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Abstract—In this paper, we present the design and evaluation
of a platform that can be used for time synchronization and
indoor positioning of mobile devices. The platform uses the
Time-Difference-Of-Arrival (TDOA) of multiple ultrasonic chirps
broadcast from a network of beacons placed throughout the
environment to find an initial location as well as synchronize
a receiver’s clock with the infrastructure. These chirps encode
identification data and ranging information that can be used
to compute the receiver’s location. Once the clocks have been
synchronized, the system can continue performing localization
directly using Time-of-Flight (TOF) ranging as opposed to TDOA.
This provides similar position accuracy with fewer beacons (for
tens of minutes) until the mobile device clock dirfts enough that
a TDOA signal is once again required.

Our hardware platform uses RF-based time synchronization
to distribute clock synchronization from a subset of infrastructure
beacons connected to a GPS source. Mobile devices use a novel
time synchronization technique leverages the continuously free-
running audio sampling subsystem of a smartphone to syn-
chronize with global time. Once synchronized, each device can
determine an accurate proximity from as little as one beacon
using Time-Of-Flight (TOF) measurements. This significantly
decreases the number of beacons required to cover an indoor
space and improves performance in the face of obstructions. We
show through experiments that this approach outperforms the
Network Time Protocol (NTP) on smartphones by an order of
magnitude, providing an average 720µs synchronization accuracy
with clock drift rates as low as 2ppm.

I. INTRODUCTION

Positioning systems have already revolutionized how
smartphones interact with the surrounding world. Indoor
location-based services would enhance a wide variety of ap-
plications including: augmented reality, pervasive computing,
advertising, social networking and asset management. Up to
this point, location-aware applications primarily work outdoors
by using the Global Positioning System (GPS). Unfortu-
nately, satellite-based approaches do not work indoors since
these weak signals do not easily penetrate through building
walls. Various techniques have been proposed and developed
for indoor positioning such as broadcast-based technologies
(WLAN, RFID etc.) and motion-based technologies, such as
inertial sensing-based positioning. Many technology compa-
nies have been racing to develop indoor location solutions
like iBeacon [1] and Gimbal [2] that provide proximity-based
services. RF-based solutions are notoriously unable to provide
accurate ranging due to multipath caused by indoor clutter.
They also suffer from the barrier problem where a node placed
nearby on one side of a wall can incorrectly localize a user in

the neighboring room. In order to compensate for poor ranging
technologies, the number of beacons can be increased and the
transmit power reduced to improve spatial resolution. However,
this higher density of beacons increases setup time along with
hardware and management costs.

Ultrasound-based localization systems have been shown
to outperform RF-based systems in terms of accuracy. For
example, the MIT cricket system [3] can range to within 5cm,
has a boundary detection accuracy of 1cm and can compute
3D position to within 10cm and orientation within 3 degrees.
Ultrasound is comparatively much slower than light, which
makes it easy to measure signal TOF and perform TDOA
measurements. It also does not suffer from the barrier problem
since ultrasound does not penetrate walls nearly as easily as
RF. The main drawback to ultrasonic approaches is that they
require custom hardware and infrastructure. Our goal is to
bring many of the benefits of ultrasonic localization to current
smartphones.

In this paper, we propose a platform capable of providing
positioning and time synchronization to most modern mobile
devices that have a microphone input. The platform consists of
a small number of wireless nodes that are equipped with GPS
receivers with a Pulse Per Second (PPS) output, positioned
near windows in order to distribute time synchronization
messages to the interior nodes using 802.15.4. The beacons
then synchronously generate ultrasonic data streams that can be
used for identification and ranging. The beacons also contain
ultrasonic MEMs microphones that can be used to perform
inter-beacon ranging to aid in infrastructure configuration. By
computing the distance between each Line-Of-Sight (LOS)
beacon, the system can solve instances of a graph realization
problem to determine relative node positions.

In [4], the authors present a modulation approach that uses
ultrasonic chirps just outside of the human hearing to uniquely
identify and estimate distance to beacons from a mobile
device. Most modern mobile devices such as smartphones
and tablets contain 48kHz audio codecs and microphones
that are sensitive to the near ultrasound frequency spectrum,
allowing them to function as receivers for ultrasound based
ranging systems. Since all beacons transmit simultaneously, the
authors show that using the TDOA of each signal, along with
beacon location data requires N + 1 transmitters to localize a
mobile receiver in N dimensions. This is often impractical
in indoor environments that are sparsely provisioned with
beacons. In order to determine the 3D location of a receiver,
TDOA requires at least four transmitters while TOF would
require only three transmitters. In addition, TOF can perform



fairly accurate localization with less then N transmitters when
coupled with known physical constraints imposed by the
indoor layout. In realistic environments, this has a significant
impact on deployment density and performance. For example,
if nodes are deployed down a long hallway or if beacons are
blocked by obstructions, the TDOA system often fails, while
a TOF system is more likely return a correct result. The trade-
off is that TOF requires that the receiver is time synchronized
with the infrastructure.

We propose a novel technique by leveraging the free-
running clock within a smartphone’s audio sub-system to
perform time synchronization. As part of the TDOA ranging
calculation, it is possible to compute the time offset between
each received ultrasonic pulse and the initial transmit time.
This same approach is what allows GPS receivers to accurately
time synchronize with the satellites. Since our beacons are
fed by GPS PPS signals, the mobile device can precisely
estimate the starting point of the last UTC second within its
audio buffer. After capturing two transmit cycles, the mobile
device can determine both the time and the skew rate of the
audio clock source. Since the audio clock remains running
freely, it will continue to record and count samples without
any additional jitter that would normally be introduced by the
OS and networking stack. Smartphones typically have mul-
tiple highly accurate time sources at their disposal including
GPS, cellular tower time and NTP. Unfortunately, applications
cannot directly access these timing sources without going
through a relatively indeterministic call stack. Furthermore,
synchronizing with an NTP server over WiFi is not scal-
able in large building environments, where the access points
consistently service high traffic loads resulting in high time
synchronization error. We experimentally evaluate that NTP
time synchronization on a phone is often only accurate to
within 10 − 20ms. At a 48kHz-sampling rate, the audio
clock has a granularity of 22µs, which on iOS devices can
be processed with less than 1ms of jitter. Audio events (like
new beacon signals) can be time stamped with the precision
of the audio sampling granularity of 22µs while application
events can be time stamped within 1ms due to jitter accessing
the audio buffer. In both cases, this significantly outperforms
existing time sources and allows the synchronization to take
place solely with one-way communication to the receiving
device.

Being able to tightly synchronize time between two devices
is fundamental to distributed real-time systems. Though we
utilize time synchronization for its ability to improve ranging,
it can also be used for event ordering, determining event con-
sistency and coordination of communication. One immediate
application of tight time synchronization within the context
of localization is the ability for devices to perform direct
TOF ranging from beacons instead of TDOA ranging. After
a node has heard from four or more nodes within a single
area, the mobile device can synchronize with global time and
then perform TOF ranging for any successive beacons. We
experimentally evaluate that the skew rate of the audio clock
on select mobile phones ranges anywhere from 7 to 40ppm.
With clock rate correction over multiple samples, we are able
to achieve a stability of less than 2ppm. This corresponds
to 2.7m of drift per hour of ultrasonic ranging error. We
envision indoor applications where in larger spaces there would
be excess beacons that would allow the mobile devices to

synchronize and then estimate TOF ranges that slowly degrade
as the clock drifts until it reaches another region with four or
more transmitters within range. Global time synchronization
at this level of granularity can also be a powerful mechanism
to enhance mobile-to-mobile cooperative localization.

The main contributions of this paper are (a) a hardware
platform that is able to transmit time synchronized omni-
directional ultrasonic pulses, (b) an improved data transmission
scheme that can operate on devices with less bandwidth than
what was presented in [4], (c) a time synchronization approach
that utilizes the audio input system of a mobile device and (d)
a rigorous evaluation of the ability of the platform to perform
time synchronization and ranging.

A. System Architecture

Figure 1 shows the main components of our system includ-
ing: a GPS receiver, a Network Master, a group of Ultrasonic
Beacons and a mobile device with a microphone. One or
more GPS units need to be placed in a location where their
antennas have a clear view of the sky. A Network Master
device rebroadcasts the Pulse-Per-Second (PPS) signal from
the GPS over 802.15.4 within the indoor space. Each beacon
has a power amplified 802.15.4 radio (described in Section V)
such that the majority of the network is reachable within
a single hop. One could imagine extending coverage using
various existing multi-hop time synchronization approaches.
The beacons also include a microphone that can be used
along with the 802.15.4 radio for inter-beacon ranging. Though
not discussed in detail in this paper, inter-node ranging can
aid in network configuration as well as help reduce timing
error derived from incorrect beacon location measurements.
Since each Network Master device is GPS time synchronized,
multiple master nodes can be placed around the perimeter of
a building to improve coverage as necessary. Each Ultrasonic
Beacon has an on-board 802.15.4 radio transceiver along with
the hardware required to generate and transmit ultrasonic
signals. Beacons transmit a signal (described in Section IV)
with pre-defined release intervals, i.e. Time-Division-Multiple-
Access (TDMA), that encode a unique beacon identification
number. The mobile device, typically a smartphone, records
audio at a high-sampling rate (e.g. 48kHz) for a period of
time to collect available beacon messages. The smartphone
then demodulates any received signals, and uses the TDOA
approach described in Section III to compute the offset from
the start of the TDMA cycle in order to synchronize with the
global GPS time. At this point, any application with access to
the audio buffer can map audio sample count to global time
using the audio DAC as an auxiliary clock that is synchronized
with global time. After observing three or more transmitters
within one TDMA cycle, the mobile device can perform direct
TOF ranging until its clock drifts too far from global time
(approximately 2.7 meters per hour assuming 2ppm).

II. RELATED WORK

This paper touches upon topics related to ultrasonic com-
munication, ranging and time synchronization. All of these
areas have large bodies of research, so our discussion will fo-
cus primarily on closely related work in the mobile computing
space.
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A. Localization and Ranging

Research on the topic of localization can be broadly clas-
sified into two main categories of range-based approaches [3],
[5], [6] and range-free approaches [7], [8], [9], [10]. Range-
free approaches typically attempt to match either synthetic or
naturally occurring signatures to a particular location. Range-
based approaches on the other hand use measured distances
or angular estimates between known anchor points to compute
a position. We focus on range-based technologies including
Time-of-Arrival (TOA), TDOA and TOF. For a more detailed
general overview, we refer to [11].

TOF [12] systems compute distances based on how long it
takes for a signal to propagate from a sender to a receiver. For
example, [13] and [14] both compute distances by measuring
the Round-Trip-Time-of-Flight (RTOF) by recording a signal’s
departure and the return time divided by the propagation
speed. This assumes that the receiver will retransmit a return
signal within a fixed amount of time. BeepBeep [14] uses this
approach on cellular phones to compute inter-device ranges.
Even though smartphones are typically sensitive to ultrasonic
sound, their speakers are highly directional in those frequen-
cies, which lead [14] to use audible frequencies. The authors
also focused on peer-to-peer ranging rather than infrastructure
to device ranging.

TDOA systems can remove the requirement of knowing
exactly when a signal was transmitted by using what is
known as pseudo-ranging. Pseudo-ranging computes distances
by looking at the relative differences between the arrival of
several signals, assuming they were all transmitted simul-
taneously or at known offsets. As compared to TOA and
TOF approaches, this requires one additional transmitter to
allow the common distance from all broadcasting devices
to be estimated. GPS [5] is the most popular example of
this ranging approach. Similar approaches have been applied
towards ultrasonic communication [15], [16], [4]. The Dolphin
[15], [16] system adopts a pseudo-ranging approach using
using a 50kHz carrier with Direct-Sequence-Spread-Spectrum
(DSSS) modulation. While extremely accurate, this approach
requires custom hardware and is not applicable to standard
smartphone devices. In [17], the authors expand upon Dolphin
(while still requiring custom hardware) by adding a self-
training deployment approach based on filtered motion within
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Fig. 2. Delay in consecutive OS system time calls

the space. This work in part inspired our inter-node ranging
capability. In [18] the authors identify the location of a cellular
phone in a car using ultrasonic pseudo-ranging from the car’s
audio speakers. This approach used fixed frequency tones in
an extremely controlled environment where data transfer was
not required.

In [4], the authors introduce an ultrasonic TDOA ranging
approach that is able to perform ranging between speakers
distributed in the environment and mobile devices. The system
utilizes standard speakers and is evaluated on previous gener-
ations of smartphones with a wider frequency range above
20kHz than the current generation (iPhone 4 as opposed to
5-6). The approach also only supports pseudo-ranging and
not TOF. In this paper, we extend concepts in this work in
four ways: First, we introduce and evaluate an approach for
time synchronizing the phones with the infrastructure that
allows TOF ranging from a single beacon. Second, we improve
on the original ultrasonic modulation technique by adding
TDMA support in order to run on devices with less available
audio bandwidth. Third, we create an embedded stand-alone
hardware platform with an omni-directional transducer, which
is critical for practical deployment scenarios. Finally, we add
hardware support for inter-node ranging which can enhance
system deploy-ability.

B. Synchronization

A significant amount of work from the distributed systems
community has focused on time synchronization [19], [20],
[21], [22]. The most commonly adopted of these approaches
is the Network Time Protocol (NTP) that uses round-trip
message delay averaging to set times. We show through our
experiments that due to the asymmetric and lossy nature
of modern wireless communication channels, it is extremely
difficult to reach sub milli-second levels of accuracy. To the
best of our knowledge, this is one of the first efforts to explore
how tightly smartphones can synchronize with global time at
the application level. Celltower and GPS synchronization exist
within their own subsystem but are usually isolated from the
main system clock or updated at a coarse granularity (seconds).
There has been significant work related to message passing
based approaches from the sensor networking community [23],
[24], [25], [26] that can be applied towards infrastructure
timestamping. Eventually these approaches could find their
way into mobile phones. In our system, the beacons are
synchronized with GPS time such that in the future when
high-precision synchronization is ubiquitous, smartphones can
leverage these sources to directly compute TOF ranges.
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Fig. 3. NTP second tick deviation from UTC second tick

Jitter (number of samples at 48kHz)
0 1 (22µs) 2 (44µs)

iPhone 4 66% 34% 0%
iPhone 5S 0% 87% 13%

TABLE I. AUDIO SAMPLING JITTER

III. TIME SYNCHRONIZATION

Time synchronization is extremely valuable in a wide
variety of applications. It enables event ordering, coordinated
actuation, energy-efficient communication, low-power duty
cycling and the ability to measure distances. In this section,
we explore the limits of time synchronization on mobile
platforms and propose a new approach that synchronizes the
audio recording subsystem to external infrastructure in order to
provide applications with the ability to perform precise time-
stamping (especially of audio events) isolated from indeter-
minism within the operating system and network.

A. Network Time Synchronization

Benchmarking time synchronization accuracy on a smart-
phone is difficult because the current platforms typically do not
expose low-level I/O and the operating systems are optimized
for energy-efficiency rather then timing performance. In order
to understand the nature of timing and synchronization on
smartphones, we ran a set of timing experiments that examine
key time-synchronization performance characteristics as de-
scribed below.

1) Clock Granularity: We first need to establish the gran-
ularity of the clock on our mobile device in order to bound
the minimal synchronization accuracy. This can be achieved
by calling os get time of day() continuously in a tight loop
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Fig. 4. Audio buffer OS time-stamping jitter

and inspecting the tick increments. Figure 2 shows the resulting
distribution of tick values for two iOS devices. The histograms
show that the system clock has a granularity of 1-microsecond
and that jitter associated with OS delays and context swaps is
quite low. The faster of the two platforms (iPhone 5S) exhibits
almost no jitter from background tasks. A similar experiment
on an Android Galaxy Nexus 4 showed high levels of jitter
for most reads, on the order of milliseconds and greater due
to differences in Android’s task scheduler. For this reason, we
perform the rest of our experiments using iOS. Also, currently
iOS has a lower latency audio subsystem as compared to
Android. Round-trip audio times computed by looping test
sounds back from input to output using [27] and are typically
below 10ms on iOS devices.

2) ADC Timing Performance: In order to compare the
smartphone’s clock against a reference source, we need to
establish a low-latency input or output mechanism. Typical
smartphone I/O includes: UART, Bluetooth, WiFi, LTE, the
display, audio, external buttons and various sensors like light
and acceleration. With the exception of audio and the UART,
the interfaces exhibit milliseconds or greater amounts of timing
uncertainty. The audio interface is particularly appealing since
it contains its own continuous sampling clock that can be used
for relative time stamping and has the ability to configure
buffer sizes and sampling rates.

In order to estimate audio latency, resolution and clock
drift, we connect the PPS output from a uBlox 7 GPS re-
ceiver through a level shifter into the microphone input of
a smartphone. The GPS PPS output provides a highly stable
clock reference with less then 25 nano-seconds of jitter. In
our first experiment, we collect 1 hour of PPS input audio
signals. Table I shows the jitter between the time that the PPS
signal transitions as compared to the expected time based on
the audio sampling rate. For example, a jitter value of 1 means
that the PPS pulse period was 1 audio sample (22µs) different
than expected over that period of time due to sampling jitter or
clock drift. From these values we can compute that the clock
drift-rate over an extended period on the iPhone 4 and iPhone
5S are 7.17ppm and 23.56ppm respectively as compared to the
GPS reference. We see a worst-case sampling jitter between
two PPS edges as 2 audio samples.

3) OS Timing Performance: In order to measure timing
performance based on OS time stamping, we use the same
experimental setup from the previous section and also times-



tamp the arrival of each audio buffer segment using the OS
clock (1µs granularity) and compute the relative PPS edge
in the audio stream. Figure 4 shows that the worst-case jitter
between OS tick time and a PPS tick is 724µs with an average
jitter of 53.2µs. Since the PPS signal is regular, this allows us
to bound the OS timestamping jitter to within 1ms.

4) NTP Timing Performance: We can now use our OS
timestamping bounds to benchmark the performance of NTP
running on the phone as compared to the GPS input. Using
ios-ntp [?], we capture NTP timestamps along with the system
time and our audio PPS input. For each NTP sample, we allow
the server to synchronize for 200 seconds before comparing
against the OS and PPS time. During this time the NTP
process performs clock rate adjustment. Figure 3 shows the
jitter between the NTP clock and the PPS timestamps over
100 different NTP synchronizations. Since NTP is negatively
impacted by jitter and asymmetry in communication channels,
we ran experiments using LTE, campus WiFi and an idle
WiFi router directly connected to a Stratum 1 NTP server fed
by a dedicated GPS clock. We see that NTP using LTE has
an average jitter between synchronization attempts of 47ms
(max 466ms), while NTP over normal WiFi has an average
jitter of 30ms (max 326.5ms) and even in the isolated ideal
case, there is an average of 19.3ms (max 74ms) of jitter. For
measuring audio TOF, a time of 1ms corresponds to a distance
of 0.33m while the distance equivalent to 47ms is more than
15m. This is not accurate enough to be useful for most indoor
localization applications. In the next section, we describe our
acoustic TDOA synchronization approach that improves timing
accuracy to 720µs on average in practice.

B. TDOA Synchronization

As part of the TDOA calculation, it is possible to estimate
the instant when each signal was originally transmitted. We
use this approach to synchronize the audio stream with re-
spect to global time, which can then be used as a reference
for application-level time-stamping. Time-stamping of audio
events based on their position in a buffer completely removes
any sources of delay from the operating system or networking
stack. Given the relatively small amount of jitter seen when
sampling audio, it also stands as a reasonable alternative for
synchronizing other events, for example to perform cooperative
ranging between two mobile phones.

Figure 5 shows the layout of three transmitters and a
receiver in 2-D space, and their corresponding notions of
time. We consider the receiver’s clock to be offset by Toffset
from the transmitter’s clock. Synchronization is achieved by
estimating this offset. Typically this time offset is not estimated
since the TDOA equations are used to directly estimate the
position of the receiver [28]. However, the time offset can
be obtained easily once the position has been estimated, as
explained below.

(Xi, Yi) denotes the position of transmitter i for i = 1, 2, 3
and is assumed to be known. The position of the receiver (x, y)
is unknown. di is the distance between transmitter i and the
receiver and is given by:

di(x, y) =
√

(Xi − x)2 + (Yi − y)2

Time 

Time 0 at Rx 

Time 0 at all Tx 

Toffset 

TOF1 

TOA1 

Time at which Rx  
receives signal from  

Tx1    Tx2   Tx3 

Tx1(X1, Y1) 

Tx2(X2, Y2) 

Tx3(X3, Y3) 

Rx(x,y) d3 
(TOF3) 

d1 
(TOF1) 

d2 
(TOF2) 

TOAi = TOFi + Toffset 

Fig. 5. Timings for estimation of Toffset

The TOF of the audio signal from transmitter i to the receiver
is given by:

TOFi =
di(x, y)

V

where V is the speed of sound.
The corresponding arrival time of the signal measured by the
receiver is the TOAi, given by:

TOAi = TOFi + Toffset

TOAi =
di(x, y)

V
+ Toffset

The receiver needs to estimate Toffset given TOAi and
(Xi, Yi) for i = 1, 2, 3. To estimate the Toffset, we first
estimate the position of the receiver. To estimate (x, y), we
use the standard multilateration technique [28] by eliminating
Toffset and arrive at the TDOA equations. We then find the
(x, y) that minimizes the sum of squares of error (ξ) in TDOA.

Measured TDOAij =TOAi − TOAj

True TDOAij =
di(x, y)− dj(x, y)

V

ξTDOAij (x, y) =[TOAi − TOAj −
di(x, y)− dj(x, y)

V
]2

(x̂, ŷ) = argmin
x,y

∑
(i,j)

1≤j≤N
j 6=i

ξTDOAij
(x, y)

We next estimate Toffset from (x̂, ŷ) and the TOA by:

ˆToffset =
1

3

( 3∑
i=1

(
TOAi −

di(x̂, ŷ)

V

))

IV. COMMUNICATION

The ultrasonic signals generated by the system must be
able to provide accurate ranging information, support multiple
access and encode data to identify the transmitter. In [4], data
symbols are encoded as rate adjusted ultrasonic chirps, which
rely on different rates of increasing/decreasing frequency over
time to be identifiable by matched filtering. Chirps benefit from
an effect known as Pulse Compression, which increases the
SNR at the receiver by a factor T∆f over a sinusoidal signal
at equal transmission power, where T is the signal duration and
∆f is the bandwidth. This improves both the range resolution
as well as the SNR of the data symbols for better detection.
This encoding scheme is no longer attractive due to the more
limited frequency response of current iOS devices (−35dB
falloff between 19kHz and 22kHz). To achieve the same
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Fig. 7. Performance of modulation scheme

SNR at the receiver with a quarter of the bandwidth, the
packet length T would have to be quadrupled, reducing the
data rate and making it more likely that interference is caused
by multiple packets being received concurrently.

In order to maintain system performance, we propose the
scheme shown in Figure 6. Since chirp signals sweep across
a given frequency range, it is possible to partially overlap
symbols without causing significant interference. This not only
allows us to increase the data rate, but also increase the symbol
duration, which increases the SNR of the signal at the receiver
while keeping packet duration to a minimum. The preamble is
stretched over the entire packet, making it easily discernible
after matched filtering and improving the range resolution of
the transmission. Data symbols have also been increased in
length, with the start of each data symbol being separated by
several milliseconds. Instead of using different chirp rates to
denote four different data symbols, only an up-chirp (frequency
increasing over time) and a highly orthogonal down-chirp
(frequency decreasing over time) are employed to keep the
scheme robust to errors. Each symbol is faded in and out in
amplitude over 5ms to prevent the loudspeaker from producing
audible clicks due to rapid changes in signal power.

Figure 7 shows the performance of our modulation scheme
for two different packet lengths of 150ms and 250ms. The
150ms packets use a data symbol length of 25ms, a preamble
length of 150ms and a symbol separation of 9ms. The 250ms
packets use a data symbol length of 30ms, a preamble length
of 250ms and a symbol separation of 15ms. To test the
performance of this modulation scheme, we transmitted 500
packets with random data while varying the transmit power
to an iPhone 5S, which performed the demodulation of the
received data. The 150ms long packets perform nearly as well
as the 250ms long packets in terms of Bit Error Rate (BER)
and Packet Reception Rate (PRR), with only a negligible
impact on PRR down to an SNR of 2.5dB. The 250ms long
packets do not exhibit a significant impact on PRR until an
SNR of 1.8dB.
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V. SYSTEM DESIGN

As decribed earlier, the two main hardware components in
our system are the Ultrasonic Beacons and the Network Master
that broadcasts GPS time. It is critical that all components in
the system exhibit low levels of jitter and that the beacons
are able to uniformly transmit our audio signal with minimal
distortion.
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Fig. 10. Ultrasonic beacon transmission jitter
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Fig. 11. Experimental setup

A. Hardware Design

Figure 8 shows a picture of our Network Master with a
Venus 7 GPS chipset receiver connected to an external antenna.
The GPS antenna is placed with a long cable to a nearby
window such that it can receive at least 3 satellites required
to generate an accurate PPS signal. Each node consists of a
16MHz ATmega256RFR2 processor with integrated 802.15.4
radio. In order to increase transmission range, we include a
CC2591 amplifier that allows the node to transmit 100−200m
indoors.

Figure 9 shows one of the Ultrasonic Beacon nodes
mounted to a tripod. This configuration is easy to install into
drop-down ceiling tiles in commercial spaces by drilling a hole
for the horn. The beacon hardware consists of the main PCB,
a piezo electric tweeter bullet driver and a custom designed
ultrasonic horn. The Ultrasonic Beacon board consists of the
same hardware as the Network Master with the addition of a
TLV320 mono 24-bit, 192kHz DAC and an Akustica AKU340
ultrasonic MEMS microphone. The TLV320 communicates
directly with the main processor using I2S, which we generate
using an SPI port and a timer output, and has both an
integrated amplifier as well as an audio codec for sampling
microphone data. It is worth noting that the TLV320 has
a programmable PLL allowing us to transfer data at non-
standard audio rates that are easier to generate from our micro-
controller. In contrast to other comparable audio solutions (like
embedded Linux platforms), this tightly coupled design allows
us to have an end-to-end jitter from reception of an RF packet
to excitation of the speaker of less than 20µs as shown in
Figure 10.

In a typical loud speaker, as the audio frequency increases,
the spread of the signal decreases, eventually forming a beam.
In our system, we ideally want an omnidirectional speaker that
has a flat frequency response across the 18−24kHz frequency
band that can uniformly deliver data without distortion. Since
no such speaker was commercially available, we designed a
custom transducer based on a multi-sector omnidrectional horn
design shown at the bottom of Figure 9.

Fig. 12. Phone app flowchart

B. Software Design

In this section we discuss the transmitter firmware as well
as the receiver demodulation software.

1) Ultrasonic Beacon Firmware: Each Ultrasonic Beacon
synchronizes with the Network Master over a single hop
using its 802.15.4 radio. Once the beacon is synchronized,
it plays back the ultrasonic signal stored in its flash memory
at the beginning of its designated TDMA slot. The Ultrasonic
Beacon hardware platform is based upon low-power, highly
integrated components, which make the playback of ultrasound
signals at a high sampling rate a non-trivial task. The platform
is capable of playing approximately 1 second of 16-bit mono
audio at a 125kHz sampling rate. Data is transferred between
the MCU and the Audio Codec via a UART port running in
SPI mode. The SPI’s clock-line is routed into a counter on
the MCU, which divides its frequency by 16. The SPI data,
clock and the counter output mimic the data, clock and word
clock lines of a left justified I2S interface respectively. I2S
requires continuous dataflow during playback, therefore there
is a tight time constraint on reading the waveform stored in
flash memory and copying it to the SPI output register. Any
additional computations that are required need to be carefully
timed to ensure a continuous output. The limited flash memory
of 256kB on the ATmega256RFR2 MCU is shared among the
firmware and the ultrasonic signal. The signal is uncompressed
and is loaded as multiple arrays of 16-bit integers into flash
from a C header file that is populated by a MATLAB script.

2) iOS App: Figure 12 shows an overview of the receiver
demodulation software that runs on iOS. It was prototyped in
MATLAB before being ported to Objective-C. The algorithm
for demodulating the ultrasonic transmissions and calculat-
ing the receiver’s position was translated into C code using
MATLAB’s C coder. The iOS app continuously listens on the



rerror 

Rroom 

Φ 

Φ 

Transmitter 

Receiver 

(a)

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Error radius (m)

A
bs

ol
ut

e 
E

rr
or

 in
 T

of
fs

et
 (µ

s)

 

 

Error from multiple random placements
Time sound travels in error distance

(b)

1 2 3 4 5 6 7 8

5000

10000

15000

20000

Room radius (m)

A
bs

ol
ut

e 
E

rr
or

 in
 T

of
fs

et
 (µ

s)

 

 

1.5°
4.5°
  6°
 15°
120°

φ

270µs 700µs

(c)
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microphone and periodically passes filled audio buffers to the
demodulator. Once the phone’s position is determined using
TDOA ranging and multilateraion, the app computes the TOF
of the signals it has just received to determine the start of the
previous TDMA cycle relative to the captured audio buffer.
The audio sample index s0 at which the TDMA cycle started
is stored in memory and the phone is now synchronized to
the transmission infrastructure. A counter keeps track of how
many audio samples have been captured since s0 and calculates
successive TOF values of successfully demodulated ultrasonic
packets based on their TOA in relation to s0. Whenever
the phone successfully demodulates enough ultrasonic packets
to localize itself using TDOA it will resynchronize to the
transmitters.

VI. EVALUATION

In this section, we evaluate the effect of errors in de-
ployment and measurement of beacon node locations on our
ability to synchronize time which is equivalent to estimating
the Toffset value defined in Section III-B. We also evaluate
the sensitivity of transmitter placement. These two evaluations
are performed through simulation given the model described in
the section below. We then experimentally evaluate the timing
accuracy and ranging capabilities of our platform.

A. Deployment and Geometry Error

We assume the spatial configuration of transmitters and
receivers in 2-D space as shown in Figure 13(a). The room
is circular with a radius of Rroom. For simplicity, the three
transmitters are assumed to be placed in the periphery of the
room. We assume some symmetry in placement as indicated by
the separation angle φ between two pairs of transmitters. The
measurement error rerror in transmitter position is assumed
to be uniform in all directions around a transmitter and to
be equal at all three transmitters. The true position of each
transmitter is at a random location on the circle that defines
possible deployment error. The receiver is placed in the center
of the room and we assume that the speed of sound is constant
at 340m/s.

1) Effect of incorrect measurements in transmitter posi-
tions: First, we evaluate the impact of measurement error in
the transmitters’ positions with Rroom = 5m and φ = 120◦. We

then analyze the effect of rerror on Toffset by sweeping rerror
from 0 to 1m and generating 400 random configurations of the
transmitters on their error circles and estimating the Toffset
for each configuration. The solid blue lines in Figure 13(b)
show all possible values of errors. We see that the worst-case
error for each rerror is bounded at the top by the time taken by
sound to travel the same distance. Typically, while deploying
this system with nominal care, the measurement error can be
restricted to below 10cm, which is equivalent to an error of
270µs in Toffset .

2) Effect of transmitter placement geometry and room size:
Next, we evaluate the effect of room size and geometry of
the placement by increasing Rroom up to 10m and varying
φ from the worst possible placement (φ = 0◦) to the best
possible placement (φ = 120◦) geometry. We assume a value
of 10cm for rerror from the previous section. Figure 13(c)
shows the worst case error among 400 simulations at each
data point. We see that for φ = 1.5◦ the error is quite
high (15ms for Rroom = 5m) and grows proportionally to
the room size. This is because the transmitters are almost at
the same location, therefore the three unique TOA equations
that we expect from the transmitters are identical, leading to
insufficient information. The position of the receiver could be
incorrectly estimated anywhere within the room, which is why
we see the worst case error in Toffset growing linearly with
the room size. For the best case geometry of φ = 120◦, we
see that the error (270µs) is not dependent on the room size
and is determined by rerror, except when Rroom is small
and comparable to rerror. This is because at φ = 120◦ the
transmitters are sufficiently separated to provide the timing
information required to estimate the receiver position and
Toffset. For intermediate values of φ, we see that as the room
size increases, the error increases with room size until the
point where the room size is large enough to provide sufficient
spatial separation to the transmitters. This can be seen when
each line reaches a maximum and then decreases.

B. Synchronization and Ranging Performance

In order to evaluate the synchronization error of our method
and the resulting positioning error, we set up four ultrasonic
transmitters in a 4.5x5.5m area. Our ranging signals were
generated using a MOTU Ultralite mk3 10 channel audio
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Fig. 14. Acoustic time synchronization accuracy and position error

interface and received by an iPhone 5S and an Audix TM-
1 measurement microphone, which were co-located on a
microphone stand. The experimental setup can be seen in
Figure 11. The second recording device allowed us to tightly
time synchronize all transmitters as well as the measurement
microphone to obtain ground truth TOF and position measure-
ments. The iPhone synchronizes itself to the transmitters using
our audio synchronization method and recorded its calculated
position and TOF values. We perform measurements at 20
random locations in the room, for which 60 samples were
recorded each. A mean absolute time synchronization error
of 720µs with a maximum of 1484µs was achieved. This
resulted in a maximum absolute distance error of 15.6cm.
Figure 14(c) shows the Cumulative Distribution Function of
positioning error resulting from time synchronization using our
method. 98% of the samples exhibit a positioning error of less
than 12cm and 100% show an error of 16cm or less in LOS
conditions. This small-scale experiment validates the concept
that highly accurate clock synchronization is possible through
audio sampling.

Further, we conducted an experiment where one or two
transmitters (depending on the position of the receiver) were
obstructed by a large white board. In this case, approximately
78% of the calculated position samples were within an ab-
solute distance error of less than 14cm (see Figure 14(c))
and a maximum error of 4.16m was encountered. The large
maximum error is due to the phone being unable to measure
its position accurately due to multipath or severely attenuated
ranging signals, causing it to synchronize erroneously to the
transmitting infrastructure when placed in certain locations.
Figure 14(b) shows that this is reflected in a maximum absolute
time synchronization error of 39.1ms with a mean of 2.33ms.
These points could be eliminated if we received one good set
of samples and then performed TOF ranging. We purposefully
disabled this capability to highlight the impact of obstructions
on TDOA localization. One could also apply filtering to the
recorded signals by thresholding and sampling over multiple
TDMA cycles to obtain an accurate lock on the receiver’s
position is therefore advisable in a real-world scenario. A
software-based Phase-Loop Lock (PLL) controller that slowly
adjusts the clock based TDOA inputs when available rather
than immediately resetting the timing offset on each sample
can prevent isolated erroneous position measurements from
causing significant time synchronization errors.

.

VII. LIMITATIONS AND FUTURE WORK

Although promising, there are a few limitations to this
approach. In 3-D space, our system relies on the receiver being
in LOS of at least four transmitters in order to synchronize.
However, it is possible that obstructions inside the building
or the person holding the mobile device block one or more
transmitters. We experimentally studied the effect of this as
shown in Figure 14(b) and Figure 14(c). It is also possible
that in certain areas such as long corridors, fewer than three
transmitters are present. In these cases, we can utilize the
inertial sensors on the phone to track the mobile device using
pedestrian dead reckoning [29]. Another challenge that we are
currently working on is distinguishing between multipath and
LOS signals. The presence of a multipath signal in the absence
of a direct LOS signal could result in a TOF measurement
which is equivalent to the receiver being located at a much
larger distance away from the transmitter. We are exploring
the possibility of utilizing the building layout and geometry,
as well as incorporating additional sensors for localization such
as Bluetooth Low Energy or Visible Light Communication [30]
to overcome this problem.

VIII. CONCLUSIONS

In this paper, we present a platform for indoor ranging
and localization of mobile devices. The platform consists
of a hardware module that can be wirelessly triggered to
simultaneously transmit ultrasonic chirps in the frequency
ranges just outside of human hearing that are still detectable
by smartphones. The beacons are synchronized from an ex-
ternal GPS time source and designed to transmit modulated
ultrasonic ranging and data signals with low levels of jitter.
When three or more transmitters are available, the system
can synchronize the smartphone with global time allowing
direct TOF measurements while the clock remains stable. This
improves the system in terms of robustness when transmitters
are blocked, as well as installation flexibility by reducing node
density requirements. In practice, we are able to synchronize
the free running audio sampling clock to an average of 720µs
and remain synchronized with drift rates on the order of 2m
per hour.

The platform also provides an ultrasonic microphone input
that can be used for beacon-to-beacon ranging. This additional
capability can be used in the future to help automatically
configure beacon locations. The combination of inter-beacon



and TOF ranging will enable approaches like simultaneous
localization and mapping of location infrastructures as devices
move through indoor environments.
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