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Abstract

In this paper, we propose micro-climate sensing as an
effective means of enhancing conventional RF-based lo-
calization. Our system targets people tracking applications
in dynamic indoor environments, such as nursing homes,
hospitals and office spaces that require simple deployment
and where conventional RF tracking may suffer from time-
varying signal attenuation or dropped packets. RF-based
localization approaches suffer as the environment changes
over time. To help mitagate these effects we use time
synchronized windows of sensor samples to associate a
mobile node with its nearby beacon nodes. In assisted
living environments sensor networks likely already have
basic sensors to collect contextual information about users
and to monitor the environment. We propose using light,
humidity, temperature and audio data samples over a short
window of time to model the micro-climate of a beacon
node. Using micro-climate matching in conjunction with
RF signal strength decreases the worst-case localization
error significantly by a factor of more than 3 (from 25m to
8m) while making the system more resilient to environment
changes. Micro-climate data helps ensure at least room
level location tracking even in buildings like hospitals with
many rooms in close proximity.

I.. Introduction

Newly emerging low-power wireless technologies such
as IEEE 802.15.4 are making it increasingly more feasible
to deploy large-scale RF-based tracking systems. In set-
tings like hospitals, tracking of patients and inventory re-
quires not only meter-level accuracy, but more importantly
the ability to distinguish between rooms. Hospitals are a
particularly difficult environment due to dynamic features
such as movable walls, heavy metal machinery and people
constantly moving throughout the environment. In these
situations, conventional RF-based localization can suffer
greatly from dropped packets or unusual signal attenuation
due to new obstructions. A practical system must address
scalability in terms of covering large areas and of tracking
multiple mobile entities. In this paper, we present a tech-
nique for utilizing micro-climate sensing using wireless

sensor networks in conjunction with a conventional RF-
based scheme to enhance localization accuracy.

A micro-climate represents the physical attributes asso-
ciated with a local environment, and can be characterized
by features derived from sampling different sensors. For
instance, a particular region of a room might be cooler
than another or have a higher relative humidity than its
surroundings. These features are not limited to simple
intensity values. A time-synchronized window of audio
samples may contain components such as voice or regular
sounds generated by nearby machinery or HVAC ducts.
Previous work [1] has shown that light analyzed in the
frequency domain shows characterizable differences be-
tween florescent, incandescent, natural sun light and the
glow of an LCD panel or monitor. Many sensor networking
systems already provide the needed sensors making the
addition of micro-climate matching to an existing RF-
based system relatively simple.

In an assisted living environment ideally the system
should know a user’s location with a high degree of ac-
curacy. Figure 1 shows an example scenario where sensor
nodes are placed around a nursing home. The system uses
the sensors to ascertain contextual information about the
users so that it can monitor daily patterns and generate
reports for care takers or family members. Given that the

Fig. 1. This diagram shows the floor plan of a nursing

home outfitted with sensor nodes. The boxes associated

with each node show sample sensor data. In this sce-

nario, the micro-climate data helps associate the mobile

node with the correct room instead of only basing the

position on potentially misleading RSSI values.



sensors are already present in the system, we propose
utilizing this data to help improve location tracking. In
Figure 1 we see an example where RF signal strength data
would likely incorrectly locate a mobile node in room 318.
In cases like this sensor data can correct such errors.

We also characterize how the performance of IEEE
802.15.4 body-worn nodes compares with the results of
previous work using IEEE 802.11. We show that the higher
node density that one expects from shorter range 802.15.4
nodes compared to typical 802.11 networks improves loca-
tion accuracy to better than 1 meter. Unfortunately, using
RF-only techniques we found that by the 95th percentile,
the error becomes greater than 15 meters. In other words,
5% of the locations detected have errors of 15 meters or
greater. Introducing the micro-climate information rectifies
many of these outlying points bounding even the maximum
error to within 8 meters (previously 25 meters ).

For the sake of convenience, we show the performance
of two RF-only based localization techniques using a
testbed setup in an active office environment. While not
as ideal as testing in a nursing home or hospital, we
believe our office environment is likely more homogenous
with respect to sensor data and hence less advantagous for
our approach. Using data from the testbed we explore the
failure cases of these different schemes. We investigate the
performance of different sensors and sensor features for
micro-climate localization. Finally, we show how micro-
climate matching can be used to improve existing local-
ization techniques and help guarantee room-level location
accuracy.

A.. Related Work
Various RF-based localization systems have been stud-

ied in the past and range from indoor centimeter accurate
tracking to outdoor GPS-style systems. Multiple systems
have tried to augment RF systems with an alternative
transmission medium like ultrasonic or IR. The Active
Badge system [3] uses IR which suffers from limited range,
reliability problems in intense ambient light as well as
scaling issues with many nodes in a single IR collision
domain. The MIT cricket [4] localization system uses
the time-of-flight difference between RF and ultrasonic
signals. The system is capable of extremely accurate range
measurements, but requires line-of-sight communication,
careful node positioning and high node density. It suffers
worse scaling problems than IR since the ultrasound pulses
propagate more slowly and travels father than IR.

Outdoor systems such as GPS and the wireless En-
hanced 911 system use multiple RF-based approaches
to localize positions. GPS uses the time difference of
arrival (TDOA) of radio signals, while Enhanced 911 uses
TDOA or multiple antennas to calculate the angle of arrival
(AOA). Due to multi-path effects and high indoor path-loss
exponents, these systems are only sutable outdoors.

Extensive work has been done on modeling RF prop-
agation and deploying systems based on received signal
strengths[5], [6], [7], [8]. These systems require mapping
signal strengths to distances based on known radio char-
acteristics. This type of approach is highly dependent on
signal propagation in the environment as well as individual

antenna and receiver-specific properties.
The RADAR [2] system was one of the first to use

pre-recorded RF signatures to build a database of signal
strength values at particular locations. A mobile node
receives signal strengths from the stationary beacons which
can then be compared with reference points to find the best
match. The MoteTrack [9] system uses a similar approach
with an emphasis on distributed operation in a sensor
network. We use the site survey database approach to
establish a baseline in which to compare our reference-free
and micro-climate-based approaches. We also find that the
database approach performance degrades over time with
only subtle changes in the environment.

The research reported in [10] describes a range-free
localization technique where each mobile node derives its
position by calculating the center of the location of all
beacons it hears. If beacons are placed well, localization
errors can be decreased [11], but this is not possible in
all environments. In contrast, we improve the centroid
algorithm by adding micro-climate sensor information.

Utilizing information from the environment is perhaps
the most basic and frequently overlooked source of local-
ization information. Cameras and video have been used
[12], [13] to localize objects in the environment. The
eWatch [1] is a mobile computing platform that uses a
sensor feature database for coarse-grained location iden-
tification. The work focused on identifying if a mobile
user was in their apartment, office, riding in a bus, etc.
Many of these environmental features such as background
noises will slowly change over time, hence it becomes
difficult to uniquely classify a large number of locations. In
our system, we use instantaneous time-synchronized sensor
features to correlate with nearby locations. Hence, we do
not require a database and the approach does not suffer
from slow changes in the environment over time.

B.. Organization of The Paper

The rest of this paper is organized as follows. Section
II provides a quick overview of the FireFly sensor network
we use in our experiments. Section III describes the RF-
only localization techniques we evaluate in our testbed.
Section IV introduces our approach to sensing and fusing
micro-climate information. In Section V, we present our
detailed evaluation of the RF-only localization and micro-
climate sensing approaches. Finally, in Section VI, we
draw some conclusions and identify future work.

II.. Wireless Sensor Network Used

We now briefly describe the wireless sensor network
that we use for collecting both RF and micro-climate data
while performing real-time localization.

Our wireless sensor network uses FireFly sensor nodes
developed at Carnegie Mellon University. Each FireFly
node consists of an 8MHz ATMEGA1281 8-bit micro-
controller with 128KB of Flash and 8KB of RAM. The
processor is coupled with Chipcon’s cc2420 IEEE 802.15.4
radio. The node includes a light sensor, microphone, 14-
bit accurate temperature / humidity sensor, and a passive
infrared motion detector. Each FireFly node uses the



Nano-RK sensor operating system [14], and runs the RT-
link communication protocol [15]. Nano-RK is a real-
time multi-tasking priority-driven reservation-based power-
aware OS specifically designed for sensor nodes. RT-Link
is a globally time synchronized link layer protocol that
communicates using scheduled TDMA slots. Mobile nodes
communicate in a slotted aloha contention period or can be
temporarily leased scheduled slots. Nano-RK with RT-link
supports a nrk_wait_until_tdma_slot() syscall
which suspends a task until a particular TDMA time slot.
Since the link layer is globally time-synchronized, it offers
a simple and powerful means for running distributed tasks
and taking (near-)simultaneous snapshots across multiple
nodes.

In our deployment, sensor samples are scheduled for the
beginning of each TDMA cycle. The size of the TDMA
cycle can be adjusted based on the expected maximum
number of users and desired localization update rate. Both
of these parameters directly affect overall system energy
consumption. Since all nodes in the system record their
sensor samples simultaneously, increasing the number of
mobile nodes does not increase the number of required
beacon sensor samples. It also allows for mobile nodes
to compare micro-climates with each other which can be
useful for applications such as collecting social networking
data.

The architecture can be set up such that the processing
takes place on the beacon nodes or the mobile node. We
choose to allocate most of the processing on the infrastruc-
ture nodes since this approach tends to be more memory
efficient. Each mobile node in the system broadcasts a
request to be localized at most once per TDMA cycle. This
request contains the mobile node’s sensor information and
is repeated across multiple packets to allow for a stable
RSSI reading. Beacon nodes are nodes permanently placed
in the environement at known locations. The beacon nodes
perform the sensor correlation and sends the result back
to the mobile node during the beacon node’s scheduled
transmit slots. The beacon nodes include their locations in
the reply packet so that the mobile node has all information
needed to perform the weighted-centroid algorithm. The
mobile node can then relay its location information back
to a gateway. Other variants are also possible.

III.. RF-based Localization
In this section, we describe the localization techniques

that we use and that only rely on RF information. Our
other techniques to be discussed later will also use RF
information but will augment it with micro-climate sensing
information.

A.. Signature Database
As described in Section I-A, database signal strength

signature methods have been shown to achieve meter-level
accuracy under good conditions [2], [9]. This approach
requires that the environment be populated with fixed
beacon nodes at known locations. A database of RF
signatures is created by moving a transmitter to specific
locations within the environment called reference points.
The reference point transmitter broadcasts a stream of

packets that are recorded by any beacons able to receive
the data. The reference point signature is composed of the
average received signal strength indication (RSSI) values
received by beacons. Experiences with the RADAR system
showed that the directionality of the transmitter’s antenna
can introduce error. As they suggest, we record RSSI
values while the antenna is pointing in four different
directions. Once the signature database of reference points
has been constructed, a mobile node is localized using a
nearest-neighbor matching algorithm. The list of beacons
and associated RSSI values for a particular mobile node
is stored as a vector which is matched against existing
RSSI vectors in the database. Similar to the approach taken
in [9], we employ a Manhattan distance metric by taking
the sum of the mean differences of RSSI values across
the vector. The reference point with the lowest score is
selected as the nearest match. If more than reference point
accuracy is desired, the centroid of the set of best reference
points can be found weighing each coordinate based on the
closeness of the matches. This refinement is similar to our
weighted-centroid technique described next.

B.. The Weighted-Centroid Scheme
We now describe a weighted-centroid approach that

does not require an RF propagation model or site survey.
Similar to the database approach, this method requires the
placement of beacons in the environment at known coor-
dinates. RSSI values received from each node are sorted
and then the highest m RSSI values are used to find the
centroid of the convex polygon that falls within the selected
beacon node locations. We use the following notation. The
location of a mobile node is denoted by Mobile(x,y), and
comprises of its (x, y) coordinates represented by Mobilex

and Mobiley respectively. Beacon[i] is the ith element
of the list of beacons that are in range of the mobile
node. Beacon[i]rssi is the RSSI value between the mobile
node and beacon i. w[i] is a weight factor that can be
associated with each RSSI value. We may also choose to
apply different weight factors w[i]x and w[i]y for the x
and y coordinate dimensions respectively. When we adopt
the RF-only localization technique, w[i] has a value of 1,
but is assigned other values in later sections.

Mobile(x,y) = (Mobilex, Mobiley) (1)

RSSItotal =
m∑

i=0

(Beacon[i]rssi ∗ w[i]) (2)

Mobilex =
m∑

i=0

(
Beacon[i]rssi ∗ w[i]

RSSItotal
∗ w[i]x

)
(3)

Mobiley =

m∑
i=0

(
Beacon[i]rssi ∗ w[i]

RSSItotal
∗ w[i]y

)
(4)

Since the centroid will always be bounded within the
beacon nodes, mobile nodes cannot be accurately tracked
once they travel outside the perimeter of the beacons. This
seems to be a reasonable trade-off given the computational
efficiency as compared to other trilateration techniques.
The weighted-centroid approach does not require RSSI



values to be converted into a distance. In an environment
where the path-loss component can drastically vary, this
method helps mitigate errors by weighting distance relative
to all nearby RSSI values. In Sections III we explore
adjusting the number of beacons used to find the centroid.

IV.. Micro-Climate Sensing
A micro-climate represents the physical attributes of a

local environment that can be characterized by features
obtained by using various sensors. In this section, we
describe in more detail the features that we explored in
order to associate mobile and beacon nodes. Our choices
were influenced by the minimal memory and processing
capabilities on sensor nodes as well as the maximum
network packet size that can be used to transport data using
IEEE 802.15.4 low-power radios. For rapidly fluctuating
sensor values such as light and sound, we analyze their fre-
quency components. For slow-changing sensor values like
temperature and humidity, we simply use the amplitude of
the value. We evaluated the following five features: light
intensity, light frequency, audio frequency, temperature,
and humidity.

We have previously shown that light and audio contain
characteristic frequency components that can be used to
identify a particular location [1]. In a time-synchronized
sensor network, this matching process is greatly simplified
since signals can be compared against each other directly
in real-time rather than to a large database. A major draw-
back to sensor database approaches is that as the number
of locations increases, the difference between signatures at
locations is less prominent. In our system, since a mobile
node only tries to correlate with beacon nodes that are
within RF range, there are very few locations to compare
against, greatly decreasing the chance of ambiguity.

A.. Frequency Component Features
When analyzing frequency components, each node must

simultaneously sample the sensors at a consistent fre-
quency. Once the data has been loaded into a buffer, we
perform an FFT, shown in Equation (5), translating the
signal into the frequency domain. Next, we look at the
normalized spectral energy density of each signal as shown
in Equation (7). Since the signal is time-synchronized and
normalized, the correlation comparison can be done using
subtraction. The correlation error is then simply the sum
of the errors shown in Equation (8).

Xk =

N−1∑
n=0

xne−
2πi
N

nk (5)

k = 0, ..., N − 1 (6)

P = norm

(
Xconj(X)

N

)
(7)

Error =

N/2∑
n=0

(
Pn − P ′

n

)
(8)

The most computationally involved step in this process
is the FFT which requires O(n log n) operations. Perform-
ing a 128-point FFT on our 8MHz micro-controller takes

approximately 15ms. A full 1024-point FFT takes about
170ms.

B.. Micro-Climate Sensor Data Fusion
In this section, we discuss approaches used to fuse

together micro-climate sensor data in order to pick the
overall best match between a mobile node and its closest
beacon(s). Frequency features return a ranking of nodes
based on their correlation error, while steady-state features
simply return the beacons ranked by the nearest value
to the mobile node. Each feature contains a ranking of
beacons which most closely correlate to the mobile node.
The next logical step is to merge this information together
so as to identify the overall closest or closest set of
beacons. Additionally, a confidence metric should be given
with each beacon that can be used to set the weight
factor w[i] from Equation (2). Possible approaches in-
clude various voting schemes, weighting schemes or even
environment-specific training approaches. For simplicity,
we evaluate a weighting scheme where each feature has a
statically defined weight. For instance, if audio and light
frequencies match well between a mobile node and its
closest beacon(s), but humidity or temperature are farther
apart, we still want that association to be considered strong.
We empirically evaluated different weighting factors and
use the best combination based on results from our initial
tests. Subsequent testing in other environments indicates
that our initial weight factors work reasonably well under
other conditions.

The centroid-weighting scheme lends itself well to
additional sources of information because of the ease at
which extra weight values can be added. Survey-based
approaches can also use micro-climate information by
applying a centroid-weighting scheme among the closest n
reference points. We compute the confidence of our sensor-
based correlations by looking at the difference between
the best and average correlation score of the data set.
If all of the beacons appear to be similarly correlated,
then the sensors do not heavily influence the RSSI-based
localization. If one particular point is highly correlated,
but has a weak RSSI value, then this value is effectively
increased pulling the mobile node toward that beacon.
We use this confidence value for the best sensor-based
correlated feature to set the w[i] parameter from Equation
(2).

V.. Experimental Results
In this section, we describe our experimental setup as

well as data collection and processing methodology. We
then evaluate the performance of the various schemes
described in Sections III and IV. Our motivations for
these tests are to (a) understand how IEEE 802.15.4
systems compared with previous 802.11 base systems, (b)
investigate the performance difference between database
and non-database approaches, (c) better understand the
failure cases of these current approaches, and (d) evaluate
the performance of using micro-climate sensing.

A.. Experimental Methodology
As mentioned in Section II, we use FireFly sensor nodes

and the Nano-RK operating system [14] running the RT-



Fig. 2. Our experiments were conducted on the second floor the CIC building at Carnegie Mellon University. The 9 large circles

with numbers inside them represent beacons, while the 35 smaller circles represent reference point locations.

Link [15] communication protocol. The FireFly sensor
networking platform provides a collision-free time-division
multiplexed access (TDMA) protocol in conjuction with a
real-time operating system capable of time synchronizing
tasks. We placed 9 beacon nodes as shown in Figure 2
(larger grey circles with numbers inside them) across a
40 x 15 meter area filled with cubicles in the CIC office
building at Carnegie Mellon. Nodes were placed 2 meters
above the ground such that each node had line-of-sight
communications between each other. A desktop computer
connected to a gateway node logged data from all beacon
nodes in the environment. The beacons could relay sensor
information as well as RSSI values across multiple hops
from mobile nodes to the gateway. Our mobile node was
mounted 1 meter above the ground on a tripod that could
be rotated pointing the node in specific directions at each
reference location.

B.. Data Collection and Processing

We first performed a detailed site survey as described in
Section III-A. A mobile transmiter sent 300 packets over a
30-second interval from each of the 35 reference location
in the room shown in Figure 2. Each beacon that was
able to receive a packet forwards it to the central gateway.
We repeated the experiment at each reference point in 4
different directions recording 42,000 packets per survey.
This survey was conducted late at night when nobody was
using the office space. One month later, we repeated the
survey during working hours so that the presence of people
would induce realistic errors. Since the human body acts as
a significant attenuator when present between the node and
a beacon, we also conducted a second detailed survey with
a person carrying the node to emulate the mobile sensor
device being worn as a badge. We also recorded reference
points for half of the room at three different transmit power
levels.

After collecting data, we tested our various schemes
using a test-set cross-validation approach. We randomly
put aside 10% of our data from each reference point data
set to be used as labeled input data later. This allows for
simple evaluation of many data points that were realisti-
cally sampled from the environment. Since our underlying
sensor network uses TDMA and is hence deterministic,

any missing packets are logged as dropped ones, allowing
for accurate reproduction of channel loss.

C.. Results of RF-Only Localization
We first tested the site survey nearest-neighbor approach

along four directions to give us a baseline set of error
measurements. As expected, the site survey database ap-
proach performed well in general, giving a best-case 50th

percentile error of better than half a meter. Without the
directional information, however, this tracking resolution
is increased to 1.5 meters. It must be noted that this test
should perform extremely well since all data points in
the test-set lie exactly on reference points. Thus if the
nearest-neighbor match is successful, then the error will
be 0. We then cross-validate with different reference point
configurations, by removing certain reference points from
the training data while keeping them in the test-set.

We saw that as the density of reference points decreases,
the error nearly linearly increased. At a density of 1
reference point for every 17, 28, 42 and 50 sq meters,
we saw a 50th percentile error of 3.1, 3.75, 4.25, 4.6, and
5 meters respectively. We also saw that in all reference
point configurations, there is increased error when few
packets are sent. This is due to the combination of packets
being dropped and spurious RSSI readings. We see that
the location error stabalizes when the RSSI of 50 or more
packets are averaged.

As the density of beacon nodes decreases, the error also
increases. With beacon node densities of 1 beacon every
66, 100 and 150 sq meters, we saw a 50th percentile error
of 1.5, 4.2 and 6.3 meters respectively. This confirms the
intuitions that increasing node density will reduce error
since there is (a) more RSSI information and (b) less
distance between the mobile node and the beacons.

Using multiple power levels in our environment was
problematic since at levels below full transmit strength,
many locations were not able to receive packets from
the mobile node. In cases when the signal was weak,
the increased packet loss increased tracking error. Also,
given our current radio hardware, there is little difference
between transmitting at low power and high power with
respect to energy consumption.

Figure 3 shows the error distribution of test-points using



Fig. 3. Cumulative distribution of error using the

weighted centroid approach with various beacon selec-

tion schemes. The three highest RSSI line shows the

error when only the highest three RSSI valued beacons

are used for the weighted centroid. The closest three

line shows what would happen if an oracle informed

the system of the closest three beacons to the mobile

node. This shows that extra information about beacon

selection can improve worst case error by more than a

factor of 2. Total error shown in parentheses (x104)

variants of the weighted-centroid approach. The "centroid
all" (right-most) line corresponds to the performance when
all receiving beacons are used in the centroid algorithm
to localize the mobile node. The "centroid highest three"
(middle) line shows the performance of the centroid algo-
rithm if the highest three RSSI-valued beacons are used for
the localization. We see a 30% increase in performance at
the 80th percentile, but both ends of the distribution tend
to follow the "centroid all" line. The left-most line shows
what the performance would be if an oracle told the mobile
node the physically closest three beacons that should be
used for localization. We see that if the mobile node knows
the correct beacons to use for the centroid calculation, then
the results are nearly twice as good as the worst case. In
Section V-E we show that this information in part can be
supplied using micro-climate sensor data correlation.

D.. Micro-climate Results

Figure 4 shows a map of temperature, humidity and
light samples taken across our test-bed. Though they are
not time-synchronized (since this would require an enor-
mous density of nodes), these images do show that there
is significant variation across a seemingly homogeneous
environment. Many of the lighter regions found in the
images correspond to artifacts in the environment such as
air-conditioning vents or large glass windows.

Next, we evaluated the performance of our frequency
features. Figure 5 shows an example of an audio signal
being compared between a mobile node and three different
beacon locations using the method described in Section IV-
A. The top row of graphs shows the normalized spectral
power density of the mobile node’s audio sample. The
middle row shows the normalized spectral density of audio
samples at three different locations sampled in time within
10µs of one another. The bottom row of the graph shows
the difference between the upper two signals. The sum
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Fig. 6. Performance of various features in determining

the closest beacon to the mobile node. The performance

of the fused sensor data is shown in the last bar.

of all of the bars in the bottom corresponds to the total
correlation error. In this example, the mobile node was
nearest to location (b) which is supported by its low
correlation error. Though simplisitic, this approach is both
effective and computationally inexpensive.

We then performed a test where we moved a mobile
node throughout the environment and recorded synchro-
nized features for each known location. We then compared
how well the correlation matched the closest beacon to
the mobile node’s location. Figure 6 shows the overall
performance of the different features. We see that the
audio performs best and hence should be weighted more
aggressively in biasing RSSI values. We also note that
when frequency components have a strong correlation, they
are nearly always correct. The "combined" category is the
performance of using all of the features combined with



(a) Temperature (b) Humidity (c) Light Intensity

Fig. 4. These plots show temperature, humidity and light normalized across our testbed. We see that in seemingly

homogenous environments, there still exists significant variation. Many of the intense spots in the image are positioned

around air vents found on the floor of the building. Lighter colors represent higher temperature, humidity and light levels.

equal weighting. If all of the sensors were completely
independent of each other, this would perform at 99.98%
accuracy. We observed an actual performance of 98%
accuracy which we attribute to slight mutual dependencies
among sensor values measuring micro-climates.

E.. Localization with Micro-climate Sensing

We now discuss the performance of our centroid-
weighting scheme in conjunction with the micro-climate
data. Figure 7 shows the overall comparison of the per-
formance of the signature database localization, the cen-
troid localization and the centroid augmented with micro-
climate data approaches. The signature-based approach
performs extremely well up to the 30th percentile. The
standard centroid approach has the worst overall perfor-
mance. The centroid with micro-climate data is nearly
twice as good as the standard centroid approach and out-
performs the signature database approach significantly. In
specific, the worst-case error using micro-climate sensing
is bounded by 8 meters, while the errors from the reference
signature and standard centroid approaches go as high as
20 meters. This ability to reduce the worst-case error can
be used to very accurately provide room-level resolution.

F.. Localization Performance Over Time

One of the primary problems with any radio communi-
cations environment is the changing nature of the wireless
channel. In particular, the performance of the site survey
approach is very susceptible to such changes. Figure 8
shows the effect of environmental change over time on
the localization schemes we studied. The signature data
taken from our original site survey were cross-correlated
with data from the second site survey taken 1 month
later. The second site survey was done during working
hours, but when correlated with itself was still able to
perform well. However, when we emulate changes and
have the correlation done with the second site survey
based on training data from the first survey, there can
be an 100% increase in error. This is not surprising
since the signature databases captures idiosyncrasies in
the environment, and the environment likely suffered at
least some minor changes. By comparison, our weighted-
centroid approach using micro-climate sensing performed
within 2% of the original total cumulative error between
the first and second surveys. In other words, the micro-
climate sensing approach is significantly more impervious
to changes, since it utilizes correlations carried out at actual
localization times.

Fig. 7. Error vs Probability of 3 different localization

schemes. Total cumulative error shown in parentheses

(x104).

Fig. 8. Cumulative distribution error of the original signa-

ture database and then the original signature database

against test points collected 1 month later. Total cumu-

lative error shown in parentheses (x104). The centroid

weighting scheme with sensor data shows almost no

change in performance over time.

VI.. Concluding Remarks
In this paper, we introduced sensor-based micro-

climates to assist conventional RF-based location tracking.
Our system is intended for people-tracking applications in
dynamic environments where conventional RF localization
suffers. We see that conventional signature site survey-
based approaches deteriorate over time if the environ-
ment changes. We also show that a survey-free weighted-
centroid approach performs better given additional infor-
mation about which beacons are closest to the mobile node.
The centroid scheme is easy to deploy, but suffers a worst-
case error in our tests of more than 20 meters. We introduce



the notion of micro-climate sensing in conjunction with
the weighted-centroid scheme. We found that the worst-
case error reduced to less than 8 meters. In our office
environment tests, with subtle changes over time, the
centroid with micro-climate data approach outperforms the
signature database approach significantly in the worst case.
Given that many buildings and structures may already
have sensors for environmental monitoring, our approach is
very attractive to increase localization accuracy. Our future
plans include the study of adaptive weighting techniques
under a variety of configurations.
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