
Respawn: A Distributed Multi-Resolution
Time-Series Datastore

Maxim Buevich † Anne Wright ‡ Randy Sargent ‡ Anthony Rowe †
† Dept. of Electrical & Computer Engineering

‡ Robotics Institute
Carnegie Mellon University, U.S.A.

{mbuevich,arwright,rsargent,agr}@andrew.cmu.edu

Abstract—As sensor networks gain traction and begin to scale,
we will be increasingly faced with challenges associated with
managing large-scale time-series data. In this paper, we present
a cloud-to-edge partitioned architecture called Respawn that is
capable of serving large amounts of time-series data from a
continuously updating datastore with access latencies low enough
to support interactive real-time visualization. Respawn targets
sensing systems where resource-constrained edge node devices
may only have limited or intermittent network connections
linking them to a cloud-backend. The cloud-backend provides
aggregate storage and transparent dispatching of data queries
to edge node devices. Data is downsampled as it enters the
system creating a multi-resolution representation capable of low-
latency range-base queries. Lower-resolution aggregate data is
automatically migrated from edge nodes to the cloud-backend
both for improved consistency and caching. In order to further
mask latency from users, edge nodes automatically identify
and migrate blocks of data that contain statistically interesting
features. We show through simulation and micro-benchmarking
that Respawn is able to run on ARM-based edge node devices
connected to a cloud-backend with the ability to serve thousands
of clients and terabytes of data with sub-second latencies.

I. INTRODUCTION

Technological advances in low-power processors, commu-
nication and sensors are rapidly accelerating our ability to
record information about the physical world. This data has
the potential to revolutionize application domains including
critical infrastructure monitoring, health care, transportation,
defense systems, manufacturing, smart buildings and city-wide
energy optimization. However, for this data to be actionable,
we need scalable and efficient solutions designed to handle the
increasingly enormous amount of data being generated.

Current large-scale sensing systems are typically composed
of a tiered architecture where resource constrained sensor
nodes transmit data to a server-backend. Limited networking
capabilities (for example in wireless networks) often force
designers to significantly filter data at the source. In many
cases, this data filtering removes information that could be used
to support new functionality beyond the original design scope.
Given the current trend in disk and flash memory technologies,
it is now possible to store large amounts of data locally on an
embedded gateway device.

Unlike most of the approaches used in current cloud com-
puting systems, embedded gateways are CPU limited, memory
constrained and exist as field devices on networks with high
latencies. Many distributed sensing systems also suffer network
outages which without coordinated local storage lead to data

loss. To support interactive visualization and querying of data,
these systems need to intelligently organize, pre-process and
pre-fetch data to provide timely access to data. Ideally, a sensor
networking datastore should also have provisions to support
streaming communication that might be required by control
applications. The availability of fresh (recent) data often con-
flicts with the throughput gains achievable by batching data.

In this paper, we present Respawn, a distributed time-series
datastore designed to manage hundreds of thousands of sen-
sor feeds while providing range-based queries at sub-second
latencies from resource-constrained devices. To achieve this,
Respawn leverages two concepts: cloud-to-edge partitioning
and multi-resolution storage. In Respawn’s distributed archi-
tecture, communication is load balanced between a few server-
class machines and many inexpensive, low-end embedded edge
devices. This is achieved by partitioning the data between
the cloud and the edge, storing the low-resolution aggregate
data in cloud nodes and the high-resolution data at field-
deployed edge nodes. A dispatcher front-end is responsible for
directing queries between the cloud and the edge and, in effect,
maintaining low request latencies. The dispatcher is designed
to operate predominantly out of memory to support tens of
thousands of concurrent connections. A bloom filter-based
caching layer is used to determine the location of requested
data and to avoid costly network accesses.

For multi-resolution storage, Respawn leverages the open-
source Bodytrack Datastore (BTDS) [1], a light-weight multi-
resolution datastore for time-series data. On edge node gateway
devices, BTDS is responsible for down-sampling incoming
data and storing hierarchically-organized copies of the data
at differing resolutions. This pre-processing upon ingest of
the data significantly improves range-based queries where a
subset of data is requested from an arbitrary timespan. In the
evaluation section, we show that BTDS can perform range-
based queries running on an embedded platform at nearly the
same speed as range-based requests for standard relational
databases running on server-class hardware. We also extend
BTDS to support lossless compression, where different levels
of compression are applied to different levels in the hierarchy,
allowing for more commonly accessed data to be served faster.

Since edge nodes typically have latencies of almost an
order of magnitude greater than the cloud, selective data
migration can be used to further improve latency. A Quality-
of-Service (QoS) parameter at each gateway node is used to
determine how much bandwidth is available for data and hence
how aggressively tiles can be migrated. Top-level aggregate

tiles are migrated first since these are typically used as starting
points for range-based queries. Low-level (higher resolution)
tiles are migrated based on both client access patterns and
based on data metrics like standard deviation. Standard de-
viation is one of many metrics that can be used to pinpoint
tiles that would be of more interest to clients. We evaluate
these different migration schemes through a small user study
in which participants are required to search through data.

In order to evaluate the performance of Respawn, we
benchmark ingest and query times on a single server machine
comparing against MySQL, SQLite and OpenTSDB. This in-
cludes an evaluation of the impact of using LZ77 compression.
We also benchmark BTDS on memory-contrained 450Mhz
ARM9 embedded hardware which cannot support MySQL
or OpenTSDB. Finally, we evaluate our latency masking
techniques using user traces from a network consisting of
an embedded gateway board, dispatcher, and cloud datastore.
Using trace-driven simulation, we evaluate how the system
scales across large networks with thousands of edge nodes.

In summary, this paper makes the following three main
contributions. First, it provides the design of a highly-scalable
time-series datastore that leverages local multi-resolution stor-
age, along with compression, and is able to operate on em-
bedded hardware. Second, we present a cloud-to-edge hand-
off mechanism with intelligent caching to reduce latencies for
interactive queries and visualization. Finally, we evaluate the
system in terms of single-server performance and horizontal
scalability through the addition of edge nodes.

II. RELATED WORK

It is becoming increasingly apparent that no single ap-
proach can solve all data storage problems [2]. For sensor
networking applications, it is important to be able to store
and process many streams of data simultaneously. There have
been several efforts to build upon databases like MySQL to
support stream processing functionality like pattern correlation
queries [3]. Other similar work has tried to incorporate stream
processing engines and historical storage [4]. These efforts
illustrate many of the challenges involved with large-scale
time series data, even in the context of highly-connected and
resource abundant datacenters. In this section, we highlight a
few of the key distinctions between traditional databases and
those designed for sensing applications.

A. Time Series Datastores

There have been many examples of time series databases
for infrastructure monitoring (for example in data centers)
and financial analysis, such as DataGarage[5], RRDtool [6],
tsdb [7], TSDS [8], OpenTSDB [9], Dremel [10], Vertica [11]
and DataSeries [12]. Some of these databases already support
multi-resolution queries [5], [6], [9], [11]. However, none of
them natively support sub-second time stamping. RRDtool
is one of the few options that can operate on an embedded
target, but it is designed to run locally and does not provide
any distributed management features. Many of these databases
do not natively support access control [5], [6], [7], [9], [10],
[12]. Even the ones that do have access control [11] lack per-
stream permissions and do not operate in a distributed manner.
Respawn in contrast embraces a cloud-to-edge distributed

operation with per-sensor stream security through use of the
a Publish-Subscribe access control model. The OceanStore
[13] project has very similar goals and features to Respawn.
OceanStore is a global persistent data store designed to be
highly scalable. One of its primary goals is to provide consis-
tent and highly-available service to an infrastructure running
on top of untrusted devices. It also strives to reduce latency
by capitalizing on data locality whenever possible. However,
OceanStore is not primarily a time series database and hence
does not provide multi-resolution access. Because the data
could be significantly more general, it utilizes access-based
caching schemes rather than proactive data migration. It is
also not optimized to run on embedded targets.

B. Streaming and Aggregation

Another approach to managing continuous data is to per-
form on-the-fly aggregation using stream processing tech-
niques [14] [15]. This approach works well for networks that
have enough provisioning to transfer data in real-time, but suf-
fer in that they potentially lose information that could be pro-
cessed later. In Respawn, we leverage an XMPP communica-
tion layer to deliver real-time transducer information and then
provide a componentized storage facility that operates in the
background. Decoupling the design of the stream-processing
functionality from the historical data allows the system to more
flexibly batch entries to increase ingest throughput.

C. Sensor Network Databases

Many databases have been proposed that operate within
sensor networks, such as Diffusion[16], Tag [17], TinyDB
[18], Cougar [19] and DIMENSIONS [20]. Diffusion provides
a routing and in-networking processing approach that propa-
gates queries using flooded messages. Cougar uses a similar
approach only it uses a static configuration of nodes that is
selected using a proxy front-end. This proxy front-end is still
responsible for dispatching requests out to the leaf-nodes of
the sensor network for data collection. There is no notion of
storage or caching at the proxy. TinyDB focuses on running the
database within resource constrained sensor nodes on micro-
controller hardware. Queries are processed directly on end-
point sensor devices. Respawn is more geared towards data
management that runs on sensor gateway collector devices
rather than on the leaf nodes themselves. In many cases,
these gateway collectors could be connected to proprietary
networks where it would be difficult to run custom software.
For example, one could connect a Respawn edge node to a
buildings BACnet data feed and it would act as a consolidator
of potentially hundreds of sensor streams. Dimension further
improves upon the idea of in-network storage by using wavelet
transforms to deal with data aging and multi-resolution.

D. Middleware

Certain sensor networking middleware frameworks also
provide storage capabilities. sMAP [21], for example, focuses
on with data delivery, but also provides querying and retrieval
of sensor data. sMAP is compatible with MySQL for storage,
but can also use a custom binary time-series datastore called
readingDB to help cope with the performance challenges. read-
ingDBs performance is significantly improved over MySQL,

dispatcher	

client	

latency/bandwidth	
 barrier	

edge	
 nodes	
 WSN	

mobile	

device	

edge	
 data	

request	

cloud	
 data	
 	

request	

address	

request	

migra;on	

cloud	

node	

Fig. 1: Respawn High-Level Architecture

but it is still primarily a centralized datastore without built-
in load balancing. readingDB does however provide delta
encoding and zlib compression and can be manually distributed
based on how sMAP is configured. In contrast, Respawns de-
sign is centered around the notion of edge-to-cloud partitioning
and is highly distributed by default. Its primary goal is latency
masking which it achieves through intelligent data migration.

E. Why Respawn?

Data centers have become increasingly effective at pro-
viding low-latency access to vast amounts of data. Services
like Google Maps allows people to interactively scroll through
databases that are hundreds of Terabytes in size with hundreds
of Gigabytes of indexing information. Sensor data and the
way in which it is collected differ significantly from the
type of information that current data center practices are so
efficient at handling. Typical operations performed on time
series data include plotting, zooming, correlation, clustering,
prediction, pattern matching queries and summarization. Time
series processing systems often have both a historical and
real-time component. In order to optimize ingest throughput,
databases often batch large segments of data. Unfortunately,
this introduces significant delay. Most traditional databases
deal with read and write transactions that are for the most
part independent. In time series databases, there is a con-
stant stream of appends with intermittent queries. Specific
to sensing systems, data sources are often distributed and
must be collected on field devices. Unlike data centers with
high-speed network interconnects, field devices are frequently
connected with expensive links like cellular or satellite where
customers are charged per kilobyte. Few open-source time
series databases provide the timing granularity required for
capturing physical events. The majority of these systems were
designed for data center monitoring or financial applications
that require integer second timing granularity. Sensing systems
should be able to distinguish sub-second events. As sensor
networks are finding their way into a wider range of large-scale
complex applications, there is a growing need for a scalable
storage platform customized for these particular needs.

III. DESIGN AND IMPLEMENTATION

The Respawn architecture enables interactive exploration
and responsive querying of time-series sensor data, despite
the data originating from embedded nodes behind a latency-
bandwidth barrier. A high-level representation of the Respawn
system architecture is displayed in Figure 1. Sensor readings
are generated at the edge, in most cases from mobile devices

and wireless sensor network deployments. The sensor data
streams are transmitted through a series of adapters to Respawn
edge nodes, low-cost embedded gateways outfitted with large
amounts of flash storage. Edge nodes process and store the
data locally and periodically notify a Respawn cloud node
of new data received. Cloud nodes are server-class machines
which handle much of the load of and serve as low-latency
data caches for the Respawn system. The cloud nodes also
facilitate a continuous migration of a subset of the total data
being stored by the edge nodes. When data is migrated from
the edge, the cloud node notifies the Respawn dispatcher.

The dispatcher serves as the system entry point for almost
all data requests initiated by clients. It is designed to handle
large volumes of small requests and to maintain thousands of
open connections at once. The dispatcher’s primary function
is to redirect requests from clients to end-nodes. Redirections
are decided based on client-perceived latency, as well as load
on individual edge nodes and load on the entire network. In
Section IV, we show that despite the centralized nature of the
dispatcher, it scales to handle thousands of simulataneous users
and does not represent a significant performance bottleneck in
the architecture given our target network sizes.

A. Multi-Resolution Datastore

For the purpose of local data storage, Respawn leverages
Bodytrack Datastore (BTDS), an open-source time-series data-
store which targets multi-resolution queries and interactive
visualization. BTDS stores raw data streams in a lossless
format and additionally generates lossy aggregate versions of
the streams for query acceleration. In the current implementa-
tion, aggregates are calculated by finding a mean average of
datapoint values over a set window, however, it is possible
to incorporate other aggregation functions. BTDS supports
a command line interface for local client requests and an
HTTP/JSON interface for web requests.

1) Data Model: A single instance of the datastore is a
collection of data streams, with each stream separated into a
single raw version and many aggregate version (Figure 2). An
aggregate is a representation of the raw data down-sampled
by a power of two, and therefore corresponds to a distinct
level of resolution. A single aggregate is composed of many
tiles, tiles in turn are composed of one-point buckets. Formally,
a tile represents a contiguous time-range and a collection of
m equally-sized buckets. A bucket is a ”smaller” contiguous
time-range containing either a single datapoint or no datapoint.

In a single instance of the datastore, all tiles contain exactly
m buckets (regardless of resolution level) and thus contain
a maximum of m points. Buckets at level L are half the
size temporally of buckets at level L+1, thus tiles at level L
represent a time-range half the size of tiles at L+1 (please refer
to Figure 2). This also means that, for any arbitrarily-chosen
range in time, the level L view of the data contains twice the
buckets and is up to twice the resolution of the level L+1 view
of the data. By convention, the bucket ”width” (time duration
represented by a bucket) at an arbitrary level is equal to 2level

seconds; thus at level 0 a bucket has a ”width” of 1 second.

A tile is uniquely addressed by its resolution level and
offset. A tile’s offset at level L corresponds to its distance in
time from the Unix epoch as measured in tiles of level L.

Unix	
 &me	
 (seconds)	

4	
 8	
 12	

bucket	
 (le	

0	
 1	

offset	

0	
 1	
 2	
 3	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

re
so
lu
&o

n	

le
ve
l	

-­‐1	

0	

1	

2	

…
	

…
	

raw	
 data	
 	

stream	

0	

Fig. 2: BTDS Multi-Resolution Storage

Figure 2 shows an example of how aggregate data tiles are
organized within BTDS. The raw data stream and three of
the aggregate versions are displayed (other aggregates are not
shown). Each aggregate is represented by tiles of m=4 buckets
(a small m value was chosen for presentation purposes). The
stream in this example begins at the Unix epoch, thus the
leftmost tiles have an offset of 0. At each level of resolution,
tile offsets are incremented as time progresses.

BTDS stores data streams as uncompressed binary files
on disk (In Section IV we explore the impact of adding
compression to BTDS). Sets of contiguous tiles at a single
resolution are organized into files in much the same way that
buckets are organized into tiles. Files are named according
to their corresponding range of offsets and are organized into
two directory levels. Top-level directories separate individual
data streams while bottom-level directories separate resolution
levels within data streams. The structure of BTDS maps well
to the organization of many common filesystems and enables
performance benefits associated with filesystem-level caching
and optimized lookup.

2) Making Requests: Respawn queries are implemented on
top of independent BTDS tile requests. In Respawn, BTDS
tile requests are made via HTTP and return JSON (Javascript
Object Notation) representations of tiles. A tile request must
specify a data stream, a tile resolution level, and a tile offset.
Data stream names are split into two parts: a device name
and a channel name. Channels which are grouped into devices
can share timestamp values, resulting in accelerated ingest and
saved disk space. The level and offset specified in a request
maps directly to a tile position in the data stream. Because all
tiles are precomputed at the time of ingest, requests are made
in constant time, regardless of the resolution level. The format
for an HTTP tile request is given below:

(request format:)
GET /tiles/DEVICE.CHANNEL/LEVEL.OFFSET.json

(example:)
GET /tiles/sensor.temperature/10.2609.json

Each tile request yields JSON data for a single tile. A
response contains an array of datapoints, an array of fields de-
scribing each datapoint, and the tile level and offset. Typically,

each time-series datapoint will contain a timestamp, a mean
value, a standard deviation, and a count. Floating point values
are stored with 64-bit precision. Count and standard deviation
are meaningful for low-resolution aggregate tiles because they
represent the number of raw datapoints used for calculating
the mean value and the standard deviation of the datapoints.
The format for a JSON tile response is given below:

(response example:)
{
"fields": [
"time", "mean", "stddev", "count"

],
"data": [
[1367968303.677585, 486.696, 12.053, 1125],
[1367969280.41341, 494.2760, 4.347, 1507],
[1367970305.185479, 498.36, 3.0824, 1520],
...
[1368391167.9347, 476.883, 5.690, 1531]

],
"level": 10,
"offset": 2609,

}

B. Distribution Layer Components

Time-series sensor data destined for storage enters through
the edge nodes. It is first buffered in memory for a predefined
amount of time so as not to incur the overhead of constant
writes to the BTDS datastore. Periodically, the buffered dat-
apoints are written to the datastore and committed to disk.
The BTDS datastore parses the incoming points and, based
on timestamp, collects them into tiles. Raw timestamp and
value information is stored in the highest-resolution raw tiles;
all other tiles are aggregate tiles generated from raw tiles. In
addition, edge nodes run security key generators that publish
keys to XMPP, which maintains network-wide access control.

A primary function of the cloud node is to serve data
summaries collected from the edge nodes in the network.
To improve latency, the cloud node maintains a collection of
persistent and non-persistent data structures. The first of these
is the Summary datastore, an instance of the BTDS datastore
containing migrated edge tiles which are likely to be requested
in the future. The migrated tiles represent an approximation
of the total data in the distributed datastore. The storage-
constrained nature of the edge nodes necessitates data aging,
but this is not required of the cloud node. Additional modules
are maintained to optimize accesses to the Summary datastore
and to enforce access control policies; these are discussed
further in the section on data migration.

The dispatcher acts as the first point of entry for almost
all client-initiated data requests. It redirects requests for data
tiles of particular channels to the appropriate end-nodes, either
edge or cloud. The dispatcher does not serve time-series data;
requests and response payloads are kept small (i.e. smaller than
100 bytes). This, coupled with the fact that most dispatcher
data structures are kept in memory, enables the dispatcher
to serve a steady-state stream of over ten thousand requests
per second (as described in Section IV). The dispatcher’s
data structures are primarily copies of the structures generated
by the cloud node. For most requests, the dispatcher decides
where clients are redirected to and, as a result, how load in
the system is distributed.

dispatcher	

client	

l/bw	
 barrier	

edge	
 	

node	

DS	

data	

store	

cloud	
 node	

A1	

A2	

(A)	
 Unmigrated	

dispatcher	

client	

l/bw	
 barrier	

edge	
 	

node	

DS	

data	

store	

cloud	
 node	

B1	
 B2	

(B)	
 Cloud	
 Hit	

dispatcher	

client	

l/bw	
 barrier	

edge	
 	

node	

DS	

data	

store	

cloud	
 node	

(C)	
 Cloud	
 Miss	

C1	

C2	

C4	

C3	

A1=AddrRequest	
 	
 A2=EdgeRequest	
 B1=AddrRequest	
 	
 B2=CloudRequest	
 C1=AddrRequest	
 	
 C2=CloudRequest	
 	
 C3=EdgeAddrRequest	
 	
 C4=EdgeRequest	

Fig. 3: Request Transaction Types

An XMPP back-end hosts a publish-subscribe network and
is used by the three primary components for the sharing of
event notifications and other lightweight metadata. XMPP also
provides a delivery system for streaming data, as well as access
control and security.

C. Request Redirection

In this section, we discuss the details of the Respawn
dispatcher and the movement of a client’s data fetch through
the Respawn system as shown in Figure 3. All of the requests
described in this section are standard BTDS-format HTTP
requests extended with a security key.

A data retrieval is initiated by an AddrRequest arriving at
the dispatcher. The dispatcher uses an access control list to
map the requested channel to the security key currently in use
by the channel’s edge node. A key mismatch causes an error
response to be sent. Upon a key match, a list of base resolutions
and a summary bloom filter are checked. If either match, a
redirection to the cloud node is returned. The Bloom filters are
sized to keep the probability of false-positives low, implying a
reasonable assurance that in the case of a match the requested
tile exists at the cloud node. If the previous check resulted in
false outputs, the requested tile has not been migrated and a
redirection to the edge is returned, causing the client to make
a subsequent EdgeRequest.

The probabilistic nature of the CTR Bloom filters allows
for false-positive cloud redirections to occur. This results in
three main types of request traces in the Respawn system:
”Unmigrated”, ”Cloud Hits,” and ”Cloud Misses.” The ”Un-
migrated” traces are the simplest of the three. When a request
processed by the dispatcher fails to positively match, the tile
has not been migrated and the client is redirected to edge.
When a match on the bloom filters occurs, it is only likely
that the tile has been migrated. Hence, a small percentage
(i.e. 1%) of CTR Bloom filter matches result in ”Cloud
Miss” traces. In such cases, the client is redirected to the
cloud node, causing it to send a CloudRequest. The request
is checked against the full Cloud Tile Registry (CTR), which
returns a negative result, signifying that the tile has not been
migrated. The negative result is returned to the client, causing
the client to issue an EdgeAddrRequest. An EdgeAddrRequest
is functionally identical to an AddrRequest, with the exception
that it is guaranteed to redirect the client to the tile’s edge node.
Once the client receives a response to the EdgeAddrRequest, it
uses the response to generate an EdgeRequest, which it sends
to the appropriate edge node. Upon receiving the request, the
edge node verifies the client’s access, retrieves the tile from
the local datastore, and serves the client’s request.

D. Data Migration

For distributed storage systems which leverage storage at
the edge, the quality of network links to the edge devices can
be a substantially limiting factor for performance, especially in
terms of latency. In this section we will describe the mechanics
of data migration used to reduce access latencies.

1) Predictive Caching: As an alternative to the classic
caching scheme we have developed methods for Predictive
Caching in order to minimize the effect of the latency-
bandwidth barrier. Predictive caching leverages the structure
of time-series sensor data by analyzing and isolating certain
characteristics of the data. The data characteristics are used in
the construction of a prediction model which decides which
portions of data are likely to be requested and should be
preemptively cached. We have defined and implemented two
predictive caching schemes in Respawn, Periodic Migration
and Proactive migration.

Periodic Migration: When browsing, clients will frequently
request tiles with the lowest resolution first, in order to
see a ”big-picture” view of a dataset. From there they will
”drill down” to explore particular sections of the data at a
higher resolution. The effect of this phenomenon is that low-
resolution tiles are on average requested more often than high-
resolution tiles. Thus, it is often practical to bias tile migration
toward lower-resolutions. The Respawn cloud node periodi-
cally migrates all tiles at or below a predefined resolution,
which can be assigned on a per-edge-node or per-device basis.
Periodic Migration is most effective for periodic data feeds
from time-triggered sensing systems.

Proactive Migration: Whereas Periodic Migration lever-
ages resolution information about data tiles for migration de-
cisions, Proactive Migration involves extracting characteristics
from the data itself for the same purpose. In Respawn, each
tile generated at the edge is assigned a value corresponding to
the standard deviation of the sensor values contained within
the tile. For many datasets, standard deviation was found to
be a good scalar approximation of the statistical importance of
a time-series data-range. Furthermore, standard deviation over
tiles is simple enough that it can be computed upon initial
ingest of the data, even on a low-end embedded platform. We
found Proactive Migration based on standard deviation to be
especially effective at accelerating access times for sparse data
feeds containing isolated events of interest. This suggests that
Proactive Migration is especially suited for handling data feeds
from event-triggered sensing systems.

2) Mechanics of Migration: Respawn maintains and mi-
grates a collection of data structures to facilitate request redi-
rection. The first of these is the Summary datastore, a subset

*locally	
 generated	
 data	
 structure	

latency/bandwidth	
 barrier	

Base	
 Resolu7ons	

Cloud	
 Tile	
 Registry	
 (CTR)	

IP	
 address,	
 security	
 key	
 Edge	
 Node	
 List	

Summary	
 Bloom	
 Filters	

Edge	
 Node	
 List	

XMPP	
 Dispatcher	
 Cloud	

Node	

Edge	

Node	

IP/Key	

Event	

New	
 Tile	

Event	

Summary	

Update	

Event	

XMPP	
 HTTP	

edge	
 node	
 cloud	
 node	
 dispatcher	

*	

Base	
 Resolu7ons	

Summary	
 Bloom	
 Filters	

*	

*	

*	

Summary	
 Tiles	

BTDS	
 Mul7-­‐Res	
 Data	

Summary	
 Datastore	

fetch	

fetch	

Fig. 4: Data Structure Migration within Respawn

of the tiles in the system chosen for migration (Figure 4).
Two additional modules are maintained to optimize accesses
to the Summary datastore: The Base Resolutions and the Cloud
Tile Registry (CTR). The Base Resolutions are a mapping of
time-series data channels to their base migration resolution,
the resolution R for which the cloud node is guaranteed to
migrate all tiles belonging to that channel whose resolution is
R or lower. The CTR is a registry containing the addresses of
all migrated tiles not represented by the Base Resolutions. Like
the rest of the data structures maintained by the cloud Node,
the CTR is segregated by channel and is thus implemented as
a map from channel to list of unique tile addresses.

The cloud node makes migration decisions on a per-data-
channel basis and thus a set of migrated tiles for one channel
is independent from the set of another channel. Access to CTR
addresses are further optimized by the addition of Summary
Bloom filters. This enables faster, no-false-negative lookups
on the existence of addresses. The last high-level structure
maintained by the cloud node is the Edge Node List, which
maps channels to their associated IPs, security keys, and other
access control metadata. This listing is checked on every
request in order to verify that a client requesting cached data
originating at an edge node is authorized to access the edge
node.

3) HTTP vs. XMPP: Respawn separates two common
modes of communication, event notifications and bulk trans-
fers, and implements them with two distinct layer-7 protocols.
This choice has the benefit of increasing responsiveness to
client requests, horizontal scaling potential, and reliability
in overload cases. Event notifications, the first mode, are
always sent as the direct or indirect result of an asynchronous
sensor event entering the system through an edge node. These
notifications are lightweight data transfers whose destination
is a single node or a subset of all nodes in the system; global
broadcasts are very rare. In many cases, event notifications can-
not be predicted and thus it is difficult for a receiver to control
data flow without severely hindering communication. Respawn
uses the XMPP publish-subscribe protocol for these types of
transactions. XMPP provides an event node abstraction for
which each event node has one or more publishers and one
or more subscribers, in addition to tunable quality-of-service
parameters to place limits on data flow. Each event node
is also associated with an access control list. Respawn uses
these access control features as a basic building block in its

security model. XMPP was explicitly designed for lightweight,
asynchronous massaging and is thus a good fit for Respawn
event messages.

Data fetches represent bulk transfers of structured data
facilitated by client-server interactions. They can occur both
periodically and as a result of an asynchronous event being
received. Respawn uses HTTP for transferring time-series tiles
and large metadata structures. HTTP serves these purposes
well as a result of its simplicity, its bulk transfer efficiency, and
its request-driven model. One common limitation of HTTP-
based systems is the need to periodically ”poll” for data, which
can result in wasted bandwidth in cases where data is not
yet available or does not exist. This effect is mitigated in
Respawn because most fetches are triggered by the receipt
of a lightweight XMPP event. The use of HTTP’s request-
driven model is also key in preventing overload for the most
important components of Respawn. In terms of bandwidth,
most back-end data transferred by the dispatcher and cloud
node are initiated by the dispatcher and cloud node. Thus, it
would be difficult to overload the dispatcher and cloud node
through the addition of edge nodes.

4) Bloom Filter: A bloom filter is a probabilistic data
structure used for quickly and space-efficiently testing an ele-
ment’s membership in a set. Bloom filters are most commonly
implemented as bit arrays in which each element is mapped
to multiple bit positions via multiple unique hash functions.
A set is queried for an element by hashing the element with
the same set of hash functions and checking whether all of
the bit positions are set to 1. Querying a bloom filter does not
return an exact result; false positives are possible while false
negatives are not.

Respawn maintains a bloom filter per data stream in the
Summary Bloom Filters data structure. As tiles are added to
a Bloom filter, the filter becomes less accurate and produces
a larger percentage of false positives. A Bloom filter which
produces a false positive ratio of 1% contains 9.57 bits of
space per element in the set. When the number of elements in
a Bloom filter becomes too great to maintain a false positive
ratio of 1%, the cloud node will ”resize” the bloom filter by
generating an empty one of double size, rehashing the values,
and reinserting them.

Fig. 5: ARM9 Embedded Gateway

IV. EVALUATION

In this section we evaluate the primary components of
the Respawn system. By micro-benchmarking BTDS against
MySQL, SQLite, and OpenTSDB, we profile the ingest and
query performance of a multi-resolution architecture against
standard relational and time-series architectures. We also
show initial compression ratio and compute the overhead
for performing gzip compression on a large environmental
sensor dataset. We then perform a design-based simulation
of various dispatcher architectures and then benchmark the
actual throughput of our implementation. Finally, we use traces
collected from users browsing a typical time-series dataset to
evaluate various Respawn migration schemes.

A. Multi-Resolution Storage

Each database was profiled on an 8-core E5320 Intel Xeon
CPU clocked at 1.86GHz with 4GB of RAM. Since BTDS
fits within a small enough footprint to operate on edge-node
routers, we also benchmark it on a 450MHz ARM9 processor
with 32MB of RAM operating from a 64GB flash micro-SD
card (shown in Figure 5). Unless otherwise specified, each
point on the following graphs represents the average of at least
one thousand runs.

Table I shows the average request time required to fetch a
1024-point (1K) block of data from each database at a random
location within a one million point dataset. We see that SQlite
performs best and BTDS runs slightly faster than MySQL and
significantly faster than OpenTSDB. Enabling compression
adds a factor of six slowdown in BTDS performance. The
embedded platform runs approximately 13 times slower on
the embedded target. Given that each embedded edge node
will receive a small fraction of the requests as compared to the
main server, the overall response time of 310 ms is promising.

Database 1K-Point Random
Query Time (ms)

BTDS 23.86
BTDS Compressed 159.51
BTDS Embedded 310.98

SQlite 11.98
MySQL 25.49

OpenTSDB 1206.38

TABLE I: Full resolution query performance

100000 1x106 1x107

Dataset Size (# of datapoints)

10

100

1000

10000

100000

1K
-p

oi
nt

 ra
ng

e
qu

er
y

tim
e

(m
s)

BT datastore
SQLite
MySQL
OpenTSDB

Fig. 6: Range-based query performance (log-log scale)

Next we evaluate the performance of range-based queries
that are defined by a starting timestamp, an end timestamp and
a resolution. On standard relational databases like MySQL, this
requires fetching raw values and then computing aggregates.
BTDS performs its processing on ingest. Figure 6 shows the
difference in performance of each database with respect to 1K-
point range-based query. The x-axis shows the performance as
the size of the database increases. For standard databases, as
the size of the dataset increases this incurs a larger penalty
when computing aggregates. Note the log-scale on both the
x and y axis. On small datasets, SQLite outperforms BTDS.
However as the dataset grows, BTDS’s ability to efficiently
traverse pre-computed aggregates allows it to provide a con-
stant query response time independent of the dataset size. Both
SQLite, MySQL and OpenTSDB show drastically increasing
delay as the data scales.

Next, we evaluate the ingest penalty required for fast
range-based queries. Table II shows the total time required to
ingest a 1M-point dataset. BTDS is approximately 1.7 times
slower than SQLite and over 9 times slower than MySQL.
The embedded BTDS target is more than 70 times slower
than its server counter-part due to poor disk I/O performance.
Since the embedded nodes are closest to the streaming data, it
would be rare for the system to need to ingest a large (1 year)
batch of data. The compression overhead on write ends up
being approximately a 400% decrease in performance. As the
database increases in size, BTDS must aggregate data across
increasingly larger datasets. Figure 7 shows that the BTDS
ingest performance scales as the dataset increases but rapidly
levels off. MySQL, SQLite and OpenTSDB remain nearly
constant since they are typically just seeking to the end of
a structure and appending data. With a sensor input rate of
1Hz, the average ingest performance stabilizes at about half a
year worth of data and still remains competitive with MySQL.

Database 1M-Point Ingest Time (seconds)
BTDS 373.03

BTDS Compressed 1503.32
BTDS Embedded 26404.00

SQlite 217.18
MySQL 41.12

OpenTSDB 6072.56

TABLE II: Ingest performance with 1K batches

0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

Stored Data Size (number of raw datapoints)

0.1

1

10

1K
-p

oi
nt

 In
ge

st
 T

im
e

(s
ec

on
ds

) BT Datastore (raw)
BT Datastore (smoothed)
mySQL (smoothed)
Sqlite (smoothed)
OpenTSDB (smoothed)

Fig. 7: Ingest Performance vs Datastore Size (log scale)

0 5000 10000 15000 20000
batch size (number of raw datapoints)

1

10

100

1000

10000

1M
-p

oi
nt

 in
ge

st
 ti

m
e

(s
ec

on
ds

) BT datastore time
SQLite time
MySQL time
OpenTSDB

Fig. 8: Ingest Performance vs Data Batch Size (log scale)

The distributed nature of Respawn also horizontally scales to
alleviate central ingest bottlenecks.

One mechanism used to optimize reads and writes in
streaming storage is batching of data. Figure 8 shows how
each database scales in terms of ingest time as the batches
of points increase in size. They all follow a similar trend and
level off with approximately 1K data points. 1K data points on
a 1Hz sensor feed corresponds to 15 minutes of data. There is
a trade-off with how much a sensor should be willing to batch
in memory and how soon data becomes available to incoming
queries. Approaches like [22] have proposed making queries
on both disk and in-memory to reduce those overheads.

Another technique for improving ingest performance is
to group sensors that have identical timestamps. In BTDS,
grouping can be used to save on the bookkeeping overhead
normally required to setup a unique timestamp entry. Figure 9
shows the time required to ingest 1K-points per stream as the
number of total streams is increased. Each line represents a
different grouping size G and a different number of processor
cores P used by the server. We see that grouping sensor
improves efficiency up to a point, but saturates at about 10
inputs. We also see that BTDS becomes CPU limited since
increasing the number of cores is able to double performance.

Figure 10 shows a histogram of the compression ratios
achieved when running gzip compression on a 21GB repository
containing 6 months of mixed time series sensor data. The
data consisted of environmental sensors like light, temperature,

0 2000 4000 6000 8000 10000
Number of streams

0

200

400

600

in
ge

st
 ti

m
e

fo
r 1

K
pt

s
pe

r s
tre

am
 (s

)

G=1, P=1
G=10, P=1
G=100, P=1
G=1, P=10
G=10, P=10
G=100, P=10

Fig. 9: Ingest Performance vs Number of Streams

0 0.5 1 1.5 2
Compression Ratio

0

100

200

300

400

500

600

of

 o
cc

ur
re

nc
es

Fig. 10: Compression Ratio for Example Dataset

motion, pressure, humidity and audio as well as a wide variety
of HVAC sensors that monitor blower speeds and water intake
temperatures. We see that in general, the data compresses to
25% of its original size, however the runtime performance
overheads are non-trivial. As future work, we intend to investi-
gate utilizing the tile structure of our database to compress only
infrequently access tiles or ones with low-standard-deviation
numbers that would achieve higher compression ratios.

B. Dispatcher

Next, we compare against the architectures shown in Fig-
ure 11. The first is a centralized architecture where all nodes
stream data to the cloud for storage and there is no database
running on the edge nodes. The second architecture, proxy, is
one where storage exists on the edge nodes and requests are
routed through the cloud. The final redirection architecture is
the most distributed option, where a a lightweight dispatcher
redirects requests either to the cloud or, in this case, only to
edge nodes that are running a local copy of the database.

Figure 12 shows the limit on number of requests per
second in each architecture. These lines were generated using
a simulation based on hardware profiles. Networking overhead
was determined by running requests from a separate machine
against the database or dispatcher until its performance satu-
rated. Real requests were generated and rerouted to closely
mimic the real system. Since we do not have access to
thousands of edge nodes, we assume that these requests can

Client	

Centralized	

Client	

Proxy	

Client	

Redirec2on	

Fig. 11: Dispatcher Architectures

be serviced outside of the local network independently (i.e.
requests are directly handed off to edge nodes do not interfere
with each other). We also assume that the requests for each
edge node arrive in an equally independent fashion.

The centralized storage architecture is limited by the num-
ber of simultaneous requests that can be made to BTDS (in
this case 80 per second). As the number of nodes in the
system scales, the performance gradually worsens as additional
edge nodes consume the server’s bandwidth. This approach,
which is most common in simple sensor collection systems,
scales very poorly. The proxy architecture shows improved
scalability due to its ability to offload the majority of the
database workload to the edge. The system becomes network
bandwidth constrained at about 2000 requests per second.

For many applications, this approach is simple and able
to handle medium workloads. The Respawn components are
flexible enough that they can be easily configured to support
this type of access pattern if so desired. The redirection and
hand-off approach which best represents the standard Respawn
configuration scales quite well supporting up to 16,000 re-
quests per second. Eventually, the limiting bottleneck is the
performance of the dispatcher. These operating points can be
used as general rules of thumb to determine if a particular
scheme meets the expected application demands.

C. Migration

In this section, we evaluate three different tile migration
schemes. The first is a simple periodic migration technique
where top-level aggregate tiles are periodically migrated based
on available bandwidth of the edge node. Since each Respawn
edge node is configured with a QoS limit by the user or is
limited by the network connection itself, tiles are transmitted
at a fixed rate so as to keep average throughput below the
configured setting. The second scheme is a statistical pre-fetch
mechanism that prioritizes which tiles get migrated based on
standard deviation of the data. The intuition being that clients
are more likely to investigate areas where the data is exhibiting
significant changes. Again, these tiles are migrated within the
specified QoS limits. The final scheme is a combination of
the first two approaches. In this case, tiles are selected in a
round-robin fashion from the periodic and the stddev-based
transmit queues. The cloud caches data periodically at a lower
granularity and also maintains a few regions of highly variable
data ready to serve.

In order to evaluate these migration approaches, we per-
formed a small user study where participants were asked to
browse around a web-based plot of a week worth of time-series

0 2000 4000 6000 8000 10000
Number of edge nodes

0

2K

4K

6K

8K

10K

12K

14K

16K

18K

R
eq

ue
st

 li
m

it
(re

qu
es

ts
/s

ec
on

d)

Central Storage
Classic Cache
Redirection/Hand-off

Fig. 12: Architecture Request Limit vs Number of Edge Nodes

data from environmental sensors placed in our lab. Users were
asked to determine approximately how many hours in the last
week a lab was occupied based on sensor data. This forced
users to navigate and zoom into each region to determine the
length of each section and if it was continuous. Each click and
zoom selected on the plotting tool logged the corresponding
range-based query to the database. These traces could then be
played back against a version of the system executing each of
the migration schemes.

Figure 13 shows the latency per time of a characteristic
trace performed on the data. In (a), there was no migration.
Each request shown by a small circle was redirected to an
embedded cloud node that was running on the campus wireless
network. These requests took on average 340 ms. The grey
background shading shows a sliding window average of the
latency to help visualize the impact of clusters of high and
low latency requests. In trace (b), the system utilized periodic
tile migration. Accesses that went to the cloud instead of the
edge are shown with much lower latencies that correspond
with connecting to a wired server machine on campus. In trace
(c), the variance-based prefetching approach is used to migrate
data with higher levels of variation, a scheme which has a
slight performance increase over periodic migration. Finally,
trace (d) shows both periodic and variance-based prefetching,
which achieves the best performance at an average latency of
85 ms. In all of these cases, the migration bandwidth was kept
constant, and 5% of edge tiles were migrated. We see that
combining both approaches is most effective in our tests. This
can be attributed to users making a reasonable number of low-
resolution tile accesses to get an overview and subsequently
”drilling down” into regions containing interesting features.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, in this paper we present a highly-scalable
distributed time series datastore called Respawn. Respawn is
able to run a small multi-resolution datastore on embedded
leaf nodes that pre-processes incoming data in order to ac-
celerate range-based queries. A high-speed dispatcher server
is responsible for routing client requests to either a cloud
storage backend or directly to the edge node. We propose
and evaluate various data migration techniques that define how
edge nodes should push tiles to the cloud backend to help
mask latency for client request. This architecture is ideal for
supporting interactive visualization tasks, allowing scientists to

0 20 40 60 80 100 120
Trace Time (secs)

0

0.2

0.4

0.6

0.8
La

te
nc

y
(s

ec
s)

(a) no migration

0 20 40 60 80 100 120
Trace Time (secs)

0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
ec

s)

(b) periodic

0 20 40 60 80 100 120
Trace Time (secs)

0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
ec

s)

(c) prefetch

0 20 40 60 80 100 120
Trace Time (secs)

0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
ec

s)

(d) periodic and prefetch

Fig. 13: Trace latency given different tile migration schemes

easily browse large repositories of sensor data. Respawn allows
large-scale sensing systems to horizontally scale in a manner
that still provides responsive access to raw or aggregate data.
Through micro-benchmarking, we show that Respawn is able
to support range-based queries on large datasets with nearly
constant access time while other commonly used databases
scale exponentially. We also show that the data ingest penalty
can be kept at levels similar to that of MySQL databases by
batching and grouping data. We show that in terms of network
scalability, that Respawn can support thousands of edge nodes
handling tens of thousands of requests. Finally, we demonstrate
how intelligent data migration can be used in cloud-to-edge
systems to automatically mask latency. As future work, we
intend to investigate different aggregation functions as well as
more sophisticated data compression and aging techniques.

VI. ACKNOWLEDGMENTS

This research was funded in part by the Intel Science and
Technology Center on Embedded Computing, the Bosch Re-
search and Technology Center in Pittsburgh and TerraSwarm,
one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.
We would like to thank Ilari Shafer for the many interesting
discussions about time-series databases, and David O’Hallaron
for his insightful advice and feedback.

REFERENCES

[1] Bodytrack: http://www.bodytrack.org/ (viewed 5/01/2013).
[2] Michael Stonebraker and Ugur Cetintemel. ”one size fits all”: An idea

whose time has come and gone. In Proceedings of the 21st International
Conference on Data Engineering, ICDE ’05, pages 2–11, Washington,
DC, USA, 2005. IEEE Computer Society.

[3] Nihal Dindar, Peter M. Fischer, Merve Soner, and Nesime Tatbul.
Efficiently correlating complex events over live and archived data
streams. In Proceedings of the 5th ACM international conference on
Distributed event-based system, DEBS ’11, pages 243–254, New York,
NY, USA, 2011. ACM.

[4] Magdalena Balazinska, Yongchul Kwon, Nathan Kuchta, and Dennis
Lee. Moirae: History-enhanced monitoring. In In Proc. of the Third
CIDR Conf, 2007.

[5] Slawek Smyl Charles Loboz and Suman Nath. Datagarage: Warehous-
ing massive performance data on commodity servers. In In Proc. VLDB,
2010.

[6] Oetiker, T. RRDtool: http://www.mrtg.org/rrdtool (viewed 4/1/2013).
[7] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: a compressed

database for time series. In Proceedings of the 4th international
conference on Traffic Monitoring and Analysis, TMA’12, pages 143–
156, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] A. Wilson J. Faden R.S. Weigel, D. M. Lindholm. Tsds: high-
performance merge, subset, and filter software for time series-like data.
In Earth Science Informatics, 2010.

[9] Sigoure, B. OpenTSDB. http://opentsdb.net/ (viewed 4/1/2013).
[10] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva

Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: interactive
analysis of web-scale datasets. Proc. VLDB Endow., 3(1-2):330–339,
September 2010.

[11] Ramakrishna Varadarajan Nga Tran Ben Vandier Lyric Doshi
Chuck Bear Andrew Lamb, Matt Fuller. The vertica analytic database:
C-store 7 years later. In VLDB, 2012.

[12] Martin; Morrey III Charles B.; Veitch Alistair Anderson, Eric; Arlitt.
Dataseries: An efficient, flexible data format for structured serial data.
In Tech. Rep. HPL-2009-323, HP Labs, 2009.

[13] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao.
Oceanstore: an architecture for global-scale persistent storage. SIG-
PLAN Not., 35(11):190–201, November 2000.

[14] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul,
and Stan Zdonik. Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120–139, August 2003.

[15] Jianjun Chen, David J. Dewitt, Feng Tian, and Yuan Wang. Niagaracq:
A scalable continuous query system for internet databases. In In
SIGMOD, pages 379–390, 2000.

[16] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh
Govindan, Deborah Estrin, and Deepak Ganesan. Building efficient
wireless sensor networks with low-level naming. SIGOPS Oper. Syst.
Rev., 35(5):146–159, October 2001.

[17] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. Tag: a tiny aggregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(SI):131–146, December 2002.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor Networks. Operating
Systems Design and Implementation (OSDI), 2002.

[19] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards
sensor database systems. In Proceedings of the Second International
Conference on Mobile Data Management, MDM ’01, pages 3–14,
London, UK, UK, 2001. Springer-Verlag.

[20] Deepak Ganesan, Deborah Estrin, and John Heidemann. Dimensions:
why do we need a new data handling architecture for sensor networks?
SIGCOMM Comput. Commun. Rev., 33(1):143–148, January 2003.

[21] Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman Tolle, Jorge Ortiz,
and David Culler. smap: a simple measurement and actuation profile
for physical information. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’10, pages 197–210,
New York, NY, USA, 2010. ACM.

[22] James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey, III,
Craig A.N. Soules, and Alistair Veitch. Lazybase: trading freshness for
performance in a scalable database. In Proceedings of the 7th ACM
european conference on Computer Systems, EuroSys ’12, pages 169–
182, New York, NY, USA, 2012. ACM.

