
Rate-Harmonized Scheduling for Saving Energy

Anthony Rowe Karthik Lakshmanan Haifeng Zhu† Ragunathan (Raj) Rajkumar
Dept. of Electrical & Computer Engineering

Carnegie Mellon University, U.S.A.
{agr, klakshma, haifengz, raj}@ece.cmu.edu

Abstract—Energy consumption continues to be a major
concern in multiple application domains including power-
hungry data centers, portable and wearable devices, mobile
communication devices and wireless sensor networks. While
energy-constrained, many such applications must meet timing
and QoS constraints for sensing, actuation or multimedia data
processing. Many modern power-aware processors and mi-
crocontrollers have built-in support for active, idle and sleep
operating modes. In sleep mode, substantially more energy
savings can be obtained but it requires a significant amount of
time to switch into and out of that mode. Hence, a significant
amount of energy is lost due to idle gaps between executing
tasks that are shorter than the required time for the processor
to enter the sleep mode. We present a technique calledRate-
Harmonized Scheduling that naturally clusters task execution
such that processor idle times are lumped together. We
next introduce the Energy-Saving Rate-Harmonized Scheduler
which guarantees that every idle duration on the processor
can be used to put the processor into sleep mode. This
property can be used to even eliminate the idle power mode in
processors but nevertheless it is predictable, analyzable, and
saves more energy. We finally evaluate the practical benefits
of Rate-Harmonized Scheduling implemented in the nano-RK
real-time operating system [1] for wireless sensor networks.

I. I NTRODUCTION

The functionality and continual use of increasingly
popular portable, mobile and wearable communication
devices are often significantly constrained by the limits of
their energy sources. Extending battery lifetime is a major
challenge in wireless sensor networks. At the other end of
the size scale, the energy demands of running and cooling
data centers are making them very expensive. Hence, the
need to extract energy savings continues to garner attention
among multiple communities.

We propose, analyze and demonstrate the benefits of
some simple and practical yet effective algorithms for
saving energy. These schemes can be readily implemented
in reservation-based real-time operating systems (such as
Linux/RK [2] and nano-RK [1]), where the processing,
bandwidth and timing constraints of tasks are knowna
priori .

Most modern micro-controllers have built-in support for
various energy saving modes. Typically, there is a longer
transition time associated with moving to lower energy

†Author currently at United Technologies Research Center.

states due to the overhead required for the main oscillator
to startup and stabilize. On FireFly sensor nodes [3] using
the Atmel ATmega1281 processor, the transition from an
active energy state to an idle energy state takes on the
order of a few micro-seconds since the main system clock
remains active. However, the round-trip transition from idle
to deep-sleep takes on the order of 10-15ms. If the gap
between two tasks is less than this period, the processor
is only able to transition to the idle energy state even
though there is no useful work to be done. In fact, we have
observed that a significant percentage of time is spent in
idle mode due to the accumulation of small gaps between
tasks.

We introduce a family of rate-harmonized schedulers
(RHS) that clusters the execution of tasks so that idle
durations can be lumped together enabling transitions to
the sleep mode. One such rate-harmonized scheduling
technique calledEnergy-Saving RHSadds a virtual sleep
task in a manner that allows every inactive period of
execution to be used as sleep time in the system. This
scheme yields many major benefits:

• A processor using energy-saving RHS can transition
any and everyidle duration on the processor into
the sleep mode. The idle slots in the schedule can
also be due to a task executing less than its worst-
case execution time. Energy saving is thus maximal.
The only requirement is that the taskset be feasible
under energy-saving RHS, and exact conditions for
feasibility are provided.

• Thanks to the maximal energy savings obtained, there
is no longer a need to manage more than two CPU
energy states. The processor is either in the sleep state
or the active state. This simplifies both the scheduler
and potentially the hardware design of the processor.

• The worst-case energy consumption using energy-
saving rate-harmonized scheduling can be predicted,
analyzed and optimized. The benefits of analyzability
are likely to manifest themselves over time in myriad
and surprising ways.

Rate-harmonized schedulers have the interesting prop-
erty of clustering task execution together. Though beyond
the scope of this work, this batching property can be useful
in other scenarios. For example in a situation where mul-



tiple tasks access a shared resource that has a significant
setup cost, it would be ideal avoid repeated initializations.
In this paper, the shared resource we focus on is the CPU
and the penalty that we minimize is the energy lost in the
setup time required for the CPU to transition from the deep
sleep to the idle energy state.

A. Organization of Paper

The rest of this paper is organized as follows. Section
II discusses related work. Section III introduces Rate-
Haromonizing Schedulers providing schedulability con-
ditions and runtime properties. Section IV describes the
FireFly sensor network hardware, the Nano-RK operating
system along with a performance evaluation of our energy
schemes. Section V provides concluding remarks.

II. RELATED WORK

Many current sensor networking systems are designed
using non-preemptive operating systems in order to save
on memory [4], [5]. These systems are event-triggered
and typically provide energy savings by executing tasks
as quickly as possible and then returning to sleep. Without
deadline information, it is difficult to cluster events in order
to further save energy. Due to the increasing complexity
of sensor networking tasks and the scaling of technology,
multiple preemptive operating systems capable of running
on micro-controllers are now publicly available [6], [7],
[1] . These operating systems mention use ofapriori task
knowledge for energy savings, but do not provide schemes
with additional benefits beyond standard priority-based
scheduling.

For time-sensitive applications, we use priority-based
preemptive scheduling to implement the rate-monotonic
paradigm [8] of real-time scheduling. Given a periodic
sensor task set with timing deadlines and a priority set
inversely proportional to the period of the task, one can
prove timing guarantees are honored. We extend upon this
paradigm through the use of phase adjustment at the cost of
scheduling efficiency to improve energy performance. [9]
generalizes the original rate-monotonic analysis to support
periodic tasks with arbitrary deadlines. We use parts of this
analysis to prove utilization bounds of our task sets given
phase adjustments due to harmonization.

Real-time scheduling experts will rightfully note that the
“energy-saver” task used in energy-saving rate-harmonized
scheduling behaves like a sporadic task [10] which exe-
cutes at the highest priority from a scheduling perspective
and services an endless queue of sleep requests. However,

when used with basic rate-harmonized scheduling, the
technique exhibits an additional set of very attractive
properties from an energy-saving perspective.

The techniques of dynamic voltage scaling (DVS) and
dynamic frequency scaling (DFS) have been the focus
of much research in recent years with the objective of
reducing energy consumption. This is due to the fact that
the dynamic power consumption of CMOS circuits [11],
[12] is given byP = aCLV 2

DD, whereP is the power,a is
the average activity factor,CL is the average load capac-
itance,V 2

DD is the supply voltage andf is the operating
frequency. Since the power has a quadratic dependency on
the supply voltage, scaling the voltage down is an effective
way to minimize energy consumption. However, lowering
the supply voltage can also adversely affect the system
performance due to increasing delay. Many lower cost
microcontrollers do not have DVS/DFS capabilities. Our
approach works even in systems without support for DVS
and DFS. Nevertheless, integrating DVS/DFS techniques
into our framework will be an interesting area of future
work.

III. R ATE-HARMONIZED SCHEDULING AND MAXIMAL

ENERGY SAVING

Most modern processors have built-in support for mul-
tiple modes of operation with each mode consuming a
different amount of energy. The processor also needs more
or less time to switch into and out of different power-saving
modes. The lower the power consumption, the larger is
the time required to switch into and out of that mode. For
example, a ”power-aware” processor normally has

• an activemode, wherein the processor consumes the
most amount of energyEactive but it can execute
tasks waiting to be processed,

• an idle (or napmode), where it consumes less energy
Eidle than the active mode, but no processing can
take place and a small amount of timeSTidle

1 must
be spent to switch into and out of this mode, and

• a deep sleep(or sleepmode), where it consumes the
least amount of energyEsleep, but no processing can
take place and a sizeable amount of timeSTsleep must
be spent to switch into and out of the mode. This
typically involves spinning down the main oscillator
which takes a significant amount of time to stabalize
upon reactivation.

1STstands forswitching time.



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 …

1

2

3

Idle

Sleep

1

2

3

Idle

Sleep

RMS (Csleep =5)

RHS (Csleep =5)

Fig. 1. This figure shows the following task setτ1 = {1, 10}, τ2 =

{1, 15}, τ3 = {2, 26} with a Csleep = 5 being scheduled with normal
RMS on the top and with RHS on the bottom. In the bottom timeline, the
tasks are harmonized to 10 (TH = 10) which is denoted by the darker
vertical bars.

Normally, Eactive > Eidle >> Esleep, andSTidle <<

STsleep.

When the processor has no ready tasks to execute, it
is often tempting to switch the processor into the sleep
mode. However, the processor cannot go to sleep if a job
can arrive withinSTsleep units of time. This can result in
significant time intervals when the processor is not doing
any useful work but is yet not in the deep-sleep mode.

Fortunately, the periodic nature of real-time tasks, when
appropriately structured, provide significant insight into
the future arrival times of jobs for the processor. Real-
time operating systems using a reservation-based approach
(e.g. Linux/RK [2] and Nano-RK [1]) can exploit this
knowledge to switch the processor into low-power deep-
sleep mode of operation, whenever jobs are not expected
to arrive in the near future. Thereby, energy savings can
be obtained without compromising the timeliness and QoS
constraints of application tasks.

We now introduce a novel but simple, practical and
effective new technique that maximizes the percentage of
time a processor spends in the deep-sleep mode without
violating the timing constraints of the real-time taskset.In
fact, using our technique,everytime-unit that the processor
is not in active mode can be spent in deep-sleep mode.
Hence, the idle-mode of processors can even be potentially
eliminated yielding hardware savings along with enhanced
energy savings!

A. Notation and Terminology

We will consider a periodic taskset{τ1, τ2, · · · , τn}
comprising ofn periodic tasks, each with a worst-case
computation time,Ci, and period,Ti. The taskset is
ordered such thatT1 ≤ T2 ≤ · · · ≤ Tn. The relative
deadlineDi of each taskτi is the same as its periodTi.
Each taskτi also has an initial arrival time ofφi, such
that its arrival times are atφi, φi + Ti, φi + 2Ti, · · ·.
Without loss of generality, we assume that the phase of
task τ1, φ1 = 0. We adopt the fixed-priority preemptive
scheduling approach with task priorities assigned using the
rate-monotonic policy (i.e. inversely proportional to task
periods)2. The utilization Ui of task (τi) is given by Ci

Ti
.

The total utilizationUtot of the taskset is the sum of the
utilization of the tasks in the taskset.

Our proposed approach calledRate-Harmonized
Schedulingallows the execution of different real-time
tasks to be clustered together, thereby having the effect of
lumping together idle durations in the processor schedule.
While many variants of rate-harmonized scheduling are
possible, we introduce only a basic version upon which
our maximal energy-saving scheme can be built.

B. Basic Rate-Harmonized Scheduler

A general rate-harmonized scheduler (RHS) utilizes a
set of periodic values{T1

H
, · · · , ...,Tn

H
} whereT

i

H
≤ Ti,

i = 1 to n, and the values in{T1

H
, · · · , ...,Tn

H
} are

harmonic. These harmonic periods are referred to as the
Harmonizing Base Periods, and all have the same initial
phasing of τ1 = φ1 = 0. Tasks in the given taskset
τ1, τ2, · · · , τn are released according to their arrival pat-
terns as in the classical periodic taskset model. However,
each job of a taskτi only becomes eligible to execute at
its next nearest periodic boundary ofT

i

H
. Specifically, the

(k + 1)th job of τi arrives at timeφi + kTi but becomes
eligible to execute only at time(pTi

H
| (p − 1)Ti

H
<

φi + kTi ∧ pTi

H
≥ φi + kTi).

In the Basic Rate-Harmonized Scheduler, T1

H
= T

2

H
=

· · · = T
n

H
= TH. We refer toTH simply as theHarmoniz-

ing Period. Since this is a rate-harmonized scheduler, we
must haveTH ≤ T1. Figure 1 shows an example taskset
being scheduled with normal rate-monotonic scheduling
(RMS) and Basic RHS withTH = 10 and STsleep = 5.
It assumes thatφ1 = φ2 = · · · = φn = 0. The arrival
time of each task is indicated with an arrow above each

2Our rate-harmonized scheduling approach can be easily adapted
to dynamic priority approaches such as earliest-deadline-first (EDF)
scheduling, but it is beyond the scope of this paper.



timeline. In the Basic RHS schedule, tasks that arrive
before or after integral multiples ofTH are not eligible
to execute until the next closest boundary ofTH when
they are serviced based on their priority. Tasks that are not
eligible are delayed until the nextTH boundary.

TH is chosen so as to improve schedulability. Suppose
Ψ = {τj | Tj < 2T1, j 6= 1}. If Ψ = ∅, TH = T1.
Otherwise,TH = T1

2 .

We now prove some properties of basic rate-harmonized
scheduling.

Theorem 1.A critical instant for any taskτ under basic
rate-harmonized scheduling occurs whenτ is requested
simultaneously with requests for all higher priority tasks,
and τ has to waitTH − ǫ before it becomes eligible to
execute (whereǫ is an infinitisimally small positive value).

Proof: Under basic rate-harmonized scheduling, all
tasks become eligible to execute only at boundaries that are
integral multiples ofTH. If τ arrives att simultaneously
with all higher priority tasksTH − ǫ time-units before
the next integral boundary ofTH, taskτ and all its higher
priority tasks become eligible to execute only att+TH−ǫ.

If any higher priority taskτh arrived earlier thant,
τh would have been eligible to execute earlier, and the
response time forτ cannot become worse. If any higher
priority taskτh arrived aftert and at or beforet+TH, all
of τh’s jobs arriving later will be delayed, and the response
time for τ can only become better (or stay the same). Ifτ

arrives later thant, its response time will become longer
by letting τ arrive att. If τ arrives earlier thant, it would
become eligible to execute earlier and its response time can
only become shorter (or stay the same). Hence,t represents
a critical instant forτ .

Remark: Note that in Theorem 1, relative to the classical
Liu and Layland model, the additional delay ofTH

encountered by a taskτ is concurrentwith respect to the
delays encountered by all its higher priority tasks.

Lemma 2. The worst-case response time ofτ1 under
rate-harmonized scheduling is given byC1.

Proof: The rate-harmonized scheduler requires that
the phasing of the harmonizing periodTH = T

1

H
be the

same as that ofτ1, andTH is harmonic with respect to
τ1. As a result,τ1 is eligible to execute as soon as it
arrives. Being also the highest priority task,τ1’s worst-
case response time isC1.

Lemma 3. The maximum value ofTH

Ti
= 0.5 for any

task τi, i 6= 1.

Proof: The lemma follows from the choice ofTH for
the basic rate-harmonized scheduler.

Theorem 4. A taskset is feasible under basic rate-

harmonized scheduling if
n∑

i=1

Ci

Ti
≤ 0.5.

Proof: By assumption, deadlineDi = period Ti for
every taskτi. From Theorem 1, the additional delay of
TH encountered by a taskτi is equivalent to shortening
the deadline ofτi in the Liu and Layland model byTH

(with the exception ofτ1 from the proof of Lemma 2).

Hence, the ratio of the effective deadline to the period
Ti (denoted by∆i in [9]) of τi, i 6= 1, is given by
∆ = Ti−TH

Ti
. From Lemma 2, taskτ1 cannot constitute

the bottleneck task. From Lemma 3, the maximum value
of ∆ is 0.5. The theorem follows Theorem 1 from [9].

An exact schedulability condition can also be stated
using the fixed-point response time computation technique
[13], [14]. To find the worst-case response time ofτi, let

W0 = Ci + TH

Iterate onk as follows:

Wk+1 = Ci + TH +

i−1∑

j=1

⌈
Wk

Tj
⌉Cj

until Wk+1 = Wk in which case,Wk+1 is the worst-case
response time ofτi. Check ifWk+1 ≤ Di. If Wk+1 > Di,
τi misses its deadline and the computation can be stopped.

C. Energy-Saving Rate-Harmonized Scheduling

In our previous discussion, we provided schedulability
conditions for basic RHS, but we did not prove any
properties on how well the scheme works to save energy.
The example of Figure 1 illustrates a situation where
basic RHS does, in fact, save energy since all of the idle
processor time can indeed be converted into deep-sleep
time. However, this does not always occur.

We now extend basic RHS to use a periodicEnergy
Savertask,τsleep, that is scheduled as the highest priority
task with its execution timeCsleep = STsleep, a period
Tsleep = TH, and phasingφsleep = φ1 = 0. Whenever this
task executes, the processor can go into deep-sleep mode



1

2

n-1

n

…

sleep

T H T H T H

1 2

Fig. 2. This figure shows the critical instant when all tasks arrive
immediately afterTH.

(for Csleep units of time everyTsleep units of time). Real-
time scheduling theorists will note that the energy-saver
task will indeed behave like a sporadic task [10] executing
at the highest priority from a scheduling perspective ser-
vicing an endless queue of deep-sleep requests. However,
when used with basic rate-harmonized scheduling, the
Energy Saverexhibits an additional set of very attractive
properties. We refer to this hybrid scheme asEnergy-
Saving Rate-Harmonized Scheduling.

D. Terminology

We shall use the following terms.

• The resource being scheduled is said to bebusywhen
the resource is executing one or more of the tasks
τi, i = 1 to n. Correspondingly, abusy durationis
defined to be a contiguous interval in the schedule
when the resource is busy.

• The resource being scheduled is said to be inforced
sleepingmode when the resource is executingτsleep.
Correspondingly, aforced sleep durationis defined
to be a contiguous interval in the schedule when the
resource is in forced sleep.

• A busy-sleep durationis defined to be a contiguous
interval in the schedule when the resource is either
busy or in forced sleep. Anidle durationis defined to
be a contiguous interval when the resource is neither
busy nor in forced sleep.

We now present a theorem that allows the coupling of
idle durations with forced sleep durations.

Theorem 5. When every job of every taskτi, i =
1 to n, executes for its worst-case execution timeCi,

every idle duration in the schedule under energy-saving
rate-harmonized scheduling will precede (and therefore be
contiguous) with a forced sleep execution ofτsleep.

Proof: The Energy-Saver taskτsleep has higher pri-
ority than every taskτi, i = 1 to n, and has an initial
phasing of φsleep = φ1 = 0. Hence, the resource
will be in forced sleep whenτsleep executes at intervals
(kTsleep, kTsleep + Csleep), k = 0, 1, 2, · · ·. Correspond-
ingly, the execution of any job of any taskτi, i = 1 to n,
is only during the intervals[kTsleep+Csleep, (k+1)Tsleep]
for k = 0, 1, 2, · · ·.

Consider any time instantt when the resource becomes
idle. That is,t represents the beginning of an idle duration.
Due to the execution pattern ofτsleep, t must lie within
the interval[kTsleep +Csleep, (k+1)Tsleep] for some non-
negative integer value ofk. We will show that the interval
(t, (k + 1)Tsleep] will be an idle duration, which in turn
precedes the forced sleep execution ofτsleep during ((k +
1)Tsleep, (k + 1)Tsleep + Csleep).

SinceTH = Tsleep, any taskτi, i = 1 to n, that arrives
within the interval[kTsleep, (k+1)Tsleep] becomes eligible
to execute only at(k+1)Tsleep. So, such an arrival cannot
execute in our interval of interest. If taskτi, i = 1 to n,
arrived at or beforekTsleep, it would have become eligible
to execute atkTsleep or earlier. Ifτi has any execution time
left at timet, the energy-saving rate-harmonized scheduler
must scheduleτi at timet. This contradicts our assumption
that t represents the start of an idle duration. The theorem
follows.

The worst-case execution time assumption of Theorem
5 can be relaxed, and this is captured in the following
corollary.

Corollary 6. Every idle duration in an energy-saving
rate-harmonized schedule will precede (and therefore be
contiguous) with a forced sleep execution ofτsleep.

Proof: The proof follows the same trajectory as the
proof of Theorem 5. Suppose the start-timet of any idle
duration occurs betweenkTsleep and (k + 1)Tsleep. All
tasks that arrived at or beforekTsleep will be eligible to
execute and therefore must complete at or beforet. All
tasks that arrive afterkTsleep will be eligible to execute
only at (k +1)Tsleep. Hence, the interval[t, (k +1)Tsleep]
must be idle, and this precedes the execution ofτsleep in
the interval((k + 1)Tsleep, (k + 1)Tsleep + Csleep).



Theorem 7. Every idle duration in an energy-saving
rate-harmonized schedule can be used to put the resource
into a deep-sleep mode without any time penalty.

Proof: From Corollary 6,all idle durations precede
(and are contiguous with) a forced sleep execution ofτsleep

for a duration ofCsleep. This forced-sleep duration of
Csleep can be extended to include the preceding contiguous
idle duration. This extended deep-sleep duration is longer
thanCsleep, which guarantees that there is no time penalty
switching into and out of deep-sleep mode.

Given thatall idle durations in the energy-saving RHS
schedule can be spent in deep sleep, the deep-sleep uti-
lization is given by:

Usleep = 1 −
n∑

i=1

Ci

Ti
= 1 − Utot

In other words, the deep-sleep utilization is maximal given
the taskset utilization ofUtot. The only condition that
needs to be checked is whether the given taskset is feasible
under Energy-Saving RHS.

Theorem 8.A periodic taskset is feasible under Energy-
Saving Rate-Harmonized Scheduling if

Csleep

Tsleep
+ C1

T1

≤ 1 ∧

∀i, i = 2 to n,
Csleep

Tsleep
+ (

i∑

j=1

Cj

Tj
) +

Tsleep

Ti
≤ i(21/i − 1).

Proof: Under energy-saving rate-harmonized schedul-
ing, φ1 = φsleep = 0. Also, either T1 = Tsleep or
T1 = 2Tsleep. Under either of these conditions,τsleep

and τ1 form a (high-priority) taskset scheduled under
rate-monotonic scheduling with harmonic periods. Hence,
under RMS theory, ifCsleep

Tsleep
+ C1

T1

≤ 1, τ1 is schedulable.
The highest priority tasksτsleep and τ are harmonic and
can be considered to be a single task from the perspective
of τi’s schedulability.

Next, consider an arbitrary taskτi, i 6= 1. Relative to
rate-monotonic scheduling, an instance ofτi encounters a
maximum additional delay ofTH = Tsleep. Hence, the
term Tsleep can be added to its computational time of
Ci, and RMS utilization bounds can be used for testing
feasibility.

A less pessimistic schedulability test utilizes the fixed-
point approach to determine the exact worst-case response

time of taskτi. To find the worst-case response time ofτi,
let

W0 = Ci + Tsleep

Iterate onk as follows:

Wk+1 = Ci + Tsleep + ⌈
Wk

Tsleep
⌉Csleep +

i−1∑

j=1

⌈
Wk

Tsleep
⌉Cj

until Wk+1 = Wk in which case the worst-case response
time of τi is Wk+1. Check if Wk+1 ≤ Di. If Wk+1 >

Di, τi will miss its deadline and the computation can be
stopped.

Remark: A keen reader will note that Theorems 5-8
and the schedulability conditions for energy-saving rate-
harmonized scheduling do not require thatTH = Tsleep

be T1

2 when{τj | Tj < 2T1, j 6= 1} 6= ∅. In fact, Lemma
3 and Theorem 4 are the only results that require this
constraint. Otherwise, if other schedulability conditions are
met, one can haveTH = Tsleep = T1 allowing for larger
values ofCsleep.

Figure 3 illustrates the schedule of a taskset where an
increase in the value ofCsleep causes the basic RHS
scheme to no longer be able to use all idle slots for deep
sleep. However, energy-saving rate-harmonized scheduling
is able to achieve 100% deep-sleep utilization of all idle
slots by delaying yet-to-start tasks into the nextTsleep

period. The addition ofτsleep into the feasibility condi-
tions does represent a scheduling penalty. However, for
many energy-constrained systems like multi-hop sensor
networks, the total utilization of the given task set is likely
to be 20% or less, and any scheduling penalty only applies
when task utilizations are rather high.

E. Energy-Saving RHS with Phase Exploitation

The analysis to date assumes very little about the
phasings of tasks except thatφ1 = φsleep = 0. When the
phasings of other tasks are unknown, worst-case assump-
tions need to be made. However, the admission criteria can
be improved with the initial phasings for all the tasks if
the given periodic taskset are known. With this knowledge,
the maximum additional delay that a taskτi encounters
relative to RMS scheduling can likely be reduced further
belowTsleep = TH. Let the LCM ofTsleep andTi beλi.
The relative phasings between multiples ofTi and their
nearest integral multiplesTsleep will repeat everyλi time-
units. The maximal delay between any arrival time ofτi



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 …

1

2

3

Idle

Sleep

1

2

3

Idle

Sleep

1

2

3

Idle

Sleep

RMS (Csleep =7)

RHS (Csleep =7)

Energy-Saving RHS (Csleep =7)

Fig. 3. The tasksetτ1 = {1, 10}, τ2 = {1, 15}, τ3 = {2, 26}
with Csleep = STsleep = 7 being scheduled with RMS on the top,
basic RHS in the middle and with Energy-Saving RHS on the bottom
(TH = 10). This illustrates an example of when the Energy-Saving
RHS schedulability test is satisfied, and RHS is not able to optimally gain
sleep cycles. In this example, the exact schedulability test was performed
with TH set toT1. The exact schedulability conditions work ifT1=TH

always. Note, the total execution time including sleep is not required
to be less thanTH . In this caseT3 is preempted after 1 time unit and
completes its execution in the nextTH period.

and its eligibility time is given by

Bi = max{(pTsleep − (φi + kTi)) |
((p − 1)Tsleep < (φi + kTi)) ∧ (pTsleep ≥ (φi + kTi)),

p ∈ {0, 1, · · · , λi

Tsleep
− 1}, k ∈ {0, 1, · · · , λi

Ti
− 1}}.

This value can be used as the “blocking term” in our fea-
sibility conditions instead ofTH = Tsleep. For example,
if TH = 6, Ti = 15 andφi = 3, LCM(6, 15) = 30. The
maximum delay encountered byτi due to rate-harmonized
scheduling is then given bymax((6∗1)− (3+15∗0), (6∗
3) − (3 + 15 ∗ 1)) = max(3, 0) = 3, instead ofTH = 6.
Hence, the feasibility condition for taskτi can be improved
by a factor of up to(6−3)

15 = 0.2.

IV. EVALUATION

In this section, we compare the performance of rate
harmonized scheduling in terms of sleep optimal efficiency
and overall impact on the power consumption of a system.
We describe the measured energy benefit from a currently
deployed sensor networking application as part of the

Sensor Andrew project at Carnegie Mellon University.

Sensor Andrew is a multi-disciplinary campus-wide
scalable sensor network that is designed to host a wide
range of sensing and low-power applications. The goals
of Sensor Andrew are to support ubiquitous large-scale
monitoring and control of infrastructure in a way that is ex-
tensible, easy to use, and provides security while maintain-
ing privacy. Target applications currently being developed
include infrastructure monitoring, first-responder support,
quality of life for the disabled, water distribution systems
monitoring and optimization, building power monitoring
and control, social networking, and biometric sensors for
campus security. A large component to these applications
is an underlying wireless sensor network comprised of
the Nano-RK real-time operating system running on the
FireFly sensor networking platform.

Nano-RK is a fully preemptive reservation-based real-
time operating system (RTOS) with multi-hop networking
support for wireless sensor networks. It includes a light-
weight embedded resource kernel (RK) with rich func-
tionality and timing support capable of running on low-
power micro-controllers. Nano-RK supports fixed-priority
preemptive multitasking for ensuring that task deadlines
are met, along with support for CPU, network, as well
as, sensor and actuator reservations. Tasks can specify
their resource demands and the operating system provides
timely, guaranteed and controlled access to CPU cycles
and network packets. Together these resources form virtual
energy reservations that allows the OS to enforce system
and task level energy budgets.

In our current Sensor Andrew deployment, the FireFly
nodes are battery operated and communicate over multiple
hops to a powered gateway that has access to the Internet.
The sensor network is primarily designed to efficiently
collect sensing data, however it also provides support for
various mobile device interactions. We provide a generic
communication interface allowing nodes to directly query
infrastructure nodes as well as send messages to and from
the Internet via the gateway. Communication reservations
in Nano-RK provide a mobile node communication budget
preventing mobile devices from draining more than their
alloted system energy.

The current individual node functionality is supported by
the five tasks shown in Table I. The highest priority task
consists of a TDMA link layer with a period of 10ms. This
period is designed to support each communication slot,
however the system can wait multiples of these periods
as specified by a communication schedule. The next set



Task Description C T U
Link Layer 3 10 .30

Network Task 1 15 .06
HF Sensor Sampling 1 40 .025
Mobile Node Service 1 300 .003

Diagnostic 1 500 .002

TABLE I
THIS TABLE SHOWS THE WORST-CASE TASK SETS CURRENTLY

RUNNING IN NANO-RK AS PART OF THESENSORANDREW PROJECT.
DURING TYPICAL EXECUTION MANY OF THESE TASKS ARE

OPERATING AT MULTIPLES OF THE MINIMUM PERIODS. ALL

EXECUTION TIMES ARE IN MILLISECONDS.

RMS RHS Energy-Saving RHS
Usleep .67 .98 1.0

Avg. Power (mW ) 2.38 2.00 1.98

TABLE II
THIS TABLE SHOWS THE MEASURED VALUES OF THE DIFFERENT

SCHEMES GIVEN THE TASK SET INTABLE I. UNDER THE HIGHEST

SYSTEM LOAD WE SEE A16.8%SAVINGS WITH ENERGY-SAVING

RHSAS COMPARED WITHRMS.

of tasks are responsible for managing network routing,
sampling high frequency sensor data like the audio sensor
and recording run-time diagnostics. The diagnostic task
periodically collects information about the system’s run-
time parameters and eventually writes this to an external
flash card. The diagnostic information consists of radio
statistics as well as CPU runtime statistics. The radio
statistics contain number of transmitted packets, received
packets, retries sending a packet due to a dropped ACK
and packet loss as well as average signal strength values
between neighbors. The CPU statistics keep track of each
tasks utilization as well as the time the processor spends
in idle as compared to deep sleep. Using these values,
we calculate that gain of using Energy-Saving RHS as
shown in Table II. Under normal operation, many of these
tasks are not operating at every period. For example,
the High Frequency (HF) Sensor Sampling Taskwould
normally only execute at this frequency when audio data is
requested from the gateway. Given the worst-case situation
when all of these tasks are executing (which does occur
occasionally), Energy-Efficient RHS saves up to 16% as
compared to RMS.

Our experimental numbers are based on the AT-
mega1281 processor, however Table IV shows the corre-
sponding parameters for other processors. In all of these
cases, disabling the oscillator to enter the deepest sleep
mode consumes proportionally less energy than the pro-
cessor’s idle mode. Even in cases where the idle energy
of a processor is quite low, RHS can be used to further
improve energy performance with little overhead.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Utilization (Csleep=10)

S
le

ep
 U

ti
liz

at
io

n
 O

p
ti

m
al

it
y

RMS
RHS
Energy−Saving RHS

Fig. 4. This figure shows how close to optimal each scheme performs
with respect to converting idle processor time into sleep time with a
Csleep value fixed at 10. Each point in the graph represents the average
of 1000 simulated schedules.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Utilization (Csleep=20)

S
le

ep
 U

ti
liz

at
io

n
 O

p
ti

m
al

it
y

RMS
RHS
Energy−Saving RHS

Fig. 5. This figure shows how close to optimal each scheme performs
with respect to converting idle processor time into sleep time with a
Csleep value fixed at 20.

Task C T U
1 1 20 .050
2 1 25 .040
3 1 26 .038
4 1 28 .035
5 1 32 .031
6 2 50 .04
7 2 67 .029
8 3 91 .033
9 9 100 .090

TABLE III
THIS TABLE SHOWS A TASK SET THAT WHENCsleep = 10 AND

Tsleep = 20, THE POWER CONSUMPTION FOR AFIREFLY NODE

WOULD BE 9.83mW FOR RMS AND 6.5mW FOR ENERGY-SAVING

RHS. IN THIS EXAMPLE, ENERGY-SAVING RHSCONSUMES33%
LESS TOTAL ENERGY.



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Utilization (Csleep=50)

S
le

ep
 U

ti
liz

at
io

n
 O

p
ti

m
al

it
y

RMS
RHS
Energy−Saving RHS

Fig. 6. This figure shows how close to optimal each scheme performs
with respect to converting idle processor time into sleep time with a
Csleep value fixed at 50.

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks (Csleep=15, U=0.50)

S
le

ep
 U

ti
liz

at
io

n
 O

p
ti

m
al

it
y

RMS
RHS
Energy−Saving RHS

Fig. 7. This figure shows the effect of increasing the number of tasks
given a fixedCsleep value of 15 and a fixed CPU utilization of 50%.

Processor Freq. Power Power Power Sleep Idle to
Sleep Idle Active to Idle Active

(MHz) (uW) (mW) (mW) (ms) (us)
ATmega1281 8 16 6.6 23 12 6
Hitachi H8 8 .05 60 90 100 8

MSP430F5418 8 .33 .0085 4 10 5
ST Cortex M3 20 5.6 18.5 85 2 2

LPC2106 60 1 10 108 10 4
BF531 600 15 30 616 5 2

TABLE IV
THIS TABLE SHOWS THE ENERGY AND STATE TRANSITION TIMES OF

VARIOUS MICROCONTROLLERS. NOTE, MANY PROCESSORS HAVE

MULTIPLE OPERATING FREQUENCIES. THIS TABLE SHOWS AN
ESTIMATE OF A SINGLE SAMPLE OPERATING POINT.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

CPU Utilization (Csleep=15)

C
P

U
 P

o
w

er
 (

m
W

)

RMS
RHS
Energy−Saving RHS

Fig. 8. This figure shows the CPU power consumption given the FireFly
hardware parameters under the different schemes. Each point in this graph
is the average of 1000 randomly generated task sets withn between 5
and 15, period between 1 and 200 with aCsleep fixed at 15ms.

A. RHS Performance

In this section we discuss various trends apparent in
Harmonized Scheduling of tasks. We performed a set
of experiments based on a large number of uniformly
distributed random task sets. Each task set was given a
period between 1 and 200 time units and simulated over its
entire hyper-period. We define the metricSleep Utilization
Optimality which is the ratio of the total actual deep sleep
time to the total non-busy time in a hyper-period. A value
of 1.0 indicates that all available idle time was used for
deep sleep.

In our first set of experiments, we adjust theCsleep

parameter and look at how CPU utilization affects the
Sleep Utilization Optimality of the processor. During these
tests, the number of tasks was randomly selected to be
between 5 and 15. We see that smallerCsleep values
tend to work reasonably well with RMS because small
intervals between tasks can be converted to sleep time.
If Csleep is set to 1, then all schemes would perform
identically. As shown in Figure 5 and Figure 6, as the
Csleep value increases to 20 and 50 the effectiveness of
using RHS becomes more prominent. It is also clear that
as the workload increases, the gain improves.

Figure 7 shows how the number of tasks executing in the
system also has an impact on the ability for the system to
sleep. In this experiment, theCsleep value was fixed at 15
(the real value for our system) and the workload was fixed
at 50% utilization. As the number of tasks increase, RMS
begins to rapidly deteriorate in performance while Energy-



Saving RHS maintains its optimal sleep utilization. As the
number of tasks increases, the number of preemptions and
likely phase offsets also increases. The difference between
the schemes as the number of tasks in the system inceases
shows that Energy-Saving RHS is highly scalalble.

Figure 8 shows the overall impact of the schemes with
respect to CPU power consumption. This figure character-
izes the design parameters from the FireFly v2.2 hardware.
The active energy of the processor is 19.8mW , the idle
energy is 6.6mW and the sleep energy is 6.6µW . The
Csleep parameter is set to 15ms. We see that with random
task sets, even at a low-load that the savings can be quite
significant, up to 39%. Table III shows an example where
Energy-Saving RHS saves 33% of the total power RMS
would consume. As the workload increases, we do not see
as much divergence of the lines as in the previous examples
due to the dominating active power term as the load in-
creases. As the active energy in the system approaches the
idle energy, then RHS schemes will perform even better.
This will be a natural trend in micro-controllers since the
silicon process technology is improving making the clock
crystal a dominating factor in power consumption. Since
sleep modes typically disable the oscillator, the sleeping
mode should remain significantly less than active and idle.

V. CONCLUSION

In this paper we introduce a novel but simple, practical
and effective technique that maximizes the percentage of
time a processor spends in deep sleep without violating
the timing constraints of the given real-time task set.
We introduce a class of Rate-Harmonized Schedulers
that adjust phasing between periodic tasks in order to
remove idle slots between active execution that are too
short for the processor to make a round-trip transition
from idle into deep-sleep. One particular instance of
these schedulers,Energy-Efficient RHS, provably has the
property that every idle time-unit not spent in active
processing can be converted directly into deep-sleep time
for the processor. Not only does this improve energy-
efficiency, but it simplifies scheduler design and can even
potentially eliminate the idle state of the processor to save
on hardware complexity. We provide theoretical analysis
and experimental evaluation of these schemes as applied
to sensor networks where energy is highly important.

REFERENCES

[1] A. Eswaran, A. Rowe and R. Rajkumar. Nano-RK: an Energy-
aware Resource-centric RTOS for Sensor Networks.IEEE Real-
Time Systems Symposium, 2005.

[2] Rajkumar R. Oikawa S. Portable RK: A Portable Resource Kernel
for Guaranteed and Enforced Timing Behavior.IEEE Real-Time
Technology and Applications Symposium (RTAS), 1999.

[3] http://www.nanork.org/nano-RK/wiki/FireFly (viewed 5/20/2008).
[4] Woo A. Hollar S. Culler D. Pister K. Hill J., Szewczyk R. System

Architecture Directions for Network Senors.ASPLOS, November.
[5] ”http://focus.ti.com/docs/toolsw/folders/print/z-stack.html (viewed

5/20/2008)”.
[6] Carlson J. Dai H. Rose J. Sheth A. Shucker B. Deng J. Han R.

Abrach H., Bhatti S. MANTIS: System Support For MultimodAl
NeTworks of In-situ Sensors.2nd ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA), 2003.

[7] Shea R. Kohler E. Srivastava M. Han S., Rengaswamy R. SOS
: A Dynamic Operating System for Sensor Nodes.In Third
International Conference on Mobile Systems, Applicationsand
Services (Mobisys), 2005.

[8] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment.Journal of the ACM,
V20, N1, pages 46–61, 1973.

[9] Lehoczky, J. Fixed priority scheduling of tasks with arbitrary
deadlines. Proceedings of the Real-Time Systems Symposium
(RTSS), 1990.

[10] Sprunt B., Sha L., Lehoczky J. Scheduling Sporadic and Aperiodic
Events in a Hard Real-Time System .CMU/SEI-89-TR-11 Carnegie
Mellon University, 1989.

[11] B. M. Gordon R. Gonzalez and M. A. Horowitz. Supply and
threshold voltage scaling for low-power CMOS.IEEE Journal of
Solid-Sate Circuits, vol. 32(8), 1997.

[12] Rajkumar R. Saewong S. Practical Voltage-Scaling for Fixed-
Priority RT-Systems. In Proceedings of the 9th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2003.

[13] Joseph M., Pandya P. Finding Response Times in a Real-Time
System.The Computer Journal, 1986.

[14] Tindell, K. W. An Extensible Approach for Analysing Fixed
Priority Hard Real-Time Tasks.Department of Computer Science,
University of York, UK., 1992.


	Introduction
	Organization of Paper

	Related Work
	Rate-Harmonized Scheduling and Maximal Energy Saving
	Notation and Terminology
	Basic Rate-Harmonized Scheduler
	Energy-Saving Rate-Harmonized Scheduling
	Terminology
	Energy-Saving RHS with Phase Exploitation

	Evaluation
	RHS Performance

	Conclusion
	References

