems, multi-language systems, etc. Each system has its
own models. One reason is the different purposes and business goals systems are build for. The derived
design decisions result in a wide variety of models. Therefore, it is hard to envision a ‘one set
of models/views fits all” approach or an automated model/view construction from existing systems
without any previous built-in mechanisms to elicit the models and views.

Back to the example, this situation initially produced some confusion at the STA:

The STS is a classified system and access to the system and any information about it is tightly
controlled. Consequently, the reconstruction of the real system was performed by the developers of the
STA. The architectural views and the collapsing strategies were developed on a manipulated version of
the information extracted from the system. For example, the developers extracted source artifacts and
exchanged entity names with numbers. The collapsing strategies were applied by the developers on
the real STS system to generate a set of architectural views. Although this time-consuming process
produced a lot of overhead in effort and communication, it enabled STA to perform architecture
reconstructions on further system versions by themselves.

Due to the classified nature of the system, the developers performing the reconstruction asked for a
tool that would provide them with the—at this point in time—unknown architecture views. The STA
was unaware of the effort and scope involved in the construction of the model to accomplish their
particular goal.

Views are important to describe, understand, and communicate the architecture. In the process of
obtaining these views from existing systems there is the cost-intensive effort to construct the underlying
models. The cost is justified when the analysis requires a close match to architecture realities.

3.5. Models in practice

Despite the variety of models, there are recurring architectural parts that constitute models that have
been discussed in the community over the past several years, such as patterns and their detection
in existing systems, architecture styles, and quality attribute models. Further, there are a rich set of
strategies and techniques available to collapse detailed source information into more abstract structures.
Figure 3 provides an overview of the major ingredients that are typically required to construct models.

It is important to obtain an initial concept (hypothesis) for the model. The hypothesis guides the
identification of:

e facts from the existing system;
o useful collapsing strategies;
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e potential patterns;
e relevant quality attribute models.

Architecture reconstruction is hard to achieve without any initial idea about the architecture of the
existing system.
Back to the example system:

The initial model was elicited in interviews with the architects and reading of existing documentation.
As a result, we sketched the concept as illustrated in Figure 4. In this concept a unit relates to a set of
sub-units that have shared utilities. The unit is more abstract than a sub-unit. For example, ‘Weather’
could be a unit which contains sub-units for different types of weather conditions.

The example started with the intention to port the STS to a new system. The initial concept has
therefore to be transferred into a modifiability model to analyze the dependencies between the units
and the platform specific routines. The process to create the model was performed in the following
sequence.
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1. Identify an entity/relation schema suitable in a multi-programming language environment
(C/C++ and Fortran).

2. Extract the facts from existing sources.

3. Aggregate the facts into the unit concept of Figure 4 with suitable collapsing strategies.
Isolate the platform-specific modules in a separate unit.

4. Navigate, verify, and analyze the model to estimate the qualitative cost of change. Develop a
high-level presentation view with the associated cost of change.

Navigating and verifying the model reveals, for example, that there are relations between the sub-
units of Figure 4. Depending on their weight, the distinction between sub-models does not reflect the
realization. A pure reconstructed view uncovers dependencies between sub-units, but the decision as
to whether the architectural construct sub-unit exists in reality depends on the analysis and judgment
of the architect. In fact, the decision can be taken due to the use of particular program structures at the
code level rather than the high-level design.

Note that the analysis step is not primarily performed on a view level but rather at the modeling level.
It is essential to understand the current platform dependencies and compare them to dependencies
caused by the new platform. Not surprisingly, the initiated analysis task migrates naturally into a
reengineering task.

3.6. Adding expertise

Once a model is constructed, it provides a useful base for further analysis. For example, the STA
organization considers possibilities, such as:

e porting STS to several real-time operating systems and isolating the used platform operations in
an operating system abstraction layer; components and relations have to be added, manipulated,
or reorganized;

e adding a further sub-unit to the STS and analyzing the impact on the timing behavior.

In both cases the change input does not come from the source (the existing system) but from
interventions with the intention of exploring new scenarios. These scenarios are called What If
scenarios, because they explore new stimuli and the expected system responses. What If scenarios
add to the complexity of system understanding by requiring the prediction of future system responses.
Models provide a description about the current system. However, they do not have the capability of
predicting the reactions as stimulated by What If scenarios. The stimuli of What If scenarios are input
to a model expert as illustrated in Figure 5. Responses of model experts to What If scenarios include,
depending on the particular expert, improvement feedback for the current model as well as to the
existing system.

Bachmann et al. [15] introduce the notion of tactics as a means to control a quality attribute response
by manipulating some aspect of a quality attribute model through architecture design decisions. A tactic
is an architecture strategy that is concerned with the relationship between design decisions and a quality
attribute response. There are collections of tactics available to achieve particular quality attribute goals
(for further details, refer to [15]). We outlined an initial approach to develop model experts in our
QADSAR paper [13].

Different quality attributes have quality attribute models with different accuracy requirements.
Therefore, model experts are formal or informal, depending on the related quality attribute.
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Figure 5. What If scenarios.

For example, performance models can be fairly formal (queuing models) while usability models for
customer satisfaction can be more informal. A modifiability expert provides rather informal estimations
of change efforts.

The case study of Section 4 provides an example model expert, where predictions are required to
provide time performance design explorations for customer configurations. Once the performance
model is constructed, the case study shows ways to modify time budgets, network properties, or
changes of component deployments. The developed performance expert knows about performance
properties, such as scheduling algorithms. In addition, the expert provides prediction capabilities for
exploring worst-case reaction times. However, What If scenarios are limited to the knowledge and
scope of the constructed model expert. Consequently, not every What If scenario may be covered by
the expert.

4. AUTOMOTIVE CASE STUDY

The case study was carried out on a system in the automotive industry. The system is a door module
comprising a set of hardware modules, such as window lifters, door locks, associated software, and
more. The case study focuses on the construction of the time performance model and the development
of the model expert. This section provides:

a system overview of door modules;

a description of the scenarios;

construction of an initial time performance model;
fact extraction from sources;

abstraction of detailed information;

model construction;

model expert creation and verification;

scenario feedback;

cost and benefit.
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This sequence reflects the process that we followed to perform the case study. The fact extraction and
abstraction sections are common activities in a reconstruction process. However, this paper does not
consider further aspects of the reconstruction process. The interested reader is referred to [16] for more
information about the process.

4.1. The door module

A door comprises a set of hardware modules, such as a window lifter, door lock, switch panel, and
mirror. In the past, door modules were mechanical systems with manual hand cranks and manual
adjustable mirrors. Today, these systems evolved into mechatronic systems, combining mechanics and
electronic controls. The added electronic parts allow the addition of distinguishing customer features,
such as slow and fast window sliding, or key-less entry. It also adds the necessity for safety regulations,
such as anti-pinch standards in case of encountering obstacles during the window closing operation.
Other popular examples for mechatronic systems in the automotive domain are adaptive cruise control,
or rain-sensing wipers. Electronic door modules are not independent from each other. They build
a master—slave system, with centralized functionality on a master, and specialized functions on the
slaves. For example, a button press on a switch panel (slave) is translated in the master component to
a move window command which eventually gets transferred to the window lifter component (slave).
In this functionally partitioned model, slaves are reduced to their elementary functions. Coordination
functions and administrative tasks, such as storing of personalized mirror positions, are located on a
master module that orchestrates the door functionality.

Figure 6 illustrates an example for a configuration of a two-door car with a master for the driver
side and a master for the passenger side. Both masters are connected via a bus, such as CAN [17] or
FlexRay [18]. Besides the two masters there are a variety of further electronic control units (ECUs)
connected to the bus that are not considered in this case study. The LIN bus for the slaves is a cost-
optimized serial bus for low-traffic communication [19].
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4.2. Scenario collation

The organization wanted to accomplish three goals from this case study.

1. Exchange hard-wired connections with flexible bus structures to reduce wire harness. The cable
length for an average vehicle is about 1.6 km with 300 plugs and 2000 cable pins [20]. The cable
cost is a cost-sensitive part in a modern vehicle (average cost about €400 [21,22]).

2. Partition the functionality in such a way that the mechatronic module cost is as low as possible.

3. Flexible topology of mechatronic systems for a rich variety of customer configurations.
For example, replacing a two-master configuration with a one-master configuration for driver
and passenger side.

The organization developed two- and four-door prototypes in cooperation with car manufacturers
(customers) to explore design alternatives and prove the validity of the model. One of the main issues
arising out of these projects was time-performance characteristics, such as worst-case reaction time for
different system configurations. In general, customers wanted one of the following scenarios.

e Scenario A: adding a new peripheral such as climate control to an existing LIN channel.
e Scenario B: adding a second master to the configuration and migrating functionality from the
original master to the additional master.

The organization was in the situation of either building further prototypes and performing
measurements for worst-case reaction time, or defining a formal model that is able to calculate time-
performance scenarios for a variety of configurations, including the addition of further LIN devices,
such as a climate control unit. The organization decided to take the approach of building a model,
because of:

1. the cost involved in building prototypes; and
2. the ability to explore further customer scenarios using the model.

Scenarios A and B represent the What If scenarios that were introduced in Section 3.6. Therefore, the
model approach includes the development of both the time performance model (Sections 4.3—4.6) and
the model expert (Section 4.7).

4.3. Constructing an initial time-performance model

Constructing the initial time-performance model forms the hypothesis that allows for fact elicitation
from sources, as earlier illustrated in Figure 3. Only those facts that affect performance aspects have to
be considered.

The initial model follows a stimulus/response pattern. The model response consists of minimum,
average and worst-case end-to-end system response times. There are many ways to define minimum,
average, and worst-case reaction time, depending on the type of system, networks, and more. In this
case, we favored a pragmatic solution particular for this system.

e The minimum response time is a best case with a single button press just before the polling cycle,
clear network channels, and the master not busy with previous events.
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e The average response time differs from the minimum case in that the button press happens just
after the polling cycle.

e The worst-case response time determines a situation with network traffic while the master is busy
with other events, such as previous button presses.

Note that the minimum, average, and worst-case scenarios have to be weighted with probabilities in
order to reflect real-world scenarios. For example, the probability of a worst-case scenario is extremely
low. Most real-world response times will be slightly faster than the response time given by the described
average scenario.

The initial model construction primarily required interviews with the system developers.
The interviews resulted in the following model.

e System topology: the system consisted of three system component types: master, slaves, and
connecting buses. The master was connected to five slaves using the LIN version 1.3 bus
protocol [19]. Master and slaves each contained a microprocessor. The system topology is
represented in a graph where each node is a system component. The graph is restricted by the
following rules:

1. slave and master nodes are connected via a bus node;
2. bus nodes can only be connected via a master node.

e Messaging: under normal execution, the master polls each of the slave nodes querying for state
change information. Upon notification of a state change, the master does a calculation that
results in a new set of messages that are sent as a response to other slave nodes residing on
the bus. This new set of messages is scheduled by statically defined message priorities as well as
debounce times given by the individual slave node. When all the events have been handled, the
system returns to its normal polling state.

e LIN as the key element: from the performance perspective, the LIN communication seemed
to be the key in understanding the system’s timing. All LIN messages are required to be a
multiple of a global time tick. Given the bus nature of LIN, every message can be thought of
as a global broadcast, which allows the master to arbitrate slave-to-slave communication while
at the same time ensuring coarse-grained time synchronization. This helps further reduce the
cost of the system by eliminating the need for expensive hardware crystals for synchronization
while maintaining that all nodes on the bus are synchronized to within at least one global time
tick.

e Scope reduction: the structure of the LIN bus allows us to model each slave as a system
component that either succeeded or failed to meet the LIN specified deadline. The slave typically
reads analog or digital port values, sets an output value to control an actuator and then services a
communication request. Once this has been guaranteed to occur within the LIN global time tick,
no further analysis is required. Instead, the important transactions occur on the master. Even in
the case where a slave fails to meet a deadline, the error must be handled on the master in order
for the system to effectively compensate. Given this, slaves can be reduced to system components
that do not have to be refined in the initial model.

e Cyclic executive: due to cost reasons, the master does not run a preemptive operating system.
Instead, it runs a cyclic executive loop. The loop operates at the LIN global tick frequency so that
it can process and produce the next LIN message without missing a communication opportunity.
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Previous work has analyzed cyclic executives [23], but these do not typically account for
dynamic runtime dependencies. Granted, the same set is called each cycle, but they generate
chains of events that alter what type of execution will be required on the next iteration of the
executive loop. Because this application logic is mixed into the dynamic scheduling, there are
no obvious guarantees usually associated with periodic scheduling.

The initial model resulted in the primary analysis of the master with its LIN communication package
to determine node properties in the system topology graph.

4.4. Fact elicitation from the master

The master software was written in C and comprised around 45 KLOC with 760 functions, and 3100
variables. The elicitation for the master was performed in two steps.

1. Elicitation of the call graph—to identify threads of execution.
2. Elicitation of the control flow graph—to investigate the control flow via data dependencies.

4.4.1. Call graph

The call graph was generated to investigate whether major parts of the cyclic executive could be
represented as a branch off the main function. This was a first effort towards extracting the major
components of the system. In an ideal case, the call graph of the program would have built a hierarchy
of components. Understanding the main components at the initial depths of the call tree would have
been a first step towards building a system component map. Figure 7 shows a spring layout of the
call graph in the master. This graph was automatically generated by a custom program that utilized
C-scope [24] to find functions and the Graphviz [25] graphical drawing package to plot the resulting
data. The call graph depicts particular functional responsibilities, such as the LIN communication, and
parts of the application logic. Some branches in the graph share functions, but most of the functions
are directly or indirectly connected to the main function. This structure tends to occur in low-memory
footprint-embedded environments, because stack space needs to be conserved. Instead of using a
hierarchy of function calls, the software on the master uses conditional flags that tightly connected
many of the functions. Even though the main cyclic executive loop calls nearly 50 functions, on any
particular cycle, only a handful of those execute. Not only does this mean that the separation of different
execution threads is not automatically extractable from the call graph, it also indicates the difficulty in
achieving this task by manual inspection. A different technique is required in order to extract the threads
of execution.

4.4.2.  Control flow graph

The second fact elicitation step to resolve threads of operation was performed by investigating the
control flow graph of the master. Using a reverse engineering tool, such as Imagix 4D [26], it is possible
to isolate individual regions of the source code and generate a control flow graph, listing all possible
paths of program execution. We chose Imagix because of its ability to resolve advanced C language
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Figure 7. Call graph.

constructs such as function pointers. Unfortunately, the tool is unable to decompose sub-functions,
prohibiting the creation of graphs that are multiple function calls deep. It also has the limitation of
only being able to export an image of the flow graph instead of providing the traversed information.
However, it is possible to enable a debugging mode where traversal information is stored in a trace file.
By writing a short script, the flow graphs for each function from the debugging file can be recreated.
These graphs could then be linked together to form the entire control flow graph of the program.
Figure 8 shows an example graph on the left of a small flow diagram. The graph of the entire source
contained thousands of nodes with tens of thousands of connections making it unsuitable for visual
analysis.

In order to reduce this flow graph, regions of the source consisting of consecutive logic blocks
separated by function calls that were not interrupted by a branch were merged together. The right side
of Figure 8 illustrates this compression.
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Figure 8. Compression of a control flow graph.

4.5. Abstraction

Abstraction in the context of architecture reconstruction strives to collapse detailed source information
into architectural elements. The strategy to achieve this objective depends on the type of system and
the model to be constructed. In this context the emphasis is on the master and useful abstractions
for time performance. Source analysis, expert interviews, and analysis of specifications and/or written
documentation are important to build a model describing what the important elements in the system
are, and how they relate to each other. In the door module, these elements may or may not have been
physical hardware or software components. We did find that physical location did tend to help in
organizing the components. Figure 9 illustrates areas of interest and encapsulates a performance-related
state machine of different event paths that can occur in the system. The dashed rectangles illustrate the
physically isolated system components: master and slaves with sensors and actuators. These boundaries
help clarify what the nodes in those particular regions are responsible for. For example, the cyclic
executive inside the master contains all of the elements of the master’s main loop that will consume
time. The shaded regions in Figure 9 designate three major areas of interest with respect to performance
as well as where this information was discovered:

e cyclic executive of the master (source code analysis);
e LIN network (source code and Line Description File analysis);
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o the interfaces between the slaves and the LIN bus as well as the interface between the slaves and
their environment (component specifications and/or measured timing).

These regions were determined to be most important because they have the largest effect on the end-
to-end latency of the system. Other minor components such as the Other Comm. on the master have a
fixed or trivial influence on the overall system timing.

4.5.1. Cyclic executive of the master

The starting point for the software model of the master was the compressed control flow graph.
Much of the information contained in this control flow graph does not directly affect time performance.
Initialization sections could be ignored since they only occur at startup. All LIN related communication
could be grouped into a single block that would have to be analyzed separately. Other low priority
communication with the rest of the car environment could also be isolated. As illustrated in the lightest
gray region of Figure 9 (the Cyclic Executive block), we abstracted the main cyclic executive loop
into several major components. The master block represents the aggregated and abstracted source
level information. This sub-graph was generated using human inspection of the compressed control
flow graph. Worst-case reaction time—and not functionality—defined the critical components found
in this graph. The beginning of the cyclic executive loop waits for a timer to expire in order to remove
computational jitter and drift. This allowed us to ignore branches in the control flow graph that bypassed
major functionality.

4.5.2. LIN schedule analysis

The first step towards understanding the LIN communication in the code was to interview an expert that
had previously worked on the code. During this interview certain naming conventions associated with
LIN communication were outlined as well as a description of the overall flow of messages. The LIN
schedule depicted in Figure 10 is constructed by LIN function calls that pass scheduling information
in the form of message data structure arguments. For example,

status = fs_ 1lin oneshot schedule (RX_SLAVE 2 Check) ;

schedules a message requesting information from slave two. RX_SLAVE_2_Check is a predefined
LIN data structure to be requested. All messages are outlined in a LIN description file that is used at
compile time by the LIN driver to set up the message data structures. Manual inspection was required
to extract the different LIN function calls and message priorities from the master’s source, but this
process could have been automated given previous source code annotations. The LIN description file
provides information about the size of the individual messages and the configuration of the LIN bus
(baud rate etc.). Figure 10 shows a state diagram of the different possible message chains that could be
generated by system inputs.

4.5.3.  Slave node analysis

The details of the internal software executing on the slaves are not important with respect to overall
system performance. The slaves are bound by the global tick of the LIN bus and are therefore required
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to complete all of their tasks within that period. This allows us to view them as hardware components
that only respond to LIN messages. Even if the slaves miss their LIN deadline, the error handling
responsibility would still fall on the master node. The only other consideration is that it could take
longer than a single LIN global tick to process sensor data or control an actuator. An example of this is
the time required for the window lifter to raise the window. This time must be factored into the overall
end-to-end latency, but it does not change the slave nodes’ response time to LIN messages and therefore
has no effect on the master node’s timing. The physical timing values associated with different actuators
were either measured by the designer of that specific node, or as is the case with the sensors, amortized
by the LIN communication overhead. In Figure 9 each slave is shown containing a LIN message
handler and connects to a pentagon shape that represents sensors or actuators. When developing the
performance model, these LIN functions will be factored into the LIN component leaving the slaves to
only contribute the extra time required to engage the actuators.

4.6. Model construction

It is important to develop a model that gives adequate responses while still operating at an abstract
enough level to allow for important parameter adjustments. Past approaches to modeling automotive
systems tend to create a single cohesive model made up of components that internally direct control and
data flow [27,28]. In these approaches, components have a mapping that connects inputs to outputs, and
then consume a resource. These systems can elegantly describe a single configuration of the system,
but they are difficult to modify in order to perform design explorations because too much of the control
flow logic is encapsulated in the individual components.

Other approaches [29,30] have gone beyond state machine-based models to provide accurate
timing information through simulation. Given the complexity of modern systems, simulation-based
approaches are rapidly becoming implausible. The door module comprises a huge number of states
that are all dependent on relative timing between different environmental or user inputs. It would be
impossible to exhaustively simulate these inputs in order to guarantee that all corner cases are covered.

As a solution to this problem, we propose a modeling system where the components can be isolated
from the control and data flow through the system. The modeling system is represented by a graph,
as described in Section 4.3. Each node in the graph has a set of configuration parameters that define
the system components (masters, slaves, buses) and their interconnections. The messages, events, and
data that are exchanged by the nodes are specified in a stimulus file. This file explicitly defines each
hop across the graph topology accumulating performance information at each step. Figure 11 shows
our scenario’s topology with a sample trace diagram on the right. The numbers along each arrow in
the trace diagram show the sequence of events that an unlock button action would take when unlocking
the door. For example, lines 1-4 depict the node master requesting state change information from node
slave_I. The data are transmitted through the node LIN to the slave node and then back to the master
node. Each one of these intermediate hops along the trace needs to be formally analyzed in order to
generate the worst-case reaction time as a function of the specific configuration.

The information required to generate each of these worst-case components came from the previously
described software analysis of the master, the communication analysis of the LIN bus and the reaction
times of the sensors and actuators on the slave nodes. In our example scenario, most of the important
timing values are based on the LIN global time tick and the different message lengths extracted from the
LIN description file. The relationship between these LIN timing values and the system’s inputs comes
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Figure 11. Graph topology (left) with sample trace (right).

from the abstracted control flow information that was extracted from the master’s source. The final
timing information associated with the sensors and actuators was either physically measured by the
designer of that particular slave or, in the case of the sensors, amortized by the LIN communication.

4.7. Building the model expert

The model expert provides stimulus/response pairs for What If scenarios. With this, the model expert
generalizes the model as constructed in Section 4.6. Figure 12 illustrates the model expert architecture.
The user must supply the executive with two inputs.

e The node library—containing functions with the node performance characteristics.
e The stimuli file—containing a trace of events and messages between the nodes and the list of
nodes that have to be processed.

The nodes in the node library are implemented as C functions. They are linked into the model executive,
which interprets the stimulus file and facilitates the calling, as well as record keeping, of the individual
node executions. When all of the stimuli data are interpreted and processed, the executive then packages
and displays the performance response. In the following, we will explore the implementation of an
example scenario by describing the details of the node library and the stimulus file.
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Figure 12. Model expert architecture.

4.7.1. The node library

Each node in the node library is defined as a function that takes in operational parameters and returns
a performance data structure given a specific set of inputs. For example,

tm_data lin(void *args[]) {
tm _data time;

time.min=calculated min;
time.avg=calculated avg;
time.max=calculated wcet;

strcpy (time.title, "LIN network transaction");
return time;

}

For the purpose of performance modeling, the tm_data structure stores the worst-case reaction
time, the average reaction time, and the minimum reaction time. It has an additional field that can be
used to pass annotations that are used by the executive to clarify the output. The void *args[]
is used as a generic method for passing arguments that will later be specified in the stimulus file.
The executive provides a set of helper functions in order to extract arguments. For example,

instance=get int arg(args,0) ;

// argument pointer, argument index
event type=get int arg(args,1);
message priority=get int arg(args,2);
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In this case, the second parameter passed to the helper function get_int_args ( ) is the position
of the argument in the argument list *args []. The input parameters must be defined by the
designer of the node and should incorporate as many of the critical performance-related factors as
possible. In the above example we show that the event_type and message_priority are the
two critical LIN performance factors (instance just allows for multiple instances of the same
node). These critical input parameters came from a detailed analysis of possible LIN usages that were
explored by manipulating different message combinations and system configurations on a spread sheet.
Consequently, the worst-case reaction time is a function of the two input parameters in conjunction
with numerous static configuration parameters. These parameters are passed to the LIN configuration
function at startup before the node is executed. Below is an example of the LIN configuration
function:

tm data lin config(void *args[]) {

int instance;

instance=get int arg(args,0) ;

LIN GLOBAL TICK[instancel]l=get int arg(args,1);
LIN BAUDRATE [instance]l=get int arg(args,2) ;

LIN SLAVE NODES [instance]l=get int arg(args,3) ;
LIN POLL LOOP_SIZE[instance]=get int arg(args,4) ;
LIN RX MSGS[instance]=get int arg(args,5);

LIN RX MSG SIZE[instancel=get int arg(args,6) ;
LIN TX MSGS[instance]=get int arg(args,7);

LIN TX MSG SIZE[instancel=get int arg(args,8); }

The important parameters are shown in all capitals proceeded by LIN_. These parameters define the
connections and configurations of the nodes previously described in Figure 11. These values are used
during the stimulus file execution in the 1in () node like this:

polling time=(1000/(LIN BAUDRATE [instance]/(LIN POLL SIZE[sel]*8)));

In this example, a variable polling_time is computed and will be used later in the node’s timing
calculations. Eventually, the 1in () function will return the tm_data structure that will be recorded
by the executive. Once the node library is constructed, it is important to write a specification that
adequately describes the different model functions. This will allow future developers to reuse the nodes
without having to fully understand all of the detail that went into the analysis.

4.7.2.  The stimulus file

The stimulus file configures the nodes and executes different nodes with user-specified parameters.
The stimulus file contains traces that outline a path through the node topology graph. The configuration
is a special instance of a trace that only executes once and does not collect performance data.
The stimulus file is a text file that is parsed and executed by the executive at runtime. This is important
because it makes the addition of graphical user interfaces possible, it protects intellectual property by
allowing the distribution of binary node libraries, and it facilitates rapid execution of trace permutations
without requiring recompilation. Below is an example of the configuration section of a stimulus file:
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#config

register components () ;

slave config(0,5); // Instance, cycle time

master config(0,5,8); // Instance, cycle time, cpu_speed

lin config(0,5,19200,5,4,2,16,3,16);
// Instance, global lin tick,baudrate,number of slaves,
//polling loopl size,RX msgs,RX msg size,TX msgs,TX msg size

The #configis a keyword used in the trace file to signify a trace that should execute only once, and
should not collect performance data. As shown in Figure 12, all transactions between the executive
and the nodes pass through a registry. The register_components () method is required in the
node library and is responsible for associating a plaintext name (i.e. slave_config) with the correct
memory addresses for that function. The lines of code remaining load the configuration parameters for
the rest of the nodes described in Section 4.7.1.

Next, in the stimulus file are the execution traces that are to be analyzed. For example,

*Door Lock Press

slave (0, $BUTTON_PRESS) ;
master (0, SLIN DEP) ;

1in (0, SRX, $LOW_PRI) ;
slave (0, SPROCESS) ;
master (0, SLIN DEP) ;

1lin (0, STX, $LOW_PRI) ;
slave (0, SACTUATE) ;

*Window Button Press
slave (0, $BUTTON_PRESS) ;
master (0, $LIN_DEP) ;
1in (0, $RX, $LOW PRI) ;
slave (0, SPROCESS) ;
master (0, SLIN DEP) ;
1in (0, STX, $LOW_PRI) ;
slave (0, SACTUATE) ;

Traces have names that start with a * character. For instance, the functions following *Door Lock
Press would be stored as the response associated with a door lock button being pressed. Each of the
following function calls specifies the node that is to be called as well as the arguments that should
be passed into it. Values starting with the $ character are defined by the node library and alias to
an associated value. Similar to #defines in C, this helps make the stimulus file more readable.
The first value passed to each of the node specifies a particular instance. In this example, there is only
one instance of each node. The model executive’s output is separated into four major sections: the
registration, the configuration, the execution, and the response phase. The registration phase displays
the names of all nodes that are available as well as checking that they have a valid function pointer
associated with them. The initial lines from the simulation look like this:
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Running stimulus file "current.tra"
Registered [add defines]
Registered [master config]

The configuration phase checks the configuration argument parameters, and executes the associated
configuration node. The configuration nodes can use this as an opportunity to log their current
configuration. For example,

SLAVE 0 configured:
cycle time: 5 MASTER 0 configured:
cycle_time: 5
cpu_speed: 8Mhz

LIN_ 0 configured:
Global Tick Time: 5ms
Baud Rate: 19200
Number of Nodes: 5
Poll Msg Size: 4 bytes
RX messages: 2
RX size: 16 bytes
TX messages: 3
TX size: 16 bytes

The execution phase will call each node and pass it the parameters specified in the stimulus file.
The return values of these nodes are then collected by the executive to be displayed compactly after
all traces have completed. By default, the executive will display the node being executed and the times
consumed. For example, the door lock button trace would produce

0: Door Lock Press SLAVE 0 called
Waiting for input: min = Oms, avg = Oms, max = Oms
MASTER 0 called
Master Default Event: min = Oms, avg = 0 ms, max = Oms
LIN 0 network transaction
LIN RX time: min = 15 ms, avg = 40ms, max = 80ms
SLAVE called
Processing time: min = Oms, avg = 2ms, max = 5ms
MASTER 0 called
Master Default Event: min = Oms, avg = Oms, max = Oms
LIN 0 network transaction
LIN TX time: min = 15ms, avg = 25ms, max = 50ms
SLAVE 0 called
Driving Actuator: min = 1lms, avg = 5mg, max = 10ms
Finally, after all of the traces were executed, the total reaction time is displayed for each trace.
For example,
Trace "Door Lock Press "
min: 31 ms
avg: 72 ms
max: 145 ms
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4.8. Model verification

The next step is to verify that the model expert is returning adequate timing information. The model
expert is based on the analysis of a real system which it can be compared against. The difficulty is
simulating the inputs into the system at the precise times and in the correct order so as to stimulate the
worst-case response times derived from the earlier analysis. In our system, we chose to use Vector’s
Canalyzer [31] software, an analysis software for networks in distributed systems, to masquerade
particular nodes in the system to infuse particular stimuli. Using the CAPL (CAN Access Programming
Language) of the Canalyzer software, it was possible to set up the conditions when fake messages
should be broadcast on the bus. These messages appeared to the master as if they had been sent by
a slave and usually indicated that a sensor had been triggered. We then collected the remainder of
the messages with timestamps allowing us to see how long it took for the master to respond to the
stimuli. Since we are comparing the real system to a model that was directly based on it, it should be
no surprise that our timing values were nearly identical. For example, unlocking a door took minimally
15 ms after pressing the button, and a maximum of 130 ms, while our model predicted 15 and 135 ms.
The 5 ms difference in the maximum time is due to limitations in the network traffic analyzer we used.
The limitations did not allow us to simulate events at the very end of the LIN global time tick. Even so,
this demonstrated that our critical paths existed in the system and that the system was performing as
the model expert had predicted. We experimented with a few random input sequences to make sure that
none exceeded our calculated critical path. None of the random tests where nearly as long as the worst-
case path and most times were similar to our estimated average latency. This was another indication
that the model was adequately describing the real system.

4.9. Scenario feedback

At this point we are in a position to discuss the feedback that our model expert predicted about our
design scenarios from Section 4.2.

The goal of scenario A was to investigate the implications of adding a climate control system to
an existing LIN channel. In such an experiment we hoped to gauge the scalability of our current
configuration. The left columns of Tables I and II show the resulting stimulus file and output of the
newly configured system. As expected, the worst-case response times of the button presses increase
from around 130 ms in our current system to 175 ms. This large increase in latency could make
the system fail to meet customer end-to-end latency requirements. It is impossible to keep adding
functionality to the master node without eventually seeing unsatisfactory performance.

Scenario B investigated a possible solution to the problems posed in scenario A. Instead of just
adding a climate control system, we also added an additional master to support the new climate control
system from scenario A. In order to load balance the devices we also migrated the actuators for the
passenger side of the vehicle onto the new master. Button inputs should still be located on the original
master’s network since it already contains the other system buttons. The passenger side actuators would
now utilize a new LIN channel. The driver and passenger side masters would then communicate over
a third LIN channel in order to pass button commands from one master to the other.

Each component is developed with enough flexibility so that only the initialization parameters have
to be adjusted when altering the node topology. Table I compares the original and modified stimulus
file. In the new stimulus file, the additional master communicates via an added LIN channel to the
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Table 1. Scenarios A and B.

#config
add_defines()
slave_config(0,5)
/D, cycle_time
master_config(0,5)
/D, cycle_time
lin_config(0,5,19200, 5.4, 3,16,4,16);
/11D, global _tick,baud
// num_of_slaves,poll_size,
/I RX _msgs,RX _size,
/I TX _msgs, TX_size
*Door Lock Press
slave(0,$BUTTON_PRESS);
master(0,$LIN_DEP);
1in(0,$RX,$LOW _PRI);
slave(0,$PROCESS);
master(0,$LIN_DEP);
1in(0,$TX,$LOW_PRI);
slave(0,$ACTUATE);

*Increase Temperature Button Press
slave(0,$BUTTON_PRESS);
master(0,$LIN_DEP);
1in(0,$RX,$LOW _PRI);
slave(0,$PROCESS);
master(0,$PROCESS);
1in(0,$TX,$LOW _PRI);
slave(0,$ACTUATE);

#config
add_defines()
slave_config(0,5)
// still only one slave configuration
master_config(0,5)
// original master configuration
master_config(1,5);
/I second master for climate control
lin_config(0,5,19200, 4,4, 2,16, 3,16);
// original master-slave channel
/I 1D, global_tick,baud,
// num_of_slaves,poll_size,
//IRX_msgs,RX _size
// TX_msgs,TX_ size
lin_config(1,5,19200, 1,4,1,16, 1,16);
// channel between the two masters
lin_config(2,5,19200, 1,4, 1,16,1,16);
// channel from new master to slaves

*Door Lock Press
slave(0,$BUTTON_PRESS);
master(0,$LIN_DEP);
1in(0,$RX,$LOW _PRI);
slave(0,$PROCESS);
master(0,SLIN_DEP);
1in(0,$TX,$LOW_PRI);
slave(0,$ACTUATE);

*Increase Temperature Button Press
slave(0,$BUTTON_PRESS);
master(0,SLIN_DEP);
1in(0,$RX,$LOW _PRI);
slave(0,$PROCESS);
master(0,$PROCESS);
lin(1,$RX,$SLOW_PRI);
master(1,$PROCESS);
1in(2,$TX,$LOW _PRI);
slave(0,$PROCESS);
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Table II. Response before (left) and after (right) scenario B modifications.

Running trace file scenarioB_1.tra Running trace file scenarioB_2.tra
SLAVE_0 configured: SLAVE_0 configured:
cycle_time: 5 cycle_time: 5
MASTER_O configured: MASTER_0 configured:
cycle_time: 5 cycle_time: 5
LIN_O configured: MASTER_1 configured:
Global Tick Time: 5ms cycle_time: 5
Baud Rate: 19200 LIN_O configured:
Number of Nodes: 5 .
Poll Msg Size: 4 bytes LIN_1 configured:
RX messages: 3 .
RX size: 16 bytes LIN_2 configured:

TX messages: 4
TX size: 16 bytes

Trace “Door Lock Press” Trace “Door Lock Press”
min: 30 min: 30
avg: 87 avg: 64
max: 175 max: 130
Trace “Increase Temperature Button Press”  Trace “Increase Temperature Button Press”
min: 30 min: 45
avg: 87 avg: 66
max: 175 max: 135

original master. The additional master then has a second LIN channel for communication with its own
slave nodes. Notice that only the configuration settings and the immediately effected traces have to
change. All of the other elements in the system, such as the door lock button, remain the same. There is
still only one instance of a slave module, because all of the slaves in the system are identical with
respect to response times.

Table II shows the abbreviated response produced by running the two traces. Contrary to our initial
intuition, the end-to-end latency from the temperature button press on one slave to the temperature
controller unit on another slave decreased from 175 to 135 ms. In fact, all of the system latencies
decreased even though the modified stimulus to response path requires more hops. This demonstrates
how significant the LIN network usage affects the system’s overall performance. Specifically, the
number of slaves on the LIN bus that actively pass messages drastically changes the worst-case
latencies. This is due to the cyclic nature of the message scheduling. When a slave is removed, the
polling loop time drastically decreases, yielding proportionally lower end-to-end message latencies.

4.10. Cost and benefit

Developing systems in a cost-efficient way forces companies to constantly improve their products in
accelerating markets. One way to achieve this in mass markets is the trend towards product lines.
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For example, different models are based on the same production platform. This translates directly to
the software platform for vehicles with the creation of standards to integrate software in a platform as,
for example, envisioned by the AUTOSAR consortium [32]. The resulting artifacts describe, among
other things, plug standards for software components, such as for the automotive body domain of this
case study. However, plug standards do not guarantee component play. Key to play standards is the
ability to predict the behavior of assembled components. Solutions to this ability include models for
quality attributes translated into particular domains.

The introduced performance expert of this case study is a natural but prerequisite step towards
automotive body domain play standards as the LIN bus structure with a client—server approach will
penetrate the market. Play predictions for other automotive manufacturer configurations with similar
plug standards will become cost efficient. A particular solution can be predicted before the commitment
of large resources. Of course, additional model experts are required towards the full realization of this
ambitious goal. For example, safety model experts in x-by-wire constellations, where communication
is done without mechanical backups, such as automotive steer-by-wire and break-by-wire [33].

Creating a model expert for an existing system is probably expensive in case the constructed model
is used only once and/or the system is already delivered. The development of the time performance
expert of this case study included the following:

developer interviews, investigation existing documentation, scenario development;
tool selections, source code parsing (master);

initial performance model;

building a target verification environment for the initial model;

design and coding of the performance expert;

documentation.

The total effort was approximately 2 person months. With further customer configurations, the
investment in a model expert is extremely beneficial, not only as a tool for developers but also as a
useful support tool during product acquisition phases.

5. CONCLUSIONS

The model-centric SAR approach establishes the link between quality attribute driven analysis and
architecture reconstruction. The business goal driven approach of system understanding provides an
efficient way to steer the reconstruction process by providing the required models for a particular
system. The quality attribute related model experts are an efficient way to infuse the reconstruction and
analysis process to measure the response to What If scenarios.

Model construction requires effort. Depending on the required model accuracy the construction
effort can be too expensive. On the other hand, an inadequate model does not provide reasonable
answers to the business context. Depending on the context, the understanding and analysis is performed
with interview and presentation techniques, in a reconstruction effort based on source code analysis, or
a mixture of both techniques.

The automotive case study has shown the application of the approach for a performance model in
an embedded system. It shows that models are not restricted to software models. Often, they require
additional system aspects, such as deployment, processor performance, communication protocols, and
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available memory, in particular for embedded systems. The introduced formal approach allows a model
expert to predict worst-case timing of new deployment scenarios for distributed mechatronic systems
before the commitment of resources to build the particular configuration. This design exploration
enables organizations to quickly respond to new customer settings. As systems are increasingly
incorporating domain standards we expect rapid demand for model experts in the area of component
assembly predictions.

This case study showed evidence that a model-centric approach provides a substantial contribution
to leverage SAR in concrete organizational contexts on the basis of a detailed investigation of quality
attributes for particular classes of systems.
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