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ABSTRACT

Conventional wireless communication systems are typically de-
signed assuming a single transmitter-receiver pair for each link.
In Low-Power Wide-Area Networks (LP-WANSs), this one-to-one
design paradigm is often overly pessimistic in terms of link budget
because client packets are frequently detected by multiple gateways
(i.e. one-to-many). Prior work has shown massive improvement
in performance when specialized hardware is used to coherently
combine signals at the physical layer.

In this paper, we explore the potential of using multiple receivers
at the MAC and link layer where these performance gains are often
neglected. We present an approach called Opportunistic Packet
Recovery (OPR) that targets the most likely corrupt bits across a set
of packets that suffered failed CRCs at multiple LoRa LP-WAN base-
stations. We see that bit errors are often disjoint across receivers,
which aids in collaborative error detection. OPR leverages this
to provide increasing gain in error recovery as a function of the
number of receiving gateways. Since LP-WAN networks can easily
offload packet processing to the cloud, there is ample compute
time per packet (order of seconds) to search for bit permutations
that would restore packet integrity. Link layer corrections have
the advantage of being immediately applicable to the millions of
already deployed LP-WAN systems without additional hardware or
expensive RF front-ends. We experimentally demonstrate that OPR
can correct up to 72% of packets that would normally have failed,
when they are captured by multiple gateways.
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1 INTRODUCTION

Low-Power Wide-Area Networks (LP-WANSs) are increasingly seen
as a vital wireless connectivity framework for low data-rate Inter-
net of Things applications. LP-WANSs offer large areas of coverage
(several kilometers from the base station), long battery lives (up
to ten years), and low cost (a few dollars per radio). Among the
most popular LP-WAN technologies is LoRa, which uses unlicensed
sub-GHz bands (915 MHz in the United States). LoRa is soon to
be integrated with Comcast set-top boxes [31] to enable smart-
home applications, creating a proliferation of both macro- and
femto-base stations. While we are seeing this trend of increasing
gateway density, it becomes inevitable that multiple networks will
become co-located, causing interference in unlicensed spectrum.
This co-existence problem is compounded by the multitude of re-
cent Low-Power wireless standards — 802.11ah (HaLow), LoRa SF5,
802.15.4g (Wi-Sun) - that share the same sub-GHz unlicensed bands
in indoor smart-home deployments.

While there is rich recent literature on tackling interference in
LoRa [9, 12, 16, 41], much of these have focused on solutions at the
physical and MAC layers. These include clean-slate solutions to re-
engineer or synchronize client transmissions [16, 41] or advanced
collision detection at software-radio base stations [12, 41], all of
which would require re-designing LoRa clients and/or base stations.
Our efforts in this paper differs in two important ways: (1) First,
we expand interference to include cross-technology collisions from
indoor users of unlicensed bands, with whom LoRa shares spectrum.
These impact the LoRa performance at the link layer. (2) Second,
we seek solutions that are compatible with existing commercial
LoRa base stations and clients.

This paper presents OPR (Opportunistic Packet Recovery), the
first software-only solution to recover packets by pooling infor-
mation from multiple gateways at the link layer that would oth-
erwise be lost due to short-lived interference to LoRa. OPR works
by disabling the packet rejection that normally takes place at LoRa
gateways when packets are subject to CRC and/or FEC errors. In-
stead of being discarded, these corrupt packets are collected by a
network service that groups them based on geographic proximity
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and reception time. One of our key insights was that even though
these packets might fail integrity checks, they often fail in a disjoint
manner due to the spatial diversity in the receivers. In the case of
two corrupt packets, it is possible to XOR their bit patterns to target
the most likely candidate locations of bit errors. When three or
more gateways receive a corrupt packet, it is possible to not only de-
tect potential error locations, but we can employ majority voting to
estimate the most likely bit combination. Once OPR has generated a
candidate set of corrupt bits, we use the ample processing available
in the Cloud to search through all possible bit combinations that
yield a valid CRC. This typically results in a small number of pack-
ets which can then be passed to the LoRaWAN application layer
that performs a final filtering step when decrypting the packet in
order to verify its Message Integrity Check (MIC).

OPR pushes link layer management from the low-power device to
the much more capable gateways and Cloud infrastructure, which
can improve client battery-life by removing the need for costly
retransmissions and potentially allowing the system to operate at
higher spreading factors or with less Forward Error Correction. Our
approach is fully compatible with current commercial LoRa client
and base station hardware. It explicitly accounts for interference
in the unlicensed sub-GHz spectrum from indoor radio sources,
including from non-LoRa technologies. We implement and evaluate
OPR on a large-scale university-led testbed located on Carnegie
Mellon University’s campus that uses commercial base stations
and on a client testbed spanning ten square kilometers. While
some concepts apply to both upstream and downstream traffic,
we focus on upstream packets, which represent the majority of
LP-WAN traffic where you have redundancy across gateways and
accessibility to Cloud compute resources.

The rest of this paper addresses two key challenges in designing
OPR: (1) First, how do we detect the segment of a LoRa packet that
has experienced short-lived interference?; and (2) Second, how do
we correct the erroneous segment without increasing latency or
causing client battery drain?

Error Detection: The traditional approach to addressing the first
challenge of detecting erroneous bit segments is to adaptively code
transmissions with forward error correcting (FEC) codes to be ro-
bust to a small number of bit flips. However, doing so increases the
duration of packets, the resulting client battery drain, and client
complexity [6, 23]. Ideally, such codes could be greatly simplified
or even avoided if the precise locations of the bit flips were known.
In the case of LoRa, FEC is achieved using a limited set of block
Hamming Codes which are known to be sub-optimal [22], a design
decision that trades off performance to ensure short packet dura-
tion and therefore less client battery drain. To address this problem,
OPR leverages the spatial diversity of multiple gateways, which
has the benefit of being additive given the number of gateways
with no impact on the duration of the packet itself. With a critical
mass of gateways, we find it is potentially more efficient to entirely
disable FEC. In the case where the spatial diversity is not significant
(i.e. a single receiving gateway), we leverage a unique side-channel
that is available with commercial LoRa hardware. Specifically, LoRa
devices report the Received Signal Strength Indicator (RSSI) lev-
els throughout the duration of a packet at a sample-granularity.
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Contrast this with other radio technologies (e.g. Wi-Fi) whose com-
modity chips only expose one RSSI value per-packet to higher layers.
OPR develops a classifier that can both combine information from
multiple gateways and also track RSSI values through a packet and
detect bursts that resemble interference.

Error Correction: Having detected the location of the bit errors,
OPR seeks to actively correct them. Importantly, it aims to do this
without proactively seeking re-transmissions from the clients or
additional coded bits, which would introduce battery and latency
overhead. Our approach is to reuse the structure of the LoRa packet
at the MAC and application layer. Specifically, every LoRa packet
has an existing Cyclic Redundancy Check (CRC), static MAC layer
fields, and a Message Integrity Check (MIC) that are well-defined
functions, traditionally designed to detect bit errors. OPR instead
seeks to reuse these error-detection and integrity fields as error-
correcting codes. Intuitively, we cycle through different possibilities
of the bits within the damaged portion of the received message
and identify which sequence(s) of bits match in the error-detection
fields. We further fine-tune our system to leverage spatial diversity,
combining observations of the same message across multiple gate-
ways. We benefit from the fact that statistically, different gateways
are likely to see bit errors in different segments of their message,
depending on the locations of the gateways relative to interfering
sources. Sec. 5 elaborates on the approach and performance limits
of our MAC-layer solution to packet correction without soliciting
re-transmissions.

We evaluate Opportunistic Packet Recovery (OPR) in both indoor
and outdoor environments using two test-beds within and around
Carnegie Mellon University in the heart of Pittsburgh, PA. Four
rooftop gateways support the deployment of Long-Range (LoRa)
Low-Power Wide-Area Network (LP-WAN) which services a large
10 sq. km area. Indoor test-beds with up to six LoRa gateways were
used for proof-of-concept and micro benchmarks. Our results reveal
the following:

e We see that real-world LoRaWAN gateways suffer from as
much as 57% packet-loss.

e The vast majority of packet drops (>90%) are caused by CRC
failures that result in different corrupt packets across a set
of nearby gateways.

e RSSI detection alone can correctly identify 83% of the bits
that were corrupted with 17% false positives.

e We are able to correct up to 30 bits worth of corruption in
the 1-second required to reply to a LoORaWAN ACK message
using commodity hardware.

e Inbursty interference micro-benchmarks, we correct as many
as 72% of CRC errors that normally would be dropped (when
received by multiple gateways) while never generating a
false packet.

Contributions: We develop to our knowledge the first software-
only solution to mitigate inter- and intra-technology interference
to LoRa from short-lived transmissions compatible with existing
LoRa base stations and client hardware. Our specific contributions
include:

e An approach to detect interference on commodity LoRa

hardware by using a combination of multiple gateways and
sample-level RSSI measurements as a side-channel.
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Figure 1: in Phase/in Quadrature (I/Q) of a LoRa packet with Collision captured with a software defined Radio (Top). Convo-
lution of the same signal with a down-chirp, an intermediate step in demodulating LoRa packets (Bottom)

e A bit-level consensus approach for detecting and correcting
bits across LoRa gateways.

o A system design to recover bit errors caused by short-lived
interference to LoRa by leveraging the message integrity
fields of the LoRa MAC as an error correcting code.

o A detailed deployment study of the impact of interference
in wide-area LoRa deployments and the effectiveness of our
approach on a 10 sq. km. test-bed in Pittsburgh, PA.

2 BACKGROUND

LoRa PHY: The LoRa physical layer is based on Chirp spread spec-
trum (CSS) modulation. As shown in Figure 1, a packet is encoded
into chirp signals that are composed of linear frequency sweeps,
where each sweep has a symbol duration and encodes multiple
data bits as a function of the spreading factor — a quantity that
dictates data rate. For example, at spreading factor N, each chirp
encodes N bits into one of 2V possible uniformly separated initial
frequency offsets. A higher spreading factor, e.g. N + 1, improves
resilience to noise by encoding one more bit per chirp in double
the transmission time, effectively halving the data rate.

Figure 1 shows an I/Q capture of a LoRa packet with a collision
at around t + 160ms. To demodulate the signal, it is first convoluted
with a down-chirp resulting in symbols shown in the bottom figure.
These are then mapped to one of the frequency offset bin indexes
for that particular Spreading Factor (SF) by selecting the bin with
the strongest signal. The bottom part of Figure 1 illustrates the
robustness of LoRa. The LoRa signal is integrated into coherent
signal impulses located at a particular frequency offset, while the
interference is more evenly spread across the bandwidth. Even so,
strong interference or very low Signal-to-Noise Ratio (SNR) can
jeopardize the proper mapping of symbols to their appropriate bins.

LoRa modulation also adds Forward Error Correction (FEC),
which encodes 4-bit data into 5- to 8-bit redundancies that are
spread across the packet. Higher Coding Rate (CR) values provide
greater interference protection, at the cost of increased packet air-
time. LoRa encoding is proprietary, but reverse engineering efforts
have shown it to include gray indexing, whitening, and interleaving
steps [19]. Thus it is hard to map corrupted symbols to the resulting
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Figure 2: LoRa PHY and LoRaWAN frame components.
Packet Header and Header CRC are encoded with more ro-
bust 1/2 FEC coding to protect against interference

LoRa PHY

bit patterns (although this can be used to improve future versions
of OPR).

LoRaWAN: LoRa’s Wide-Area Networking architecture (LoRaWAN)
is composed of end devices that are connected with a single hop
to one or more Gateway(s) which, in turn, forward packets to the
Network Server (NS) through a backhaul network using a pub/sub
bus over IP protocols. The NS performs end-device address check-
ing, frame security checks (authenticity and nonces), acknowledg-
ments, and MAC-layer requests and forwards application payloads
to and from Application Servers (AS). The most recent version
of LoRaWAN introduced a roaming architecture where a NS can
have different roles, depending on the type of roaming involved.
Join Servers (JS) handle requests to join the network from end de-
vices which are forwarded by NSs, and finally, the AS handles the
application layer payloads being forward to/from the NS.

This brief refresher of LoORaWAN’s architecture is representa-
tive of common LP-WAN architectures and, importantly, highlights
some features that we capitalize on: (i) transmissions from end
devices are received by all gateways in range, and (ii) a significant
amount of network operations are performed at the network back-
end, which is connected by high-performance network connections
(wired Ethernet, wireless cellular) and uses, or has access to, Cloud
computing resources (often, service providers deploy NS, JS and AP
in the Cloud). Traditional wireless networks have many of these
critical characteristics used by OPR.

Frame Structure: All LoRa messages start with a preamble, fol-
lowed by a (Physical (PHY) layer) packet header, a Cyclic Redun-
dancy Checks (CRC) of the header, and a payload, which includes
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a Medium Access Control (MAC) header, application payload, and
a message integrity code as depicted in Figure 2. LoRa uplink mes-
sages also include a CRC of the entire PHY payload.

It is important to note that the security features of LoRaWAN
impose restrictions on the design of OPR. LoRaWAN defines two
device-specific root keys (NtwKey and AppKey) from which sev-
eral session keys are derived. Importantly, the AppKey is used to
derive the application session AppSKey, which is used to encrypt
application payloads using Advanced Encryption Standard (AES).
To not break the security of LoRaWAN, the access to these keys
should be kept separate, and this means that OPR cannot exploit
features in the data payload to correct packets.

Motivating Experiments: We designed three preliminary experi-
ments to further motivate our work. First, we analyzed the effect
of inter-technology interference which is expected to worsen as
LP-WAN deployments increase. Next, we used a deployment on
a city-scale test-bed to validate that a large number of received
packets in LP-WAN networks are corrupt. Finally, we studied the
impact of corruption on different regions within a packet. Across
experiments, we observed that most corruptions are small compara-
tively to the total packet length (89% of the corrupted packets have
less than 15 error bits as shown in Figure 9), which suggests that
attempting to recover corrupt packets might be a viable path to
noticeably improve the reliability of LP-WAN.

Imperfect Orthogonality: It has been shown that LoRa spreading
factors are not perfectly orthogonal [32], and, particularly under
near-far conditions, overlapping transmissions using different SFs
can interfere with each other. Hence, even interference between
LoRa transmitters is an important motivating factor as networks
scale. Our first micro-benchmark shows the interaction between
different spreading factors as described by an additive interfer-
ence model. Packets with varying SF configurations were sent out
synchronously to force packet collisions and interference.

Using attenuators, we calibrate a set of clients in order to simu-
late a real-world long-distance collision with the equivalent single
strength. Figure 3 shows the packet reception rate of a node us-
ing spreading factor 8 (transmitting at 0 dBm) when sharing the
same frequency with other node(s), using spreading factor 9, 10, or
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Figure 4: Amount of failed CRC receptions across a city-
scale 7 Gateways deployment. Gateways located outdoors ex-
perience a high number of receptions that fail CRC checks.

both with increasing transmit power. Each data point was derived
from 2000 samples that fit the inverse sigmoid function. We can
observe the additive interference and capture effect caused by the
two transmitters which confirm the values presented in [34].

Corrupt Packets in LP-WAN Deployments: In our next exper-
iment, we used a real-world, 10 sq. km. test-bed in Pittsburgh,
PA, to collect over 60M packets received at 7 LoRa gateways (4
of these gateways were outdoors and 3 indoors). Figure 4 shows
the percentage of packets that pass or fail CRC checks across the
7 gateways. We can observe that packet corruptions vary greatly
across gateways and, most importantly, outdoor gateways see a
high number of corrupt packets. The gateways with the highest
Line-of-Sight (LoS) coverage also show the most errors, with one
gateway receiving over 58% corrupt packets. Multiple factors can
affect packet loss, including packet duration, network load, the
duration and distance of interference sources to the receiver, and
the modulation used. To our understanding, the high number of
corrupt packets in outdoor gateways is related to the coverage area
of each gateway, since the outdoor test-bed is deployed on some
of the tallest buildings around the city with optimal LoS coverage.
We also note that these results are consistent with previous reports
from other real deployments [26].

Payload Vulnerability: Figure 2 depicts the impact of errors as-
sociated with a specific location in packet. The preamble is partic-
ularly susceptible to interference, as enough symbols need to be
correctly demodulated so that the packet is identified. Corrupt or



A Cloud-Optimized Link Layer for Low-Power Wide-Area Networks

Deployment The Cloud
R ? B
Tx OPR
ﬂ Server
XTX ff\\
A\ XJx
xTx Ti
e x 8
Tx Jx Network App
' + N Server .Q Server
1-20Km ~100s m

Figure 5: OPR System Architecture: Valid and corrupted
packets received at the Gateways (Rx) are tagged with meta-
data and sent over the MQTT BUS. OPR Server snoops on
the bus and inserts the corrected framed.

weak preambles likely account for the majority of dropped packets
that do not trigger CRC failures. The LoRa PHY packet headers are
always encoded with 1/2 FEC since it contains critical information
about the rest of the packet, such as packet length and coding rate.
An error in the header can not only make the payload undecodable
but can also impact the resources of the receiver (such as battery
consumption or decoding units on a GW). The PHY packet payload
is usually encoded with a lower CR (the LoRa’s Wide-Area Network-
ing Protocol (LoRaWAN) standard defines the default CR = 4/5) to
reduce packet airtime and demonstrates a fairly uniform bit error
distribution as discussed in Section 7 and shown by Figure 10.

3 SYSTEM OVERVIEW

OPR is a software solution that recovers valid payloads that would
normally be lost due to interference. It is most applicable to losses
from strong interference or weak signal strength that are often
the case in highly dense areas. Correcting these errors could allow
LoRa clients to transmit at higher data-rates and/or at lower powers
to preserve battery.

OPR can be easily integrated into common LP-WAN architec-
tures. It employs a combination of packet reception redundancy
and inter-packet signal strength metering, which are both unique
characteristics of LP-WAN architectures. In this section, we provide
an overview of OPR’s system architecture, error detection, recovery
techniques, and modes of operation.

System Architecture: Figure 5 depicts OPR’s architecture, where
user- and service provider-deployed gateways can be located in-
doors or outdoors. Instead of discarding corrupt packets (the default
gateway configuration), OPR forwards invalid packets to the Cloud,
which, for example, is supported on common LP-WAN gateway
software by changing a configuration variable [7].

OPR also snoops on the traffic between the gateways and the
LoRaWAN network server to collect metadata and sort the payloads,
which are then post-processed along with the received byte-streams
when possible. In other words, OPR opportunistically performs link-
layer bit error correction at the Cloud, simultaneously improving
battery life and range of low-power clients at the expense of specu-
lative computation at the Cloud.

OPR’s data collection transmits corrupt packets (typical LoRaWAN
messages are 450 bytes long) along with the respective Received
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Signal Strength Indicator (RSSI) samples and metadata used to cor-
relate receptions. Each of these packets are about 200 bytes after
RSSI samples are down-sampled at the gateway. This is a small in-
crease for the backend network, which is usually a wired Ethernet
or high data-rate wireless cellular data link.

Error Detection and Modes of Operation: OPR has three pri-
mary modes of operation, depending on how many unique packets
are received by surrounding gateways. (i) OPR needs to decide if
post-processing is necessary at all or if a valid packet was detected.
This is done by pairing corrupt receptions with timing informa-
tion and metadata such as the gateway’s geographical location. (ii)
When OPR receives only one corrupt packet (single detection), it
attempts to classify regions of the packet that might have been sub-
ject to interference using RSSI traces. (iii) When multiple corrupt
copies of the same transmission are received at different gateways
(multiple receptions), OPR compares the different receptions in
order to generate a candidate error vector. In concept, RSSI traces
could also be used in conjunction with the vectors to select the
most probable error regions. Section 4 provides more details on
these techniques.

Error Recovery: Error recovery (detailed in Section 5) is accom-
plished by: (i) exploiting the MAC frame structure, (ii) using the
CRC and Message Integrity Check (MIC) fields as error correct-
ing codes, (iii) majority voting across receptions from multiple
gateways, and finally, (iv) cycle through possible combinations by
expanding the search space, starting from the the bits deemed more
likely to be corrupted.

4 ERROR DETECTION

Before recovery, corrupt packets need to be processed in order
to detect which sections of the packet are corrupt. The goal is to
output a Bit Corruption Likelihood (BCL) vector the same size as
the number of bits in the packet. The vector is initialized with zeros
(meaning correct reception of the bit) and can go up to 100 (meaning
the bit was certainly corrupted during reception). This allows OPR
to give varying degrees of confidence, depending on the method
used. OPR performs different steps at each single corrupt packet,
and when available, across multiple receptions.

4.1 Single Reception

We first consider the case of detecting erroneous bit locations from
a single reception at one gateway. Figure 2 (presented earlier in
Section 2) depicts the LoRaPHY and LoRaWAN frame structure. Ob-
serve that multiple unencrypted headers are kept mostly unchanged
for all Uplink messages: the MAC and frame header (MHDR, FHDR)
each contain an 8-bit field that is the same for almost all Uplink
transmissions. OPR verifies these fields, obtaining clues about bits
that might have been modified. It then uses the provided CRC to
validate its hypotheses. As discussed in Section 6 (see Figure 9 and
related discussion), the majority of the corrupted packets show
only a small number of error bits. Thus, the probability that error
bits occur in these common headers is very small and inversely
proportional to the packet size.

Metadata Collection and Gateway Synchronization: OPR col-
lects reception properties, such as the SF and CR used, gateway
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location, and reception time. Using a combination of these data
parameters, it is possible to uniquely identify packets and their
geographical location. The precise start time of packets across gate-
ways is valuable information for identifying which received signals
across gateways correspond to the same packet, and for which
common software time-synchronization protocols (e.g. Network
Time Protocol (NTP)) are sufficient, as their accuracy is at a much
finer granularity than the minimum airtime for a LoRaWAN packet
(around 20 ms).

Temporal Periodicity and Re-Transmission Combining: Pack-
ets contain an unencrypted 4-byte device address and 2-byte frame
counter. Since most nodes are statically deployed and have a fairly
regular Uplink schedule, we can take advantage of the collected
metadata to limit the scope of the search for possible devices and
auto-correlate the addresses and counters with the fields of the
damaged messages to identify errors in the LoRaWAN header.
Due to highly noisy spectrum, it is possible that consequent re-
transmissions from the same transmitter would be impacted. Know-
ing that re-transmissions occur after a fixed pre-established interval
we can compare the both messages and identify the differences
across the whole packet [11].

RSSI Level Sampling: Taking advantage of the frame structure
is just an initial step. To detect errors inside the encrypted pay-
load, OPR leverages a unique side-channel available in commer-
cial LoRa hardware. Specifically, LoRa devices have an address-
able register that returns real-time RSSI levels throughout the
duration of a packet reception at a sample-granularity. This fea-
ture is used by monitoring the receive process using General Pur-
pose Input/Output (GPIO) interrupt signals (PreambleDetected,
Synchronized, Receiving and RX Done) which drive the collection
of samples into a circular buffer up to hundreds times per bit. The
samples are then down-sampled, compressed, and sent with the rest
of the packet metadata. This contributes an additional 200 bytes for
a 25-byte payload to the total message that is sent on the pub/sub
bus, which only has to be transmitted with corrupt packets. While
the data can be compressed even further, we leave this optimization
for future work.

Figure 6 illustrates the process of using RSSI values to detect bit
errors under interference. It shows a LoRa packet transmitted with
SF7 that has suffered from interference from a similar LoRa packet
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using SF5, with 6dB higher power. This is a typical scenario where
short bursts of interference are caused by coexisting wireless tech-
nology or networks operating in the same spectrum. If we align the
received payload with the collected RSSI samples, we can observe
that bit error locations are directly related to the additive interfer-
ence caused by the collision. Particularly, a stronger interference
has a higher chance of causing error bits. This is an important clue
that OPR uses to hypothesize the location of the error bits, giving
higher priority to the regions with the strongest interference.

Maximizing Detections in Single Reception: OPR can apply
multiple bit error detection mechanisms at the same time. For ex-
ample, if RSSI thresholds define a set of bits and consensus at the
gateway defines another set of bits, we can XOR the two sets of
hints together. In practice, one is typically most concerned about
prioritizing the most likely bits that capture the true errors. In
general, gateway consensus should take priority over RSSI-based
hints. We use the notion of a BCL to capture the likeliness of a bit
corruption for cases when the search mechanism must prioritize
and cannot search the entire space. This could be because the server
is heavily loaded or because network traffic delays consumed time
that is normally spent on the search process. Ideally, the BCL can
provide a sort of Just-In-Time (JIT) search strategy. Section 5 will
demonstrate how OPR uses the BCL vector to recover the original
payload.

4.2 Multiple Receptions

In an urban, densely populated area, it is likely that the same Uplink
message will be detected by more than one gateway. While this
naturally increases reliability, due to strong interference or low SNR,
we still observe error bits that are often different across packets
due to different interference sources and variations in multi-path
propagation. Metadata filtering is used by OPR to identify damaged
packets across multiple gateways. The key observation here is
that transmitted signals propagate via distinct radio paths, and
are affected by distinct reflections, fading, and interference before
reaching each receiving gateway, translating into different error
bits at each receiver.

Independent Local Interference: Consider an example of two
receptions (at two different gateways) of the same packet, where
one packet has errors in the header, and the other in the CRC. Both
payloads are combined by OPR to determine the location of the
errors by performing a bit-wise XOR across the packets. Having
two copies of the same packet allows OPR to identify the impacted
locations, and more copies allow for additional error correction, by
using the majority of the affected bits [35]. The consistency of the
CRC can help disambiguate ties where the majority rule fails.

We observe that even when the multiple receptions are subject
to similar interference, packets are not affected in the same way.
This observation is supported by an experimental setup described
in Section 6.

Common Source of Interference: Table 1 shows the byte-stream
representation of a real LoRa payload (TX) in hexadecimal format
and receptions from three different receivers (RX1-3) that have
been subject to the same interference source. Modified bits are
highlighted. We can observe that most of the error bits are exclusive,
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Node Payload Hex Bit Errors
TX  0000000000000000000000000000000 -
RX1 0000000000002008000000000000000 2
RX2 0000000002001406000000000000010 6
RX3  0000000001002004000000000000000 3

Table 1: Simplified byte-stream representation of the sent
(TX) and received (RX) payload by three independent re-
ceivers that has suffered a collision

Algorithm 1 Bit Errors Detection

. [pkts, payload_len] « collect(data_and_meta)
. pkt_errors « zeros(payload_len)

1

2 > init vector
3: for [a, b] in combnk(pkts,2) do

4

5

> all pair comb
pkt_errors « OR(pkt_errors,XOR(a,b))
: end for

indicating that the same interference source will not cause the same
behavior at each receiver. OPR uses this concept (Algorithm 1) to
precisely identify the unique location of the error bits. One could
also imagine expanding the search to include nearby bits in the
BCL if additional compute resources are available (i.e. the BCL is
below 30 bits).

The detection of the error bits only works if there is a difference
in the byte-streams. For example, when looking at the third column
of error bits (8, 6, 4) in binary representation (1000, 0110, 0100), it
shows that RX3 bit error is a subset of RX2. Thus, if only RX2 and
RX3 would have been received, the error bit would not be visible
to OPR. Conveniently, the RX1 bit has not been affected and can be
used to detect the error bit.

Maximizing Detection with Spacial Diversity: OPR can also
take advantage of multiple bit error detection mechanisms from
multiple receivers. Contrary to RSSI levels sampling, the spatial
diversity of the gateways can precisely identify most of the affected
bits. These are set in the maximum value in the BCL to give them
priority during recovery. Likewise, obtained RSSI values are first
averaged and added to the BCL.

5 ERROR RECOVERY

To recover errors, we cycle through possible combinations by ex-
panding the search space, starting from the bits deemed more likely
to be corrupted as given by the BCL. The performance of OPR is
directly tied to the compute resources available, and, at the ini-
tialization phase, OPR profiles the compute resources available to
define an upper bound on the number of error bits it will cycle
through. It then searches though possible combinations that gener-
ate a valid CRC and further discards invalid patterns based on the
MIC. The remainder of this section details OPR’s initialization and
aspects of this search.

Search Mask Generation and Validation: During OPR initial-
ization, the error recovery module checks the hardware capabilities
by using an internal benchmark. The benchmark is based on a
CRC lookup table calculation to estimate how many bits can be
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Figure 7: Amount of time necessary to compute all hashes
given the number of error bits and a 25 bytes payload

searched given the LoRa ACK window time and estimates of net-
work overhead. Figure 7 shows benchmarks of the capacity limits
(CL) of four different device classes, ranging from low power to
commercial server hardware. This establishes the upper bound of
error bit combinations to be used on that particular platform.

When a bit error is detected by the error detection module, it
forwards the BCL vector and the corresponding corrupted byte-
stream (or the first received copy) in a multi-GW reception. The
error recovery module only attempts the recovery of the transmis-
sion if the number of confirmed error bits (the ones marked as
100% Corruption Likelihood) is lower than the one supported by
the hardware. A bitmask is generated by distributing the available
CL bits across the hints provided by the BCL vector in decreasing
order. Based on packets analyzed in our test-beds, we assume that
interference has a bursty nature. Thus, we increasingly expand the
search scope around these fields up to the maximum number of
bits our system can check given LoRaWAN ACK time constrains.

In practice, CRC calculations should be completed within 0.8s
to allow for network latencies so that packets are acknowledged
within LoRaWAN’s 1s acknowledge window. These constraints are
only applied to packets that require acknowledgments; if idle, OPR
will attempt to recover transmissions that are above the hardware
limits up until a packet that requires processing arrives. In order
to simplify the calculations, for the rest of the paper we assume an
upper limit of 30 CL error bits unless mentioned otherwise.

Hash Collisions: LoRaWAN Frames contain a 16 bit CRC known
as CRC-16/CCITT [17] and a 32 bit MIC. Assuming random input
and an ideal CRC function, the hash will be one of 21¢ different
values. Given two random messages, the probability of their CRC
being the same (probability of collision) is given by 1/21¢ [38]. Thus,
given a pool of N unique messages, the probability of them having
the same CRC is given by equation (1).

N-1
it 1
CRC-16/KERMIT is not a perfectly unbiased checksum algorithm,
but it is a good approximation. Thus, by using the above equation
we can estimate the probability of false positives generated by the
hashing function. For example, assuming the 30 bit upper limit, we
can demonstrate that the average number of generated messages
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with the same CRC is given by (230 — 1)/216 ~ 214 = 16384. In
this setup, OPR will speculatively generate up to 16384 messages
(based on the search generated bitmask) that match the same CRC
and forward them to the LoRaWAN application server. When the
speculative OPR packets are received by the LoRaWAN Application
Servers, they are checked against their MIC and other MAC header
fields such as the frame counter. The probability of OPR generating
a message that checks the CRC and MIC is thus given by (2), where
M is the number of error bits in the message.

eM-1) 1
516 < 532 @

Considering the upper limit of 30 error bits, the approximate
probability of a false positive is approximately 3.8 x 1076,

Optimizing CRC Checks: OPR makes heavy use of CRC vali-
dations in order to generate candidate packets based on the error
patterns. The performance metrics shown in Figure 7 are the up-
permost bounds of the time it takes to perform all the calculations
of all possible error patterns. On average, it is expected that the
true error pattern will be generated somewhere around half of
this upper bound. Due to the linear nature of CRC codes and the
bursty patterns of interference, recomputing the CRC over the en-
tire packet is redundant [11]. Large speedups can be achieved by
using dynamic programming and incremental CRC algorithms. The
speedup depends on bit error location, and will perform best when
the bit errors are clustered at the end of the packet.

Traffic Amplification: OPR has the potential to amplify the traf-
fic in a LoRaWAN system that would normally be going between
the main backend server and the LoRa applications. This is un-
fortunately required since candidate packets that satisfy the CRC
can only be validated by end applications which have the required
encryption keys to validate the MIC. A single packet reception with
30 bits flagged as corrupt could in the worst case generate up to
214 messages that pass the CRC check. While extremely unlikely, a
25-byte transmission could be amplified to the point where it gen-
erates 410 kilobytes of traffic that the LoRaWAN application must
filter. These are server-to-server interactions that are comparatively
fast. Since the worst-case required bandwidth scales exponentially
with the number of error bits, this quickly becomes an additional
bottleneck (beyond just compute) for the number of bits that can
be corrected. This amplification could be avoided in certain high-
performance settings if LoRa applications were willing to provide
the LoRaWAN server access to their encrypted data.

6 EXPERIMENTAL EVALUATION

We evaluate the effectiveness of OPR on a 10 sq. km. test-bed in a
major U.S. city (shown in Figure 4) in addition to proof-of-concept
experiments across our university campus network and inside a
large office building as depicted in Figure 8.

Unless otherwise specified, to isolate OPR’s performance we
have disabled the standard 4/5 FEC codes enabled for LoRaWAN
payloads. Forward error correction would increase the robustness of
packets; however, they would still suffer similar bit errors that OPR
will detect and correct. We present a more detailed discussion of the
trade-off and potential synergy between OPR and FEC in Sec. 7. The
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Figure 8: Experimental LoORaWAN test-bed layout: there are
6 gateways in total, spread across an indoor office environ-
ment. Each red dot indicates a LoORaWAN receiver.
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Figure 9: Amount of bit errors from corrupted packets in an
urban deployment experiment (1.2 million 40-byte payload
LoRa transmissions)

LoRaWAN does not take advantage of the spatial diversity arising
from multiple receivers and it’s requirement of 4/5 coding is a
conservative approach that impacts the battery life of all devices,
even the ones that might do not require it.

Number of Bit Errors: Using our campus test-bed, we charac-
terize the number of bit errors experienced due to interference
captured by logging over 1.2 million packets over 10 days. Fig-
ure 9 plots the histogram of bit error rates from our deployment.
Our key observation is that 89% of the corrupted packets have
less than 15 error bits — a mere 3.6% of the total packet length
on average. In other words, packet bit corruptions are often rela-
tively small compared to packet length. We observe that these data
suffer from survivor bias, as these are the packets that were not
subject to enough damage to make them completely undetectable.
In hindsight, it is not unsurprising that most bit corruptions are
small. Much of LoRa interference is caused by bursty higher-speed
transmissions from indoor (and often cross-technology) gateways
and devices whose transmissions are much shorter than LoRa. In
practice, we see gateways that record as high as 57% packet fail-
ures across their clients (see Section 2). These losses are masked
by costly retries or increased spreading factors that dramatically
reduce client battery-life.
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Packet Integrity

Intra-Packet Bit Error Distribution: Next, we look more closely
at the positions of each error within the corrupt packets and see
that they are primarily distributed uniformly as shown in Figure 10.
This is important to note as it dramatically hampers the ability for
standard Hamming Code error correction to perform well.

Local Interference Sources: We evaluate our system both in-
doors and outdoors on a live network with sensor traffic and in-
terference sources. We observe that the outdoor tests were subject
to significantly more interference as compared with the indoor
installation (Figure 4). To our understanding, this is related to the
large coverage area of each gateway, since the outdoor test-bed is
deployed on some of the tallest buildings around the city.

Similar to the deployment scenario outlined in Figure 5, we per-
formed a set of experiments that simulate the effect of interference
from co-located networks on outdoor LoRaWAN deployments. We
used one of our LoORaWAN gateways installed on the rooftop (Rx)
of a four stories building and a transmitter LoORaWAN client (Tx)
placed 400 meters in LoS from the gateway. We slowly increased the
level of interference by using jammer clients (Jx) on a co-located
network with close proximity to the receiver gateway (Rx): Light,
Medium and Severe correspond to 1, 2, and 4 jamming clients (Jx).
Each jamming client was transmitting at a 40-byte payload at either
SF5 or SF6 with a uniform distribution of delay corresponding to
25-50% of their total air-time. The small spreading factors ensure
that the transmissions are much shorter than regular LoRaWAN
Transmissions (SF7-SF12), which is consistent with typical short
range transmissions. Each data point in the plot represents 10000
LoRaWAN client transmissions (Tx). Figure 11 demonstrates the ef-
fect of the interference sources on the Packet Reception Rate (PRR)
of the outdoor gateway (Rx) and the gain in robustness of LoRa
CSS. The figure shows that shorter messages are subject to less
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Figure 12: Detecting corrupt bits in receptions using shared
information across gateways only

interference and reinforces the notion that minimizing packet du-
ration can be effective in increasing network capacity. Note that as
the SF increases, packets become more vulnerable to noise and we
see a drop in PRR before the coding gain compensates to increase
performance. As clients (Tx) switch to more robust transmission
rates (higher SFs), they inevitably use twice the amount of air-time
(per SF increase), thus making the transmission more susceptible
to sporadic interference. Starting with SF10 the use of more robust
modulations (even as packets get longer) helps limit the impact of
interference, resulting in an increase in PRR.

Error Detection Across Multiple Gateways: To study how OPR
detects errors in the presence of multiple receptions, we ran exper-
iments on our indoor test-bed with multiple gateways as shown in
Figure 8. We deployed transmitter nodes (Tx) across the building,
sending 40-byte payloads at SF12 with hardware attenuators tuned
to the receivers such that the received signal strength was just above
LoRa’s noise floor (-124dB for SF12). This simulates a dense urban
scenario with high levels of multi-path fading. Transmitters usu-
ally operate near the receivers’ sensitivity threshold, helping them
use less power without overpowering concurrent transmissions (as
discussed in the case of imperfect LoRa Orthogonality in Section 2).
Interference sources (Jx) based on LoRa and 802.15.4g [15] were
similarly placed across the building transmitting with a uniform
distribution of delay corresponding to 5-40% of their total air-time.
We log the exact value of each transmitted packet which is used as
ground-truth for exactly how many and which bits are correctly de-
tected by the system. Each time multiple gateways receive a packet,
the value is XORed together to form the correction vector. Figure 12
shows the impact of the number of receivers on the accuracy of the
final error vector, assuming a single jamming node. Note that this
plot captures the total number of bit errors, including a mixture
of packets that OPR was able to correct and some that it was not
(due to interference in the header/preamble or exceeding the 30-bit
correction limit). We see a logarithmic increase in the detection of
corrupt bits as the number of receivers increases. The total number
of packets that were recovered is discussed in the next section.
Figure 13 generalizes the bit detection performance in the presence
of multiple jamming nodes. We see that interference is additive and
eventually saturates while our gain continues to increase with the
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Figure 13: Corrupt bits across gateways in the presence of
different interference levels
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Figure 14: CDF of number of bit errors

Predicted Bit Error
Yes No
Tg Yes 83% 17%
< No 0% 100%

Table 2: Performance of bit error detector using XOR across
multiple gateways

number of gateways. Figure 14 shows the corresponding cumula-
tive distribution function of bit errors as we increase the number of
interference sources. This corroborates the data previously shown
in Figure 9, and shows that the number of bit errors in a packet are
within the number of bits OPR can recover.

Bit Error Recovery Across Multiple Gateways: Next, we eval-
uate how the number of gateways receiving a packet impacts our
ability to recover data. The setup of this experiment was similar
to the previous indoor experiment: a transmitter at SF12 send-
ing 40-byte payloads and 6 gateways receiving the signal close to
LoRa’s noise floor. The added information at each receiver allows
for detection and recovery of more bit errors. Table 2 presents the
confusion matrix in this setup by exactly identifying error bits
across receptions from multiple gateways, where we see that most
of our predicted bit errors are in the correct location (87%) and OPR
always correctly confirms non-erroneous bits (i.e. doesn’t do any
additional damage).
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Error Bits within Range (%)

10 20 30 40 50 60 70 80 90 100
Distance from center of interference (Bits)
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Figure 16: OPR’s Packet Correction Performance

RSSI Error Recovery Search Space: When OPR only manages
to receive a single invalid message from the gateways, it cannot use
XOR or majority for recovery. Instead, OPR falls back to using RSSI
hints to estimate the damaged location as described in Section 4.1.
Our data demonstrate that due to the probabilistic nature of bit flips,
the center of the errors does not always align with the perceived bit
errors in the payload. OPR uses a running average filter in conjunc-
tion with a dynamic thresholding mechanism to detect the error
centroids corresponding to the bit errors. The filtering function
and thresholding parameters were derived from maximizing the
bit-error detection and cross-validating over the data in order to
avoid over-fitting. Figure 15 shows that a large percentage of bit
errors (up to 80%) can be found within a distance of 30 bits. For
short bursts of interference, this detector can be quite effective;
otherwise, it is a bit of a Hail Mary.

OPR Packet Correction Performance: Using the data from our
indoor data set, we computed the percentage of the total number of
packets that OPR was able to correct that were received by 2, 4, and
6 gateways respectively and that normally would have failed their
CRC check. Figure 16 shows the packet recovery rate along with the
distribution of the total number of packets for each gateway set. The
high-level takeaway is that OPR is able to recover between 20% and
72% of the packets with less than 10 bits of error (peak correction
rate of 72% on 1-bit errors sensed by 6 gateways). We also note that
it is more likely that a packet will be received by fewer gateways, but
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Code Rate Coding Gain (dB)

4/5 0.2
4/6 0.4
4/7 0.6
4/8 0.9

Table 3: Code Rate vs. Coding Gain (vs. no codes) of LoRa’s
Hamming codes for a packet error rate of 20% as per
SemTech’s LoRa deployment guide [33].

that a larger number of gateways improves the odds of being able
to correct the packet. As one might expect, it gets significantly less
likely that packets are found with many erroneous bits. We believe
the shape of the histogram is a function of the delay and length
of the jammer traffic used in this particular dataset. In practice,
this would be largely a function of the particular environment.
For certain clients at the edge of the network or subject to heavy
interference, this would have a dramatic impact on their battery
life (2x or more in terms of radio retries).

7 DISCUSSION
7.1 Rate Adaptation vs. OPR

In this section, we discuss how OPR inter-operates with LoRa’s
traditional rate adaptation schemes including forward error coding
and change of spreading factor, which we loosely term coding
strategies. We specifically seek to understand the regimes in which
OPR will outperform standard coding strategies and can effectively
provide identical resilience to coding, while significantly improving
client battery life. To understand why such regimes should exist,
recall that for a small number of bit flips, OPR can rely on signals
observed across multiple gateways, as well as known header fields
and CRCs, to provide error resilience without impacting client
message length. In contrast, coding inevitably requires an expanded
message length to improve resilience, as a result of trading off client
battery life and network capacity for improved packet recovery
rate.

To better understand this trade-off qualitatively and quantita-
tively, we analyze the coding schemes used by LoRa. LoRa uses a
Hamming code with different code rates 4/5, 4/6, 4/7, or 4/8 as part
of its modulation [2]. Unfortunately, Hamming codes, while simple
to implement, are known to be significantly sub-optimal in perfor-
mance, especially for short bursty errors or at low SNRs [22]. This
is fundamentally because Hamming codes can lead to (detectable)
error even if two bits within the same block are flipped and unde-
tectable errors, if as little as three bits per block are in error. Indeed,
SemTech’s LoRa design guide has quantified the coding gain in dB
of the different choices of coding rates [33] under Additive White
Gaussian Noise reproduced in Table 3 for a packet error rate of 20%.
The results show a relatively modest coding gain (lower than a dB),
primarily due to choice of code. We surmise that this design deci-
sion was deliberate, to favor simplicity of devices and the decoding
process, unfortunately at the expense of coding resilience.

In contrast, we argue that combining received signals across
multiple base stations provides a significant improvement in SNR
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Figure 17: OPR’s gain in SNR vs. number of receiving gate-
ways increases logarithmically.

gain that scales in a logarithmic fashion with the number of gate-
ways, allowing for more significant gain improvements without
impacting client simplicity. Intuitively, this stems from the fact that
sources of noise and interference across gateways, if independent,
can significantly reduce probabilities of identical bits being in error.
This gain is bounded by a O(log n) gain that stems from diversity
coherent combining [9], where n is the number of gateways. An an-
alytical expression for this gain is challenging, without assumptions
about the locations and nature of interfering sources.

We therefore present an experimental analysis of the SNR gains
achieved with up to six gateways in Fig. 17. Our results provide
two key takeaway messages: (1) First, the coding gains achieved
over the one-gateway case can be as high as 2.5 dB in aggregate for
six gateways, outperforming the gains achieved by LoRa’s standard
Hamming Forward Error Correction codes. (2) Second, the SNR
gains scale further with a larger number of gateways. In other words,
OPR can perform particularly favorably in comparison with codes
with dense deployments of LoRa femtocells (for example, Comcast’s
pilot integration of LoRa gateways in set-top-boxes [31]).

Finally, we note that it may be possible to combine OPR with
error correcting codes to achieve the best of both worlds. For in-
stance, we could devise co-optimized decoding algorithms that both
account for FEC and the locations of bursty bit errors uncovered
by OPR. We note that our current implementation favors OPR to
be used in isolation primarily because of the bursty error patterns
that are unfavorable to LoRa’s Hamming codes. However, we leave
a detailed study of OPR combined with coding, and more broadly,
devising energy-aware coding strategies for LP-WAN, to future
work.

7.2 Security and Privacy Implications

OPR is designed to work alongside standard LoRaWAN infrastruc-
ture, intercepting traffic between the gateways and the Network
Server and speculatively generating payloads that pass CRC valida-
tion. These payloads are then validated on the Network server
which removes messages with invalid MIC (Message Integrity
Check), a cryptographic function based on the encrypted payload.
In this way, OPR remains compatible with LoRaWAN’s security
model. As noted before, OPR does not assume knowledge of the
device-specific root keys (NtwKey and AppKey), and because of
this, it cannot exploit features in the data payload to correct packets.
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In a trusted environment, OPR could be part of the Network and
Application Servers, which permit more efficient filtering and vali-
dation pipelines that exploit the payload structure itself. While OPR
deals with encrypted packets, we note that these could still leak
some information such as traffic patterns and message lengths. Net-
work administrators should consider these privacy implications and
protect OPR’s endpoints and communication channels adequately.

7.3 Cloud Processing Latency

LP-WAN systems operate at a low data rate and have relaxed ac-
knowledgment and reply windows (in the order of seconds). For
OPR, this means that there is enough time to transfer packets to
the cloud for processing. There is a trade-off between using local
servers (introducing less transmission latency and thus allowing
more time to be spent on processing each packet) and the scale of
the compute available on the cloud. In Section 6, we have shown
the trade-off between compute, latency, and number of recovered
bits. One could even imagine a multi-tiered architecture where
the location of OPR computation changes depending on available
compute resources and network interconnect speeds.

8 RELATED WORK

LP-WAN in the Industry: LP-WAN’s promise of inexpensive, low-
power, and long-range connectivity for IoT devices attracted sig-
nificant attention. Recent years have seen the appearance of many
competing LP-WAN technologies, such as LoRa [2], SigFox [43],
Weightless-N [39], LTE-M [14], NB-IoT [29], and others. We have
also seen many commercial deployments from companies such as
AT&T [3] and Comcast [8], and examples of real applications in
precision agriculture [30], healthcare [20, 25], and smart cities [5],
to name a few. Our observations on high packet loss in real-world
LoRa deployments are consistent with previous reports from other
deployments [26].

Payload Recovery in LP-WAN: The research community devel-
oped a considerable amount of work to analyze [1, 4, 21, 26] and
improve LP-WANSs [13, 27, 28, 36]. Focusing on payload recovery
techniques, Charm [9] introduced a technique to coherently com-
bine signals from multiple receivers and decode packets that would
not be successfully received by any individual gateway. To recover
collided packets, Choir [12] exploits frequency biases in LoRa, while
FTrack [41] considers time domain and the frequency domain fea-
tures in end devices. In contrast, OPR does not rely on custom radio
front end or low-level radio signal processing, and thus can be
implemented as a software-only solution that does not require any
modification to the LoRa client or base station hardware. DaRe [23]
is an application layer encoding technique for LoRaWAN which
uses convolutional and fountain codes to add redundant data dur-
ing a transmission session. This allows for a large payload to be
split across multiple packets with increased redundancy at the cost
of an increase in transmission time. Instead of adding redundant
data at the application layer, OPR works with individual packets at
the MAC layer. It takes advantage of already existing redundancy
in received packets, due to the architecture of LP-WAN. Adding
application-layer coding increases the time to decode a packet at the
network infrastructure backend, and, in our work, we also trade off
packet processing time to recover errors and allow the low-power
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end-devices to save more energy. We believe this is a reasonable
trade-off, as the network backend has access to the scaling capabili-
ties of the cloud, which can easily cope with LP-WAN latency and
throughput requirements [1].

Wireless Interference Management: Researchers in the wire-
less networking community outside of LP-WAN have, similarly to
OPR, proposed to recover bit errors across multiple receptions, but
in WLAN access points [24, 40]. We argue that LP-WANs are more
amenable to such techniques, and their characteristics allow us to
take advantage of the significant compute available in the Cloud.
Previous literature also studied how to recover corrupt packets
by selectively re-transmitting parts of the packet that are deemed
to be corrupted [18], and reconstructing packets from multiple
corrupt ones [11]. Recently, researchers have also devised selec-
tive re-transmission schemes that exploit the fact that RSSI values
in 802.15.4 are highly correlated with byte errors under interfer-
ence [42]. Rateless coding [10] has also been employed to recover
corrupted packets and effectively increase the communication dis-
tance, but requires a link-layer protocol to synchronize the sender
and receiver. These previous techniques informed our work, but the
design of LP-WANSs differs significantly, invalidating some of these
techniques: re-transmissions introduce significant power costs, and
sender-receiver synchronization requires substantial downlink traf-
fic, which is also inefficient in LP-WANS.

9 CONCLUSION AND FUTURE WORK

In conclusion, this paper presented a technique for improving client
to gateway LP-WAN packet reception in the presence of interfer-
ence. Two key insights are that (1) interference impacts a message
received by multiple gateways in different bit locations, and (2) Lo-
RaWAN radios have the ability to capture fine-grained RSSI values
across the entire length of a packet. Given hints of where errors are
located within a packet, LP-WAN systems have ample time to test
all permutations on potential error bits until the packet passes its
CRC check. The small subset of these candidate packets can then be
passed to the application layer where, with a high probability, only
the actual data packet passes the MIC used for LoORaWAN security.
Unlike previous work that attempts to use receiver diversity to im-
prove performance at the physical and MAC layers, our approach
effectively pushes link-layer functionality into the cloud. This has
the advantage of being immediately applicable through server-side
updates to all existing LoRaWAN deployments.

In the future, we would be interested in studying the impact
of how the underlying structure of chirp spread spectrum coding
could be used to refine how our system searches through the error
space. For example, if we know that particular symbols are much
more likely to fail in a particular manner, we can structure the
combinatorial options to decrease the search space. Likewise, it
would be interesting to explore the trade-off of how much informa-
tion is gained from each additional receiver that detects a partially
corrupt packet. In the spirit of rate-adaptive codes, a system should
expand or refine the number of bits it is able to error-correct based
on the number of received packets. This could be beneficial in sys-
tems with extremely low signal-to-noise ratios like what one might
expect with backscatter LoRa devices [37].
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