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ABSTRACT
Beacon-based time-of-flight indoor localization systems have shown

great promise for applications ranging from indoor navigation to as-

set tracking. In large-scale deployments, a major practical challenge

is determining the placement of a minimal number of beacons that

ensures full coverage – each point in the domain has line-of-sight

paths to enough beacons to uniquely localize itself. Three beacons

with line-of-sight paths are always enough, but two beacons within

line of sight may also work, given a favorable geometry. In this

paper, we propose two beacon placement algorithms that leverage

the floor plan geometry with provable theoretical guarantees. First,

we present a greedy algorithm using properties of sub-modular

functions to place O(OPT · lnm) beacons, wherem is the number

of discrete location points in the region that need to be localized,

and OPT is the size of the optimal solution. Second, we present a

random sampling algorithm that placesO(OPT · log(OPT)) beacons
while localizing all targets. We evaluate our algorithms on both

real-world and randomly generated floor plans. Our algorithms

place on an average 6 ∼ 23% and 12% fewer beacons in real-world

topologies and randomly generated floor plans respectively, as com-

pared to prior work. We also present a study where we ask users

to attempt to place nodes manually and discover that even humans

that are well versed on the coverage problem find it hard to balance

the trade-off between the number of beacons and area localized.

CCS CONCEPTS
• Information systems → Sensor networks; • Networks →

Mobile networks.
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Figure 1: Localizationwith ToF in a floor plan: (a) An infinite
number of solutions with a single beacon; (b) Two solutions
with two beacons; (c) A unique solution with three beacons;
(d-f) A unique solution with two beacons: (d) p2 is outside
the floor plan and thus is not feasible; (e) p2 is not visible to
b2 and thus is not feasible; (f) p2 is visible to a third beacon
b3 and thus is not the correct solution.

1 INTRODUCTION
Several technologies have emerged for indoor localization in the

past decade that are able to provide sub-meter ranging using Time-

Of-Flight (TOF) or Time-Difference-Of-Arrival (TDOA) ranging.

The underlying ranging signals could be based on acoustic, ultra-

sonic or RF technologies, such as Ultra-Wideband, Bluetooth Low

Energy 5 and WiFi 802.11mc. ToF beacon-based systems provide a

distance measurement, which is used to estimate a device’s location

via trilateration. While ToF-based localization is well understood,

the problem of where to place the beacons is not. Current methods

used to deploy beacons either require domain experts who leverage

intuition and heuristics, or let the system installers over-provision

indoor spaces with more beacons than required, in order to ensure

full localization coverage. As a consequence deployments can waste
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resources. Minimizing the number of beacons is particularly impor-

tant as these systems transition from small deployments, mainly

used for demonstration purposes, to commercial ones across large

real-world spaces such as airports, museums, malls, and industrial

buildings. In these environments an efficient and systematic beacon

placement methodology will have a significant impact in terms of

cost savings, thus facilitating adoption. Thus in this paper we aim to

examine the beacon placement problem systematically, with a focus

on both practicality in real world setting and provable guarantees
about coverage and beacon count with respect to optimal.

In our formulation of the localization problem, the beacons emit

signals that could be picked up by a mobile device within line-of-

sight of the beacons. The device at a location p within line of sight

of a beacon b can derive a (fairly accurate) distance estimate from p
to b. If a location p has line of sight paths to three or more beacons,

by trilateration one can uniquely localize p. If a point is visible to
only two beacons b1,b2, the two range measurements provide two

candidate locations p1 and p2, which are mirrors of each other with

respect to the line joining the two beacons. With the information

from the floor plan we can potentially discover the true location

among p1 and p2 if the set of beacons visible to one of them differs

from {b1,b2}. Figure 1(d)- 1(f) illustrates this subtlety. This property
that takes into account the geometry of the floor plan makes the

beacon placement problem especially interesting.

We present two algorithms with provable guarantees for the

problem of beacon selection for unique localization. We also evalu-

ate their performance on multiple floor plans, compared with prior

work and user studies. First, we formally define the conditions for a

location to be uniquely localizable without ambiguity and propose

efficient algorithms to test whether a given set of beacons provide

unique localization for all points in the domain. For this, we employ

detailed analysis of the geometric constraints and visibility. On this

foundation, we design the beacon placement algorithms.

The first algorithmwe propose is a greedy algorithm in which we

select the next beacon by optimizing a certain objective function.

A greedy algorithm is also favored in practice for its incremen-

tal nature. The intuitive approach is to maximize the area that is

uniquely localizable (as done in prior work [24]). However, there are

a number of problems with this objective function, for example, it is

possible that no extra beacon can increase the area that is uniquely

localized. There are scenarios where this algorithm can lead to a

solution far from the optimal. We overcome this challenge by de-

signing a new objective function that has the submodular property

(intuitively, a function with monotonicity and diminishing return)

and by optimizing this submodular function, we get provable per-

formance guarantee that the number of beacons selected has an

approximation ratio O(lnm) of the optimal, wherem is number of

target points to be localized. The key is to consider not only the

area to be uniquely localizable but also areas that are covered by at

least one beacon and at least two beacons.

We propose a second algorithm that uses random sampling for

beacon selection. It uses the concept of ε-net and geometric set cover.

For the set cover problem, if the sets have constant VC-dimension

(which is a measure of the complexity of the sets), then one can

approximate the optimal solution up to O(logOPT), where OPT is

the size of the optimal solution [9]. Again, we cannot directly apply

this technique to our problem of unique localization, as checking

whether a location is uniquely localizable by two beacons depends

on the set of beacons covered by the mirror image of this location.

We need to carefully work around the issue and argue that even

for our localization problem, the random sampling based algorithm

works. In the algorithm, we introduce weights to the beacons. Ini-

tially all beacons have the same weights. Now define the weight of

a point p as the sum of the weights of the beacons that are visible

to p. We develop a new proof using the VC-dimension property to

show that a randomly chosen set of beacons can uniquely localize

all points of high weight. Now considering the points that are not

yet covered (which have low weight), we double the weight of the

beacons they see. Therefore, in the next round of random sampling

these beacons have a higher chance of being selected. It has been

shown in [9] that after a number of iterations, this algorithm stops

with all the points uniquely localized, as long as the number of

beacons selected is at least O(OPT logOPT).
We implement both algorithms in a MATLAB-based toolchain

for real-world and random floor plans and compare with prior

work. We also show how our placement compares to placements

performed by users with varying familiarity with indoor localiza-

tion and beacon placement geometrical problems. In both cases

our algorithms perform favorably in terms of both coverage and

localization quality

In summary, the main contributions of this paper are:

(1) A mathematical formulation of the minimal beacon place-

ment problem for indoor localization with line-of-sight bea-

cons;

(2) An algorithm for checking if a point or a region (sub-domain)

is uniquely localizable given a placement;

(3) Two approximation algorithms for beacon placement: a greedy

algorithm of approximation factor of O(lnm) and a random

sampling algorithmwith approximation factor ofO(logOPT)
guarantee where OPT is the optimal number of beacons.

(4) Implementation and evaluation of the algorithms on a variety

of floor plans and comparison with user selected beacon

solutions.

2 RELATEDWORK
The Art Gallery problem and visibility. Mathematically, the

problem of beacon selection for unique localization is closely re-

lated to the classical Art Gallery problem in computational geome-

try [21], where a minimum number of guards/beacons are selected

to ensure all points of the domain (region within an indoor geo-

metrical floor plan) have line of sight paths to (equivalently, are

covered by) at least one guard/beacon. The Art Gallery problem is

NP-hard even for simple polygons [17]. For any simple polygon P
with n vertices, it has been proven that ⌊n/3⌋ guards are always suf-
ficient [6] and sometimes necessary. For a polygon P with h holes,

it was shown that P can be guarded with ⌈n+h
3
⌉ guards [3, 14].

Eidenbenz et al. proved the problem to be APX-hard [8], implying

that it is unlikely that any approximation ratio better than some

fixed constant. Ghosh [10] showed that a logarithmic approxima-

tion may be achieved by discretizing the input polygon into convex

subregions. Valtr [31] showed, the set system derived from an art

gallery problem has bounded VC dimension, allowing the algorithm
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based on ε-net to obtain an approximation ratio as the logarithm

of the optimal number of guards [5].

Also related to our work is the k-coverage set problem. Here,

the goal is to find the minimum set that covers all the points at

least k times. Obviously the k-coverage problem is NP-hard as well.

Several approximation algorithms have been proposed for this class

of problems. Cormen [7] applied a greedy approach for k-coverage
problem with a O(k logn)-approximation solution, where n is the

number of points. The ε-net technique was introduced for this

problem when the sets have constant VC-dimensions [5, 12] and

was shown to achieve approximation factor O(logOPT) [9, 13],
where OPT is the optimal solution.

Our problem is not the Art Gallery problem as each point needs

to see at least two or three beacons. It is not the k-coverage problem
either. The points in the domain have to be uniquely localized,

which can be achieved by two or three beacons, depending on

geometry.

Beacon placement for localization. The optimal beacon place-

ment for a single target location is well understood [2, 27]. Onur and

Volkan defined the uncertainty of points and proved that the beacon

placement problem, to make the uncertainty of target points below

the threshold, is NP-complete [30]. Hence, several heuristic-based

optimization algorithms have been proposed for general beacon

placement [16, 18, 26]. The state-of-art in beacon placement from

commercial beacon vendors [1, 4, 20] suggest guidelines to account

for the height of beacons and areas where better accuracy is desired

and full coverage. However, this is far from a systematic approach

for beacon placement.

A class of prior work has studied optimal beacon placement

based on optimizing the placement for certain localization accuracy

criteria [22, 29]. Though the accuracy is hard to quantify in the

general case, under the assumption that the ranging noise is additive

Gaussian noise, independent of the range, one can compute the

Cramér-Rao bound (CRB) [15] for a beacon-target geometry and

aim to optimize it across the region to be localized.

These prior works rely on at least three beacons for each location.

It was first proposed in [24] that two beacons for ToF-based indoor

localization system may also work, by considering the floor plan.

They present a greedy algorithm for beacon placement for optimiz-

ing coverage and accuracy which has no theoretical guarantee. We

compare our work with this algorithm in our experiments.

3 PROBLEM DEFINITION
In this section, we first provide the background on localizing with

line-of-sight (LOS) beacons, state our assumptions, formulate the

problem and introduce notation and definitions.

Localizing with LOS beacons:We illustrate the localization prob-

lem in Figure 1. Typical localization approaches use three beacons.

When the floor plan information is available, which constrains the

beacon’s coverage, we can sometimes localize with just two beacons.

This concept is key to our minimal beacon placement problem.

Assumptions:
2D deployment: We assume that the 2D representation of the floor

plan is available, we also perform the beacon placement in 2D. In

reality, we deploy the beacons in 3D by varying the heights at which

the beacons are deployed. The 2D beacon placement is effective

for 3D deployment if we deploy the beacons close to ceiling level

and the user holds the device at regular height (around 1m from

ground). Most temporary obstructions in the environment such as

chairs, tables, etc would not change the beacon coverage. However,

our 2D model assumption would not hold for 3D if the beacons are

deployed at floor level and blocked by objects or if the beacons are

deployed at ceiling and obstructions such as cubicle partitions are

much taller than the user and block the device held by the user from

the beacon. For practical purposes, the beacons can be deployed at

ceiling level in most public spaces such as airports, museums, malls,

and the floor plan 2D coverage and assumption will be applicable.

Ray-tracing coverage: While deploying beacons, we assume pure

line-of-sight (LOS) coverage. However, while the system is in use,

we receive non-line-of-sight (NLOS) signals and cope with it while

solving for location. We compute the LOS coverage based on the

beacon range and the ray-tracing coverage area. The ray tracing

coverage is as follows: If a point is visible from a beacon (in line-of-

sight), we receive an exactmeasurement from the beacon, otherwise,

we do not receive a measurement. When NLOS measurements are

received under this deployment (due to reflecting off walls or sig-

nals penetrating through walls), we adopt two approaches to cope

with NLOS while estimating location. First, we apply localization

techniques that localize in the presence of LOS and NLOS mea-

surements with [25] or without the floor plan [19, 33]. The second

approach is to detect NLOS signals based on the signal strength or

statistical properties of the signal [11, 23, 28]. In this way, as we

cannot predict the NLOS signals, we design the beacon placement

for LOS coverage and cope with NLOS signals while estimating

location.

Definitions: Mathematically, we formulate the optimal beacon

placement problem as follows. The floor plan is represented by

P . Any permanent walls and obstructions inside are modeled as

holes in the polygon. Thus, P refers to the region inside the exterior

polygon except the holes. Further, B is a set of candidate beacon
locations, B = {bi |1 ≤ i ≤ n,bi ∈ P}, that guarantees unique
localization. The problem is to find a minimum set of beacons

D ⊆ B of size k such that the entire polygon P or all the target

points of sizem can be uniquely localized by beacons located at D.

Definition 3.1. (Visibility): Two points p,q ∈ P are visible to

each other if and only if the line segment pq is strictly inside P , i.e.,
does not intersect any point on the boundary of P . We can also say

p sees q or vice versa.

Definition 3.2. (Visible Region): For a beacon bi , the set of

points seen by bi , is the visible region of bi , denoted as V (bi ).

Definition 3.3. (Visible Beacon Set): For a point p ∈ P , the
visible beacon set of p,V (p), is the set of candidate beacon locations

that can see p. To represent the subset of beacons in the set D that

are visible at p, we use VD (p) = {bi ∈ D |bi can see p}.

Definition 3.4. (Unique Localization of a Point p): Given a

point p and a set of visible beaconsVD (p), we say p can be uniquely
localized, i.e.,ULD (p) = 1, if there is only one location consistent

with the range measurements and the visibility information.

If all the points p ∈ P can be uniquely localized, then we say P
can be uniquely localized. We denote byULD (P) = 1.
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The rest of the paper is organized as follows. In section 4, we

describe in detail the algorithm to verify unique localization of a

point and a region. The two algorithms are presented in section 5

and section 6 respectively. Finally in section 7, we implement the

algorithms and present the placement results.

4 ALGORITHM TO VERIFY UNIQUE
LOCALIZATION

In this section, we describe algorithms for verifying whether a point

p ∈ P or the domain P is uniquely localized, given a set of beacons

D. We use these subroutines in the beacon placement algorithms.

4.1 Unique Localization of a Point
With beacons at D, a point p ∈ P can receive range measurements

from beacons inVD (p). We define |VD (p)| as the number of beacons

visible to p. If p can see at most one beacon, i.e. |VD (p)| ≤ 1, p
cannot be uniquely localized. If p can see three or more beacons,

|VD (p)| ≥ 3, thenp is uniquely localized. The case ofp seeing exactly
two beacons, say bi and bj , needs more discussion, as described

next. In this case, the range measurements from bi and bj generate
two circles that intersect (in general) at two points p1 and p2. We

call these two points mirrors of each other; symmetric about the

line joining bi ,bj . Figure 1(b) shows the ambiguity produced with

two beacons. Both locations p1 and p2 are consistent with the range

measurements and the visibility information. So we do not know

which one is the true location. In Figure 1(d), p2 is outside the

domain. In Figure 1(e), p2 cannot see b2. In Figure 1(f), p2 can see

b3. In these cases, we can conclude that p1 is the unique location.
Also, if the range information from two beacons leads to only one

intersection (when the two circles are tangential), there is a unique

solution.

Fact 1. If a location p is only visible to two beacons bi and bj
among D, the location of p is uniquely determined by the range infor-
mation from bi ,bj if and only if 1) the range information produces
exactly one intersection p1; or, 2) the range information produces a
pair of mirror points p1, p2 but VD (p1) , VD (p2).

The test for unique localization of points is summarized below. in

Equation 1. For each point p ∈ P , we can enumerate k beacons and

check whether p can see these beacons. If |VD (p)| = 2, we check its

mirror point, otherwise, we can get the unique localization status

of p through the cardinality of VD (p).

ULD (p1) =


1, |VD (p1)| ≥ 3

1, |VD (p1)| = 2,p1 = p2
1, |VD (p1)| = 2,VD (p1) , VD (p2)
0, |VD (p1)| = 2,VD (p1) = VD (p2),p1 , p2
0, |VD (p1)| ≤ 1

(1)

4.2 Unique Localization of a Region
To check if a domain P is uniquely localizable by beacons in D, we
compute the visible regions of the beacons in D.

Definition 4.1. (Canonical Region): Given a domain P and a

set of beacons D, P can be partitioned into disjoint regions such

that all the points in the same region see exactly the same set of

beacons. These regions are called the canonical regions, denoted

by Q1,Q2, . . . ,Qc .

Q = Q1 ∪Q2 ∪ · · · ∪Qc (2)

∀Qi ,Q j , i , j,Qi ∩Q j = ∅ (3)

Qi = {q ∈ Q |VD (q) = VD (p),p ∈ Q} (4)

To test the unique localization of a canonical regionQi , we check

the cardinality of VD (Qi ). When |VD (Qi )| = 2, we need to further

consider the ambiguity due to localization with two beacons. Hence,

we define the mirror region of Qi .

Definition 4.2. (Mirror Region): For a canonical regionQi with

VD (Qi ) = {bi ,bj }, the mirror region of Qi is the region that is

symmetric to Qi with respect to the line through bi ,bj .

Similarly, if the canonical region Qi has different visible beacon

set from its mirror region’s set, it can be uniquely localized.

Thus, a domain P is uniquely localized when all the canonical

regions are uniquely localized.

5 A GREEDY ALGORITHM

Figure 2: An example for which prior work [24] can be sub-
optimal. There are many tips above and below the rectangle
in the right and we call them as top tips and bottom tips.
b10 and b11 can see all the points in the top tips. b12 and b13
see all the points in the bottom tips and part of the top tips.
The greedy algorithm in [24] will select the red beacons by
the order of their index instead of these four blue beacons,
because once the rectangle is uniquely localized, the algo-
rithmwill next try to cover each tip that is seen once. When
the number of tips is infinite, the greedy algorithm would
place infinite beacons while the optimal solution is to place
the beacon b1, b2 and four blue beacons.

To find a small number of beacons that uniquely localize the

entire domain P or all the target points, an intuitive approach is

to use a greedy approach based on some optimization criteria. For

example, in [24], the beacon that maximizes the extra area that is

uniquely localized is chosen. This algorithm, unfortunately, may

place a lot more beacons than the minimum number needed, as in

Figure 2.

We design a new greedy algorithm by showing a variant that op-

timizes a different objective function is monotone and submodular.

A function on a subset of Ω is monotone and submodular if

• for every X ⊆ Y ⊆ Ω, f (X ) ≤ f (Y ).
• for every X ⊆ Y ⊆ Ω, and x ∈ Ω \ Y , we have

f (X ∪ {x}) − f (X ) ≥ f (Y ∪ {x}) − f (Y ).
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We refer to this algorithm as the Submodular Algorithm. The sub-

modular property is important because a greedy algorithm that

greedily optimizes a submodular function can be shown to have a

logarithmic approximation ratio [32]. The area of uniquely localiz-

able region does not have the submodular property. For example,

when you add the first beacon, the area of the unique localization re-

gion does not increase. When the second beacon is placed, this area

is likely to be increased, contrary to the property of the submodular

function.

5.1 Algorithm Design
For simplicity of explanation, we describe this algorithm in a dis-

crete problem setting, uniquely localizing all them target points.

Definition 5.1. (Visibility Level Region:) Given a domain P
and a beacon location set D,V1(D) (V2(D)) is the set of target points
that see at least one (two) beacon in D. U (D) is the set of target
points that are uniquely localized by D.

V1(D) = {p ∈ P |∃b ∈ D,p ∈ V (b)}
V2(D) = {p ∈ P |∃b1,b2 ∈ D,p ∈ V (b1) and p ∈ V (b2)}
U (D) = {p ∈ P |ULD (p) = 1}

From the definition above, it is clear that U (D) ⊆ V2(D) ⊆
V1(D) ⊆ P . We define a utility function F (D) below.

F (D) = 3|V1(D)| + 2|V2(D)| + |U (D)| (5)

When all the target points are uniquely localized by D, we have
V1(D) = V2(D) = |U (D)| = m. Thus, the beacon locations need to

be selected until F (D) = 6m. Our Submodular algorithm selects the

next beacon location that maximizes F (D) instead ofU (D).

5.2 Approximation Bounds
We prove that the utility function F (D) is submodular and our

algorithm can achieve an approximation factor of O(lnm).

Theorem 5.2. The utility function F (D) = 3|V1(D)| + 2|V2(D)| +
|U(D)| is monotone and submodular.

Proof. Any extra beacon added to D can only help to increase

|V1(D)|, |V2(D)| and |U (D)|. Thus For any set D ⊆ A ⊆ B, we have
F (D) ≤ F (A). So F (D) is monotonically increasing.

To prove F (D) is a submodular function, it suffices to show that

F (A ∪ {b}) − F (A) ≤ F (D ∪ {b}) − F (D), where D ⊆ A ⊆ B and

b ∈ B \A. We consider the components of the function F separately:

F (A ∪ {b}) − F (A) − (F (D ∪ {b}) − F (D)) = 3F1 + 2F2 + F3

where

F1 = (|V1(A ∪ {b})| − |V1(A)|) − (|V1(D ∪ {b}| − |V1(D)|)
F2 = (|V2(A ∪ {b})| − |V2(A)|) − (|V2(D ∪ {b})| − |V2(D)|)
F3 = (|U (A ∪ {b})| − |U (A)|) − (|U (D ∪ {b}| − |U (D)|)

In the following proof, we use set subtraction. When one set

contains the other completely, the result of subtraction is the same

as the subtraction of their value. Thus, we have the following equal-

ities.

F1 = |V1(b)| − |V1(b) ∩V1(A)| − |V1(b)| + |V1(b) ∩V1(D)|
= −|V1(b) ∩ (V1(A) \V1(D))|;

F2 = |V1(b) ∩ (V1(A) \V2(A))| − |V1(b) ∩ (V1(D) \V2(D))|
= |V1(b) ∩ (V1(A) \V1(D))| − |V1(b) ∩ (V2(A) \V2(D))|

F3 considers only target points that become uniquely localizable

with b added. F3 has two parts F3 = F4 + F5 where F4 counts the
change of the target points that are seen by three or more beacons

and newly become uniquely localizable with the addition of b; and
F5 counts the change of the target points that can be seen by exactly
two beacons and newly become uniquely localizable.

F4 can be represented, in the same manner as F1 and F2:

F4 = |V1(b) ∩ (V2(A) \U (A))| − |V1(b) ∩ (V2(D) \U (D))|
= |V1(b) ∩ (V2(A) \V2(D)| − |V1(b) ∩ (U (A) \U (D))|

The trickiest part is to analyze F5. We consider target points that

see two beacons and newly become uniquely localizable.

First, we consider the beacon setA\D, the set of beacons inA but

not in D. If a point p is seen by two beacons, one is b, and the other
is from A \ D, p can only possibly become uniquely localizable for

beacon set A, upon the addition of b. p cannot possibly be uniquely

localizable for D ∪ {b}.
Second, when a point p is seen by b and exactly one beacon from

D, and its mirror point p′ is already uniquely localizable with D, p
now becomes uniquely localizable.

Third, whenb is added, a pointp can become uniquely localizable

because its mirror pointp′ just becomes uniquely localizable (seeing

three beacons including b).
Thus, we add the three components together.

F5 ≤ |V1(b) ∩ (V1(A) \V1(D))| + |V1(b) ∩ (U (A) \U (D))|
+|V1(b) ∩ (V2(A) \V2(D))|

Now, we can bound these components and obtain the results:

F (A ∩ {b}) − f (A) − (F (D ∪ {b}) − F (D))
= 3F1 + 2F2 + F4 + F5
≤ −|V1(b) ∩ (V1(A) \V1(D))| − |V1(b) ∩ (V2(A) \V2(D))|
−|V1(b) ∩ (U (A) \U (D)| + |V1(b) ∩ (V1(A) \V1(D))|
+|V1(b) ∩ (V2(A) \V2(D))| + |V1(b) ∩ (U (A) \U (D))|

= 0

(6)

Therefore, F (D) is a submodular function. □

Owing to its submodular properties, the greedy algorithm has

an approximation factor following the standard argument [32].

Theorem 5.3. In discrete problem setting, the approximation ratio
of the submodular algorithm is O(lnm). In the continuous problem
setting, the target points are replaced by the domain P , the approxi-
mation ratio isO(min{ln |P |△ ,n}), where |P | is the area of the domain,
△ is the minimum increased area for the objective function F with a
new guard and n is the number of candidate beacons.

6 RANDOM SAMPLING ALGORITHM
In this section, we present a different approximation algorithm

using random sampling technique with slightly improved approxi-

mation factor. This algorithm is motivated by the ε-net based algo-

rithm for geometric set cover which gives an approximation factor
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(a) Stage: Initialization (b) Stage: Cannot obtain ε -oracle

(c) Stage: Initialization (d) Stage: Feasible solution

Figure 3: Illustration of Algorithm 1: Each beacon is set
the weight and the red beacons are selected beacon loca-
tions. The purple region contains all the points with weight
greater than εw(B).

of logOPT where OPT is the size of the optimal solution [9]. But

due to the specific requirement of the unique localization problem,

our problem is different and we need to carefully get around the

technical difficulties.

6.1 Algorithm Design
In the algorithm we give weights to each candidate beacon location

bi and each point p ∈ P .

Definition 6.1. (Weight): Define the weight of a beacon bi by
w(bi ). For a set of beacons D, its weight isw(D) =

∑
b ∈D w(b). The

weight of a point p ∈ P is defined by the weight of the beacons that

can see p,w(p) = w(V (p)).

Definition 6.2. (ε-oracle): Given a domain P , a candidate beacon
location set B and the weight function w , a subset D ⊆ B is an ε-
oracle for (P ,B,w) if for any p ∈ P withw(p) ≥ εw(B), p is uniquely

localized by D.

In our algorithm (Alg 1), initially all beacon locations carry the

same weight of 1. We randomly select k beacons, in which a beacon

is selected with probability proportional to its weight. This random

sample has a good probability to be a ε-oracle, by the proof in the

next subsection. If the beacons provide unique localization for all

points of P , the algorithm terminates. Otherwise, we double the

weights of the beacons seen by the points that are not uniquely

localized. We iterate this process and can show that this terminates

when k is O(OPT logOPT), where OPT is the size of the minimum

number of beacons supporting unique localization. Since we do not

know what is OPT, we start with k = 2. When we execute several

iterations and still cannot find a feasible solution, k is doubled until

a feasible solution is obtained.

Figure 3 illustrates each step of the ε-oracle algorithm. There are

10 candidate beacon locations with weights. We start with k = 2

and ε = 1

k . In Figure 3(a), all the weights are 1. The total weight

is 10. According to Definition 6.2, the region in purple contains

all the points with weight greater than εw(B) = 5. We select two

beacons shown in red. They uniquely localize the purple region but

Algorithm 1: Random Sampling Algorithm

Input: The floor plan P , Candidate beacon locations set B
Output: A feasible beacon locations set D that can localize P

1 for k = 2;k ≤ m;k∗ = 2 do
2 ϵ = 1

k ;

3 Reset all the weights of beacons in B to 1;

4 for i = 0; i ≤ 2k
δ log

2
(mk ); i + + do

5 TotalWeight← ∑
b ∈B w(b);

6 Prob(b) ← w (b)
w (B) ;

7 Select a beacon set D of size k according to Prob(b);
8 if D is ε-oracle then
9 if Domain P is uniquely localized by D then

10 return D

11 else
12 Select a point p is not uniquely localized;

13 Double the weight of all beacons in V (p);

do not uniquely localize the whole region P . Thus, we find a point

p (shown as a green node) that is not uniquely localized. There

are two candidate beacons that can see p, and their weights are

doubled, from 1 to 2. In Figure 3(b), as the weights are changed, the

total weight is 12 now and we restart the random sampling. Two

red beacons are selected, but the region bounded by the green lines

is not uniquely localized. So these beacons are not ε-oracle. After
a few trials of random sampling, we pause as we believe that two

beacons are not enough.

Then, we double the size k to 4 in Figure 3(c). All the weights

are reset to 1. Again the region in purple shows the points of high

weight. Four beacons are selected, uniquely localizing the purple

region. They are ε-Oracle, but a point p ∈ P can be found that is

not uniquely localized. The weights of the beacons covering p are

doubled. Finally, we find the beacon locations shown in Figure 3(d).

These four beacons can uniquely localize the whole region P . The
solution is obtained and the algorithm terminates.

Notice that in the above algorithm k is always a power of 2.

While this is only giving a factor of 2 in the approximation factor

theoretically, we would like to optimize k in practice. Thus, we run

binary search to find the smallest k such that randomly selected

beacons provide unique localization. We set lower bound LB = 1

and higher bound HB = |B |. In each iteration, we set k = (LB +
HB)/2. If a solution is obtained, HB = k , otherwise LB = k + 1. The
iterations are executed until LB = HB, when we find the best k .

6.2 Algorithm Analysis
To analyze the Random Sampling algorithm, first we introduce the

concept of VC-Dimension [12], used in our following analysis.

Definition 6.3. (VC-Dimension): Given a set system (X ,R), let
A be a subset of X . We say A is shattered by R if ∀Y ⊆ A, ∃R ∈ R
such that R ∩A = Y . The VC-dimension of (X ,R) is the cardinality
of the largest set that can be shattered by R.

Theorem 6.4. [12] For a set system (X ,C) with |X | = n and
VC-dimension d , |C| ≤ nd .
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Now, we consider the VC-dimension of our case. We regard each

canonical region as an element. Beacon b with visible region V (b)
is a set that contains all canonical regions in V (b). Therefore the
beacons correspond to sets in a set system, which is exactly the set

system of the Art Gallery problem. The VC dimension of the Art

Galley problem is at most 23 by [31].

Notice that our problem of beacon selection for unique localiza-

tion is not a set cover problem. So we have to develop the bounds

from scratch. First, we prove that an ε-oracle can be found by ran-

dom sampling with high probability. Compared with the previous

proof of ε-net [9], our analysis differs in the following aspects:

(1) The definitions and description of some events in the proof

are in geometrical ways instead of combinatorial ways.

(2) When calculating the probability of some events, owing to

the ambiguity of unique localization, some inequalities are

used to simplify the proof.

(3) Through rigorous analysis, a higher probability than the

prior work [9] is obtained, which leads to better running

time for the algorithm.

Theorem 6.5. Given (P ,B,w) and

k ≥ max(2
ε
log

2

1

2δ
,
4d + 16

ε
log

2

4d + 16

ε
), (7)

let D be k beacons picked randomly from B with probability propor-
tional to their weights. D is an ε-oracle with probability at least 1− δ ,
where d is the VC-dimension of the set system, d ≤ 23.

Proof. After randomly picking D, we pick another set T in the

same way as D. We denote Z = D ∪T . Now, we define two events

E1 = {∃p ∈ P s .t . p is not uniquely localized ,w(p) ≥ εw(B)}
E2 = {∃p ∈ P s .t . p is not uniquely localized ,w(p) ≥ εw(B),

|V (p) ∩ Z | ≥ εk}
First, we prove that Pr[E1] ≤ 2 Pr[E2], i.e. Pr[E2 |E1] ≥ 1/2 ac-

cording to the conditional probability. When event E1 happens,

there are some points p that are not uniquely localizable butV (p) ≥
εw(B). We denote Y = |V (p) ∩ Z | and the expected value of Y is

at least 2εk , i.e. E[Y ] ≥ 2εk , because the selection probability is

proportional to their weights. We can also get that the variance ofY
is at most 2εk , i.e. Var[Y ] ≤ 2εk . Hence, according to Chebyshev’s

inequality,

Pr[Y ≤ εk] ≤ Pr[|Y − E[Y ]| ≥ ϵk] ≤ Var[Y ]
(εk)2

≤ 2ϵk

(εk)2
≤ 1/2

It could be verified that k ≥ 4d+16
ε log

2

4d+16
ε > 4

ε owing that k is

given by Equation 7. Thus, we have

Pr[E2 |E1] ≥ Pr[Y ≥ ϵk] ≥ 1/2
Now consider a point p and fix the set Z , when p is not uniquely

localized by D, |V (p) ∩ D | < 3. Thus, we define the event Ep as

Ep = {|V (p) ∩ D | < 3, |V (p) ∩ Z | ≥ εk}
We consider the value of Pr[Ep ]with a givenZ . Suppose |V (p)∩Z | =
l , we have l ≥ εk . There are at most 2 elements of l inD. The selected
set D is comprised of k − 2 elements from Z − V (p) ∩ Z and the

other 2 elements elsewhere. So

Pr[Ep ] =
(
2k−l
k−2

) (k+2
2

)(
2k
k
) ≤ 4(k)4

(
2k−εk

k
)(

2k
k
) ≤ (k)42−εk+2

The first inequality can be proved by mathematical method. Based

on Pr[Ep ], the value of Pr[E2] is bounded. For any two points

p1,p2 ∈ P with w(p1),w(p2) ≥ εw(B) and V (p1) ∩ Z = V (p2) ∩ Z ,
the events Ep1 and Ep2 are the same in E2. Thus, the occurrence
of Ep depends only one the intersection V (p) ∩ Z . Recall that our
set has a constant VC-dimension, so we can get the following by

Theorem 6.4:

Pr[E2] ≤ ∪p |V (p)∩Z is unique
Pr[Ep ]

≤ (2k)d (k)42−εk+2 = (2k)d+42−εk−2

Thus, we can get the probability of E1.

Pr[E1] ≤ 2 Pr[E2] ≤ (2k)d+42−εk−1 (8)

We need to show Pr[E1] ≤ δ . We can rewrite Equation 8 as:

εk ≥ log

1

2δ
+ (d + 4) log(2k)

Thus, for the value of k , when we have
1

2
εk ≥ log

1

2δ and
1

2
εk ≥

(d + 4) log(2k), the theorem holds. We can verify when k satisfies

Equation 7, both inequalities hold.

Hence, when k was given by Equation 7, the selected set D is an

ε-oracle with probability at least 1 − δ . □

Based on the above theorem, we can use random sampling to

get an ε-oracle with probability 1 − δ . However, this ε-oracle may

not be the solution to our problem because for some points with

low weights, they might not be uniquely localized. This will be

fixed by the weight doubling process during the iterative procedure.

The number of iterations can be bounded using exactly the same

analysis as in [12]:

Theorem 6.6. Suppose k is the size of an feasible solution, we set
ε = 1

k . Then
2k
δ log

2

m
k iterations of Algorithm 1 are sufficient to find

a feasible solution.

Based on the Theorem 6.5 and 6.6, we get that Algorithm 1 can

get a satisfied solution. When we estimate the optimal solution is

OPT and set ε = 1

OPT
, we will get a solution of sizeO(OPT logOPT).

6.3 Considering Localization accuracy
In reality, range measurements are noisy and the localization er-

ror depends on the range error and the geometry of the beacons.

The contribution due to the beacon geometry on the localization

error is captured by the Geometric Dilution of Precision (GDOP). A

lower GDOP is associated with lower bounds on the variance of the

location estimate and hence lower localization errors. The GDOP

metric at a location covered by a set of beacons is defined by the

angle subtended between the location and pairs of beacons. When

two beacon locations are very close, for most of their commonly

visible points, the angles between two beacons is very small, which

causes the GDOP to be large and hence increases the localization

error. Thus, we introduce a heuristic to include the incentive to

select beacon locations to be far away from each other.

We add this correction to the random sampling algorithm. In

Line 7 of Algorithm 1, the beacon set D are selected according to

their weight. We can select these beacons one by one and adjust the

other beacons’ weights, to avoid selecting beacons that are close to

each other. When a beacon location b is selected, from the beacon

locations that can see b, we select some whose distances with b
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Floor Plan Range

Beacon Selection Method

Opt RS Sub UL GDOP 3-Place

Map1(1) inf 8 8 8 8 9 11

Map1(2) inf 7 8 8 8 9 10

Map1(3) 5m ≤ 13 14 14 14 16 19

Star-Shape inf 3 3 3 3 3 3

Multi-Room inf 6 6 8 8 8 9

Map2 10m ≤ 24 24 24 24 28 29

Map3 inf 6 6 6 7 8 9

Table 1: number of beacons placed by various algorithms

are less than a predefined threshold. These beacons’ weights are

reduced, e.g. taking off 30% of their weight. This way, the probability

of selecting a nearby beacon location is decreased. After Line 7,

the beacon set D is obtained and their weights are restored to the

original weights.

7 EVALUATION BY SIMULATION
For evaluation purposes we implemented the proposed algorithms

in a MATLAB-based toolchain. We considered different approaches

to generate floor plans, select initial location candidates and beacon

placement algorithms.

(1) Floor plan generation: We implemented these types of floor

plans:

• User drawn floor plan through our GUI on MATLAB

• Randomly generated simple polygon with user-defined num-

ber of vertices

• A pre-defined floor plan. This option is for proving real-

world floor plans as inputs.

(2) Candidate beacon locations: Next, we tested with beacon

placements with different ranges. The range can be infinite (Inf ),
in which case it is only limited by the floor plan boundaries, or

can finite, specified in meters. The beacon locations can be vertices

or interior points. The interior points can further be randomly

generated or user-specifies through the MATLAB GUI.

(3) Beacon placement algorithms: We implemented these place-

ment schemes in the toolchain:

• GDOP: Prior work in minimizing beacons while maximizing

expected accuracy based on GDOP [24].

• UL: Prior work in minimizing beacons while maximizing

coverage [24].

• RS: Our proposed random sampling algorithm described in

subsection 6.1.

• Sub: Our proposed submodular-function algorithm described

in section 5.

• mod-RS: Our proposed modified random sampling algo-

rithm for accuracy, described in subsection 6.3.

• Opt: This is the optimal that our algorithm aims to achieve.

We obtain this by searching through all possible solutions.

• 3-Place: Optimal solution where any point in the domain are

covered at least three beacons. This represents the best-case

scenario with typical placement methodology.

# of Vertices in # of beacons (% reduction wrt UL)

the floor plan UL RS Sub

20 6.2 5.2(16%) 6(3%)
40 11.6 9.6(18%) 11.2(3%)
60 17 15.2(7%) 16(6%)
80 22.2 19.4(13%) 20.2(9%)
100 30.6 28.8(6%) 29.6(3%)

Table 2: Performance as random floor plan scales up

7.1 Number of beacons
In this section, we compare the performance of the different algo-

rithms for various floor plans and potential beacon location settings.

These floor planswere chosen to be small enough such that we could

compute optimal beacon placement. Figure 4 shows the floor plans.

Figure 4(a)-Figure 4(c) show a real-world floor plan with different

placement settings (vertex and interior placement, infinite and finite

beacon range). Figure 4(d) shows a user-drawn star-shaped polygon.

Figure 4(e) shows a floor plan representative of a large area and

small rooms. Figure 4(f) and Figure 4(g) are real-world floor plans.

The set of blue and red dots together indicate all possible beacon

locations. The set of blue dots indicate the beacon locations selected

by the proposed Random Sampling (RS) algorithm for placement.

After placement, all regions are uniquely localized. The regions in

white are covered by three or more beacons. The regions in dark

grey are covered by 2-beacons and uniquely localized. Table 1 sum-

marizes the results of the number of beacons placed by the different

algorithms. We wish to make a few observations: (1) The number

of beacons placed by our RS algorithm is similar to prior work, and

close to the optimal number of beacons. Hence, we are able to have

good performance in beacon placement, with an algorithm that

has guarantees. (2) For Map1, there is not much difference in num-

ber of beacons with vertex only or vertex and interior placement

when the beacon range is unlimited. We also see that even when

allowed interior points for placement, half of the beacon locations

selected are at vertices due to their high coverage. (3) When the

range is limited, interior locations are chosen more often due to

them having a higher coverage (4) Our greedy algorithm does better

than the previous greedy algorithm (UL) in some scenarios such as

Multi-room map. (5) For real-world floor plans where the beacon

range is limited by the floor plans, such as Map 1(b) and Map 3, our

placement localizes a large part of the regions with just 2 beacons

rather than 3, as seen by the large amount of area shaded in grey.

The running time of these algorithms are roughly similar.

7.2 Performance at scale
To test the performance of the beacon placement algorithms at

scale, we simulated random simple polygons with number of ver-

tices varying from 20 to 100 in steps of 20. In every floor plan,

we randomly generated an additional 30 interior points for candi-

date beacon locations. We generated 5 floor plans for every fixed

number of vertices. Table 2 shows the average number of beacons

placed with each algorithm as the number of vertices increases. The

algorithm in the prior work (UL) is set as the baseline.

We also show the percentage reduction in number of beacons

placed by our algorithms. We observe that the number of beacons

placed by RS is lower in general as the complexity of the floor plan
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(a) Map 1 (Vertex placement, Inf range)
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(b) Map 1 (Vertex + interior placement, Inf range)
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(c) Map 1 (Vertex + interior placement, finite range)
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Figure 4: Beacon placement using Random Sampling for various floor plans

grows. The reason is - the algorithms that are greedy optimize

for coverage and place beacons sequentially, whereas the random

sampling algorithm updates the weights of points and places all the

beacons newly in every iteration based on the weight of points. This

benefit is more evident in floor plans that have small geometrical

spaces rather than large open spaces (which is the case with random

floor plans).

7.3 Accuracy improvement with modified
random sampling algorithm

In this section, we consider the accuracy that can be obtained from

the beacon placement, based on the modified random sampling

algorithm described in subsection 6.3. In order to quantify the

quality of the beacon placement, we evaluate the CDF of the GDOP

for the given placement as in [24]. We have presented the results

for Map 2 shown in Figure 4. For a fair comparison, we use the first

24 beacons that each algorithm places, and compare the expected

accuracy that we can get from each placement. The results are

shown in Figure 5. We see that the improvement in performance

from RS to RS-mod with 60% GDOP improving from 1.7 to 1.5, and

comparable with the GDOP from prior work that was optimizing

for accuracy (GDOP). Thus we can accommodate practical metrics

that relate to accuracy in or algorithm.

7.4 Comparison with user-placed beacons
Since our main contribution is a systematic approach for beacon

placement that we believe to be difficult for most humans, we eval-

uated how our approach performs compares to manual placements

from a number of users. We created an online form with four floor

plans and asked users to place beacons with the challenge of placing
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Figure 5: Comparison of expected accuracy with different
placement algorithms for Figure 4(f)

as few beacons as required in order to cover as much of the floor

plan as possible. Twenty anonymous users completed the challenge

and we did not record any identifying information. We asked the

users to indicate their experience with "beacon placement, localiza-

tion systems, geometry algorithms". 40% indicated no experience,

30% indicated some experience and the remaining indicated reason-

able or a lot of experience. The results are shown in Figure 6 for

two floor plans. We see that for Map 3 shown in 6(b), the algorithm

outperforms the users in terms of the trade-off between number of

beacons and area localized. For Map 1 shown in 6(a), the algorithm

places 8 beacons to localize the entire floor plan but 90% of the floor

plan is localized with 6 beacons. This example indicates that when

the constraint of unique localization is relaxed, further savings can

be achieved in terms of beacon placement. Across the four tested
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Figure 6: Comparison between RS-placed beacons (red dot)
and user placed beacons (blue circles)

floor plans, perhaps unsurprisingly, we noticed the trend that as

the environment becomes larger and more complex, our algorithm

begins to more significantly out perform humans.

8 CONCLUSION
This paper presents a rigorous formulation of the unique localiza-

tion problem in indoor environments. We observe, via simulation,

that our beacon placement algorithm performs better than manual

placements conducted by a number of volunteers we experimented

with, even well versed with the problem. The proposed algorithm

also places 5% fewer in real-world floor plans and 12% fewer on

random floor plans compared to prior work based on heuristics.

Beyond the improved performance, which, even for small percent-

age gain, can translate into large savings over sizable deployments,

we believe that the value of the proposed methodology lies into its

ability to provide a baseline to evaluate past and future deployment

and to systematize the process of beacon placement. Future work

will include relaxation of some key simplifying assumptions, and

extensions to 3D environments.
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