
Logic-based programming for wireless
sensor-actuator networks

Yizhi Wu, Anthony Rowe
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15217

Email: {yizhi,agr}@ece.cmu.edu

Abstract—In this paper we present SAN-Logic, a lightweight
logic-based programming paradigm that enables the dynamic
progammability and configuration of sensor-actuator interactions
in wireless sensor networks used to support Cyber-Physical
Systems (CPS). Our goal is to simplify complex CPS design
by providing a structured model of interactions that can be
automatically mapped and deployed to a sensor-actuator network
in an efficient and scalable manner. In contrast to sensor
networking paradigms that distribute an application into indi-
vidual sub-programs, SAN-Logic models the system as a set of
boolean expressions which can be partitioned across the network
like gates in a circuit. The user defines interactions as timed
asynchronous sequential logic expressions [1] with sensors and
actuators representing the inputs and outputs of the system.

This approach is highly scalable since once deployed each
interaction takes place as a sequence of independent and
asynchronous events. This allows SAN-Logic to operate in a
fully distributed manner without a central authority. Using
this framework, optimization takes place across multiple tasks
enabling sharing of resources within the network which will be
an important part of future CPS. Redundant routes and the
stateless nature of combinational logic (along with periodic state
update messages) allow the system to easily cope with packet-loss
and failed nodes. A major benefit of this approach is the ability
to leverage existing hardware design and synthesis tools used
by the VLSI design community. We demonstrate how boolean
manipulation of the logic can be used to alter the mapping
of expressions onto the network and hence can be used for
optimization and verification. We provide an approach using
logic simplification and mapping that reduces message passing
by factoring common terms across different data paths within
tasks and placing intermediate terms such that they benefit from
shorter paths. In complex systems, we see on average a 40%
reduction in message passing as compared to an implementation
that does not optimize communication patterns within and across
tasks.

I. INTRODUCTION

Wireless sensor networks provide a means for an easy-
to-deploy sensing and communication infrastructure making
them ideal solutions for Cyber-Physical Systems (CPS) like
those found in building and home automation. Nodes equipped
with sensors and actuators can be configured to perform tasks
ranging from lighting control to HVAC regulation. Modern
building HVAC systems are comprised of hundreds of sensor
and actuator elements that communicate over expensive wired
buses. Often times the interactions between these elements
must be customized based on unique building configuration
parameters or user requirements. In order for wireless sensor

networks to become a practical tool for CPS environments, a
framework is required for designing and deploying networks
that provides the ability to link sensors and actuators together
in a highly customizable manner. A user should be able to
describe the desired functionality of the system in a high-level
and intuitive abstraction that automatically gets mapped to the
low-level operations implemented by each sensor node.

The current approach for programming sensor networks
typically involves adding individual tasks that are tied together
through explicit message passing. Often times the application
code ends up being tightly integrated with the majority of the
functionality focused on the networking layer. This works well
for networks designed to perform data collection tasks like
sampling environmental sensor values but makes it quite com-
plex and time-consuming to implement CPS applications with
unique in-network interactions. Even simple local interactions
require significant effort to manage and deploy given scale,
failure-prone links and heavy resource constraints. Macro-
programming refers to the notion that a group of devices can
be programmed as a collective rather than manually creating
a unique software image for each node. In order to support a
high-level description of sensor and actuator interactions that
can be decomposed and distributed across a CPS network, it
is important to have a simple yet powerful model that can be
used to merge, validate and optimize large sets of interactions.

In this paper, we present SAN-Logic (Sensor-Actuator Net-
work Logic), a design paradigm based on logical programming
used to build CPS applications. We adopt a dataflow-centric
architecture where changing values in the system force the
recalculation of other variables. Interactions are represented
as boolean expressions with the approach enabling the system
to be managed and optimized using existing VLSI and control
automation tools. This programming model is very similar
to the most common HVAC and automation programming
languages used to configure Programmable Logic Controller
(PLC) and SCADA systems including Ladder Logic Diagrams,
Function Block Diagrams, Structured Text and Sequential
Function Charts. In fact, we show an example of how Ladder
Logic can be directly translated into SAN-logic. Using a
sensor network to operate as the communication medium for
an automation system has challenges associated with packet
loss, the increased potential for node failure and the extremely
resource constrained nature of the devices with respect to

energy and computation power. To address these problems, we
use techniques like adaptive periodic state updates for nodes
with poor links and multi-path routing with term combining
to reduce message traffic. There are many situations that
will always require wired solutions due to stringent reliability
and timing requirements, however sensor networks are a cost
effective solution for augmenting existing CPS with extra
sensing and non-critical control components.

SAN-Logic is extremely lightweight and can operate on top
of an existing sensor networking infrastructure. For example,
if a system already has a means of routing messages and
performing global data collection, SAN-Logic can be run
on top of this network as a service to enable customizable
sensor-actuator interactions. Each interaction is an independent
sequence of asynchronous events that once configured can
operate without a central authority. This makes the solution
highly scalable across large sensor networks since different
subsections can run independently from their surrounding
nodes. Optimization of these networks utilizes existing VLSI
tools that are designed to optimize circuits with tens of
millions of gates. In order to maintain the simplicity and
small footprint of the engine running on each node, SAN-logic
operates on boolean expressions. It is possible to use multiple
signals to create a “bus” in order to send non-binary values,
however this makes signal sharing and wide-scale optimization
more difficult.

The interactions between sensors and actuators in SAN-
Logic are specified independent of the underlying physical
topology. An initial set of optimizations and validations can
be performed on the logical description combining together
multiple sub-tasks. Figure 1 shows a typical example of
various sensors and actuators that might compose a larger
system. In this case, we see part of an HVAC system where
there might be many sensor and actuator interactions that are
functionally independent. The combination of a temperature
and motion sensor in one room might need to trigger a
nearby air blower. Similar interactions might be required in
neighboring rooms. In some cases, sub-expressions could be
shared among independently configured interactions. The same
temperature and motion sensors might be used in conjunction
with a door position relay to disable lights. Figure 2 shows a
simple circuit representation of interactions found in Figure 1
where the letters correspond to sensor and actuator data. Here
we see two expressions, one that governs an air conditioning
unit and one that controls an alarm. It is easy to see that the
a + b input terms can be factored out and reused between
tasks. Before deployment, a synthesis step is used to map the
interaction logic onto a given (externally captured) network
topology. At this point, topology-specific optimizations on
the placement of logic components. In the previous HVAC
example, the physical placement of common terms will have
a significant impact on where messages must be routed. By
combining and placing these sub-expressions in advantageous
locations, we can optimize various QoS properties such as
latency and energy consumption. Finally, individual portions
of logic are dispatched to each sensor node where a logic

motion (b)

motion (a)

alarm lever (e) smoke (d)

AC (x)

alarm (y)

thermostat (c)

Fig. 1. Example scenario of various sensors and actuators that could be
combined to support different applications. Motion detectors can be used to
identify occupied and unoccupied regions of a building. An air conditioning
system can adjust its performance based on occupancy along with temperature
sensors. A fire system could also integrate with temperature and motion
sensors to include security detection features during after hour operations.

engine monitors local state, waits for incoming signals and
performs any local computations.

The physical component of CPS makes it important to
capture not only the data flow of the system but also timing
properties. We introduce the notion of signals that capture
the value and timing parameters of variables. Signals also
define the policies and timing values used when data need to
propagate. Temporal interactions in the system can be specified
using relative or absolute timing attributes on signals. Relative
delay-lines can be used to filter sensor values or actuate
devices for particular intervals of time. Absolute timing can
be used to implement mode changes at different times of the
day.

One of our major motivations for using boolean logic is
the ability to leverage existing VLSI design tools. Boolean
manipulation of sensor-actuator logic can be used to assign
blocks of logic to specific physical locations. This is analogous
to the synthesis, technology mapping and layout steps used
in chip design. Techniques like expression decomposition,
extraction, factoring, substitution and term collapsing can be
used to minimize massages, improve reliability and load-
balance throughput. Logic synthesis verification techniques
can identify race conditions, meta-stable states, ”stuck-at”
faults and cycles all of which should be brought to the

a
b

c

d

e

x

y

a
b

x = (a+b) c y = (a+b) d + e

Fig. 2. Simple circuit diagram modeling two independent sensor-actuator
configurations. We see the potential for simplification to reduce the common
(a + b) term.

attention of the designer before deployment. In our current
implementation, we provide SAN-Logic-specific scripts to
the SIS [16] sequential logic manipulation package to detect
errors, merge multiple expressions and to optimize the amount
of message passing. We also demonstrate how common ex-
isting programming languages like Relay Ladder Logic and
hardware description languages can directly map to SAN-
Logic descriptions.

The organization of this paper is as follows. Section II
discusses related work. Section III presents the SAN-Logic
architecture. Section IV discusses how logic manipulation can
be used to optimize and manage systems. Section V addresses
the limitations of the design paradigm and Section VI shows a
home automation example that illustrates multiplexing of tasks
on a single network. Section VII provides concluding remarks.

II. RELATED WORK

Multiple efforts have investigated the streamlining of sensor
network programming. Initial systems like TinyDB [15] and
Cougar [21] used SQL-like database queries to collect sensor
information. Queries can efficiently be used to aggregate
and process data as it returns up a tree to the gateway.
These approaches are ideal for data collection applications. In
[11], the authors presented a middleware service that allows
users to specify timing properties associated with requests.
Many of the optimizations performed by all these systems are
similar to those found in SAN-logic. The largest difference
is that the output of SAN-logic is a massively parallel set
of asynchronous interactions that execute independently of a
central authority. No gateway is required to issue or collect
responses from the nodes. We also believe that the logic-based
framework simplifies the implementation of certain optimiza-
tion strategies. The simplicity of dual-state logic optimization
is largely responsible for the adoption of binary logic in digital
design rather than a larger number of basic states.

Virtual machines provide the basis of a more flexible
platform for supporting macro-programming. Maté [10] is
a stack-based virtual machine loosely based on the Forth
programming language. The VM was designed to support
safe and energy-efficient dynamic reprogramming of nodes.
The Token Machine Language (TML) [13] is similar to Maté
except that executables in TML are compiled down to a binary
intermediate form that is executed on each node by a state
machine. TML uses an execution and communication model
based on token passing where computation is triggered by the
arrival of tokens which, in turn, change state stored in shared
memory.

Regiment [14], Flask [12] and Semantic Streams [20] are
examples of high-level programming languages that allow
users to define global operations. These languages use the
notion of stream operators along with information about
location and topological relationships to operate on spatially-
defined regions of a network. Similar to SAN-Logic, these
approaches define the application specifications independent
of the physical network topology. However, they need to be
compiled down into an executable form which remains a

significant challenge. Regiment was one of the driving mo-
tivators for the creation of TML as an intermediate language.
In the case of SAN-Logic, the execution engine is much
simpler than that of TML or Maté. With SAN-Logic, the core
interfaces to sensor and actuators must be implemented as low-
level drivers while the rest of the interactions are processed
by a logic evaluation engine running on each node. For the
same reasons that operating system drivers are implemented
close to the kernel, many sensor and actuator drivers require
binary implementations for performance reasons. For example,
reading and averaging ADC values at a high rate, or decoding
pulse width modulation values from a GPIO pin would be
difficult if implemented in a virtual machine.

Frameworks like MacroLab [9] and Kairos [8] provide
ways to specify high-level applications that are then compiled
down into node-specific binary files. Kairos uses a traditional
imperative programming model to support general-purpose
processing. Parallelizing and deploying imperative programs
is notoriously difficult, making it hard to optimize across
multiple tasks running in the system. In contrast, MacroLab
uses vector programming which can easily be decomposed and
mapped across the network. Vector programming requires the
user to design parallel algorithms from the start which may
prove difficult for non-experts. One goal of SAN-Logic is to
provide a work-flow such that field technicians can quickly
and easily deploy sensor-actuator interactions in a manner that
they are already familiar with.

Multiple researchers have looked at ways to group devices
based on various functional or proximity-based properties.
These approaches allow devices to be manipulated at the
group-level, abstracting away the details of developing each
underlying interaction. Hood [19] is a neighborhood pro-
gramming abstraction that clusters node interactions based
on parameters like distance, or the number of wireless hops
within the network. Abstract Regions [18] provide a similar
mechanism to group nodes based on geographic location or
radio connectivity. Nodes can then locally share and process
data in order to reduce bandwidth and improve energy perfor-
mance given a specific accuracy requirement. Bundles [17] are
another grouping mechanism that allows management across
heterogeneous networks of devices. It provides support for
mobility when devices are required to move between various
different sub-networks. These approaches tend to focus on
defining the communication mechanisms to support distributed
applications. In contrast, SAN-Logic uses the data-flow of
the application logic to synthesis the communication mapping
based on the underlying network topology.

TinyGALS [5] takes a formal concurrency modeling ap-
proach to developing distributed embedded software. This
approach is probably most similar to SAN-Logic in how it
allows for analysis of concurrency at a high-level. Using the
galsC [6] language, designers implement particular methods
that reside inside each component. These methods are then
distributed to each node for execution. Since SAN-Logic
operates on Boolean logic statements, it can optimize across
multiple independent tasks given a particular instance of a

Logic Synthesis

Validation

Optimization

Logic Dispatcher

Topology Synthesis
and Mapping

WSN

Logic Engine

Data Stream

Topology

Logic
a
b
c

d
e

x

y

a

b

c

de

x

y

Fig. 3. Design and deployment flow.

network topology to reduce message passing.
Control and automation systems have used Programmable

Logic Controllers (PLCs) to manage sensor and actuator
control loop for multiple decades. These systems were de-
signed primarily to be extremely simple to configure and
manage at a large scale. PLCs are typically programmed
using graphical languages that emphasize logical organization
of operations. The most popular example of this is Relay
Ladder Logic (RLL). RLL shares SAN-Logic’s notion of
modeling the system as hardware components. In fact, we
show in Section III-B that RLL can be directly converted into
boolean expressions making it a viable programming front-
end for SAN-Logic. RLL typically represents a set of rules
that are sequentially evaluated by a cyclic executive. This
loop is rapidly executed such that interactions seem nearly
instantaneous. Unfortunately, this can lead to race conditions
and oscillating states. SAN-Logic attempts to remedy these
drawbacks by providing timing properties associated with each
signal. Unlike RLL, SAN-Logic is inherently designed to run
on multiple nodes in a mesh network with inter-node message
passing.

The field of VLSI design has revolved around designing,
optimizing and synthesizing systems described by boolean
expressions. This would not be possible without the semi-
nal work related to compact logic representation [4], logic
optimization [3] and synthesis [2]. Many researchers have
studied automata theory and finite state machines that result
from the incorporation of latches in digital circuits. SAN-
Logic provides a runtime environment and the key technology
mapping primitives to apply these techniques to wireless
sensor networks. In our implementation we use the SIS [16]
sequential logic package that is built around a large body of
research and development.

III. ARCHITECTURE

Figure 3 shows a diagram that outlines the high-level design
and deployment flow of SAN-Logic. Initially, a logic descrip-

tion of the set of interactions is passed to a Logic Synthesis
sub-system. This sub-system optimizes and validates the input
logic without using topology information. Common expres-
sions can be combined and errors like race conditions can be
identified. This optimized logic is then passed to a topology-
mapping stage where logic is again synthesized but is used
in conjunction with topology information. Now, it is possible
to optimize for different QoS metrics by manipulating and
duplicating routes. Ideally, the topology information should be
collected directly from the sensor network. Finally, the system
description is packetized into individual components that need
to run on each node and dispatched to them over the network.
Each node runs a local Logic Engine that is responsible for
evaluating and reacting to inputs.

In the remainder of this section we will describe the
individual components that comprise SAN-Logic. First, we
outline the primitives used to define the language. Next, we
discuss various methods that a designer can use to model the
system. This includes a description of current PLC approaches
and how they can be mapped to run using SAN-Logic on a
sensor network. We then discuss mechanisms that the synthesis
step can use to optimize the network and describe existing
verification techniques which can apply to sensor-actuator
systems. Finally, we describe the runtime environment that
executes on each sensor node.

A. Language Primitives

A SAN-Logic system is described by boolean variables
related to each other using a combination of AND (*), OR
(+) and NOT (!) logical operators. The language supports
timed asynchronous sequential logic [1]. Sequential logic, as
opposed to combinational logic, can feedback outputs from
logical expressions to capture state machines. Signals are used
as a means to convey variable values from one expression to
another. A signal combines the current value of a variable
with timing parameters that govern its transmission. Even
though the transmission of signals can be delayed, upon
reception, they are processed immediately and hence exhibit an
asynchronous quality. There are three types of signals: sensor
signals, actuator signals, and intermediate signals. Sensor and
actuator signals generate the input and output of the system
and hence require a description of physical capabilities. This
includes sensor/actuator type, the MAC address of the physical
node and a description of how the transducer should process
the input or output data. In our logic specification, variables
are defined in the following format:

#define variable_name {actuator|sensor|int}
< MAC address, type, operator, [params] >

The type of the sensor indicates which existing low-level
driver should be called to generate the signal. This requires
parameters that define attributes like the thresholding mecha-
nisms, threshold types, sampling rates, etc. Below is a typical
description of a sensor and an actuator:

define x actuator <0x4a,AC_PWR,sock0>
define a sensor <0x03,LIGHT,gt,100>

A variable x is defined turn on or off socket 0 of an AC
outlet on node 0x4a. Variable a is defined as a light sensor
on node 0x03 that becomes TRUE when its value is greater
than 100. Sensor operators (like gt) are eventually translated
into numerical indexes used by low-level drivers. These drivers
are device-specific, but typically support operations like: gt
(greater than), lt (less than), eq (equal), dfi (delta from initial
value), dfl (delta from last sample) etc. Unspecified variables
are defined by default to be intermediate signals which become
messages that get passed within the network. Intermediate
signals can also be defined with timing parameters. In cases
where intermediate signals are used to form sequential logic
statements (those with feedback), initial startup values must
be supplied.

Timing parameters and the logical expressions can be rep-
resented in assignment form. The simplified left-hand term is
the signal generated by the signals or variables on the right-
hand side of the equation. Timing properties for the signal are
captured in the curly braces following each statement. Each
signal defined in SAN-Logic can have different timing and
queuing parameters for rising-edge (delay_re) or falling-
edge (delay_fe) state transitions. Currently, the logic engine
supports the following queueing policies: FIFO, replace, and
cancel. FIFO maintains a queue with first-in first-out ordering
with a time delay specified by the delay parameter. replace
will substitute new items in place of existing items with the
same signal name. Any existing delay parameter will also
be overwritten. cancel will remove a signal from the queue
if an opposite value is inserted before the initial value has
been transmitted. These operations simplify filtering inputs
and enable the creation of timed state machines. If a motion
detector is configured to turn on a light, we would ideally
like to keep the light active until the motion detector is idle
for an extended period of time rather than the first time it
fails to detect motion. Below is an example that illustrates
this principle:

x = a + !b {delay_re: 0ms, policy_re: fifo,
delay_fe: 10000ms, policy_fe: cancel}

In this case, we have configured signal x to be dependent on
the value of a or the inverse of b. The rising-edge delay is set
to 0ms with a FIFO policy. This means that when the inputs
produce a TRUE signal, the message is sent immediately. The
falling-edge is governed by a cancel policy which means
that if the signal changes within the timeout period of 10
seconds, the FALSE signal will be deleted. This means that
the inputs must be stable for more than 10 seconds before the
output can go from high to low. A {time: type value}
parameter delays a signal until an absolute wallclock time.
This can be specified in seconds, minutes, hours, days, weeks,
months and/or years. For example, an action can be specified
for every day at 5pm with the following time parameter:
{time: hour 17} or to start each Saturday with {time:
day Saturday}.

In order to describe non-binary data, variables can be
grouped using bit concatenation forming buses. We adopt the

motion (a)

motion (b)
thermostat (c) AC (x)

motion (a)

motion (b)
smoke (c)

alarm (y)

alarm lever (e)

rung 1

rung 2

ra
il

1
(p

ow
er

)

ra
il

2
(g

ro
un

d)

Fig. 4. Relay Ladder Logic representation of circuit shown in Figure 2.

Signal In

Sensors

Signal Out

Actuators

Logic
Evaluator

Node Specific
Logic Expression

Actuator
Configuration

Sensor
Configuration

Sensor
Signal Generator

Signal Forwarding Path

Signal Actuator

Logic Engine

Signal TX Queue

Fig. 5. Logic Engine running on node.

hardware description language syntax of using square braces
[x : y], which denotes bits y through x of the bus. For example,
in the follow expression:

x[4:0] = y[4:0] * b

x is a 4-bit value that can either be set to the value produced
by the 4-bit value of y or not based on the value of b.

B. Logic Designer

As described above, one possible method of describing a
system is through a text description of sensors, actuators and
their interdependencies. However, to achieve our goal of a
truly user-friendly design framework, a graphical interface is
desirable. One option is to design a layout tool that provides
a gate-level drawing of circuits. This approach is commonly
used in industrial automation to configure PLCs using Re-
lay Ladder Logic (RLL). RLL is a graphical diagram-based
language that connects components like elements in a circuit
that can be captured as a subset of SAN-Logic. Figure 4
shows an example ladder logic program that describes the
same interactions shown in Figure 1 and Figure 2. The vertical
rail on the left side of the figure represents power that flows
to a ground rail on the right side of the figure. Each horizontal
rung represents a logical expression and can be captured using
boolean algebra. In RLL, the rungs are executed sequentially
such that any value computed in a higher rung is available
in lower rungs. Ladder logic can include delay blocks, but
capturing intricate timing properties remains quite difficult.
Never-the-less, ladder logic is a simple initial interface for
modeling many sensor-actuator networks and is quite popular.

Other possible approaches include using hardware description
languages like VHDL and Verilog. Procedural and behavioral
descriptions that can be synthesized into structural components
can be directly mapped to a SAN-Logic system description.

C. Logic Synthesizer

There are two primary logic synthesis steps that are used
to optimize designs for particular QoS properties before de-
ployment. The first is a logic synthesis step that operates
on the input logic without any notion of topology. During
this stage, the boolean expressions are manipulated to factor
out common terms and reduce the number of literals and
operators in an expression. Next, a synthesis step occurs that
uses topology information collected from the sensor network.
At this point, additional boolean operations can be performed,
but the primary challenge is associated with mapping signals
to the topology. We discuss possible QoS metrics of interest
and detail various optimization techniques in Section IV.

D. Verification

Verification and error checking are critical when designing
complex distributed systems that interact with the environ-
ment. In this section, we briefly summarize the most common
model checking techniques which exist in logic synthesis tools
that can be used to analyze SAN-Logic systems. One of the
most fundamental verification requirements is the ability to de-
termine if one circuit is functionally identical to another which
is called equivalence checking. Equivalence checking can be
used to perform sanity checks on optimized components, or
to compare functionality of a circuit with that of a reference
design. Though out of the scope of this paper, techniques have
been developed for both combinational as well as sequential
equivalence checking in the area of formal methods. The use
of Binary Decision Diagrams [4] (BDDs) provides a compact
and efficient representation of binary logic that aids in many
of these algorithms. When a full representation of the desired
system is not available, test vector simulation can be used to
verify a subset of output values. Simulation of SAN-Logic
without timing delays is possible in most logic synthesizer
packages. Minor adjustments would be required to simulate the
system given different transmit queue policies. Reachability
analysis can be used to determine if all states in a sequential
logic system can be reached. Unreachable states likely indicate
design errors and should be brought to the user’s attention.
So-called stuck-at faults, where an output is always fixed at
a particular value, irrespective of any input should also be
flagged as errors. Along these same lines, a designer might
inadvertently create a logical cycle that continuously oscillates
an output. These situations can occur by design, however, they
should be flagged as warnings since they are often unintended.

E. Logic Engine

Figure 5 shows a block diagram of the Logic Engine that
executes on each sensor-actuator node. The logic engine is
responsible for arbitrating all input and output signals based on
the given logic expressions and sensor-actuator configurations.

Sensor Actuator

TX Task Logic

Networking Layer

Operating System

Hardware

State Change
Signal

Actuator SignalSensor Signal

RX PacketTX Packet

Fig. 6. Tasks executing on node.

Signals received as packets by the node are passed to the
logic engine and in turn any generated signals from the logic
engine are passed to the network. The Logic Engine will
only transmit signals if their state has changed, or if there
is an explicit request for state updates from neighbors. The
logic expressions for each node are stored as Reverse Polish
Notation (RPN) expressions that are created by the dispatcher
and addressed to each specific node in the network. The signal
TX queue is used to store signals in accordance with their
timing parameters. Figure 6 shows a breakdown of tasks that
comprise the logic engine. Our implementation of SAN-Logic
was designed to run on top of the Nano-RK [7] real-time
operating system. Nano-RK is a fully preemptive multitasking
OS, which allows each rectangle in Figure 6 to be designed
as a separate concurrent task. The dotted rectangle indicates
the components that are part of Nano-RK that simply support
the logic engine. The total compiled SAN-Logic executable
consumes 30K of flash and 2.6K of RAM when compiled
for FireFly sensor nodes. This is quite compact given that
26K of flash and 1.2K of RAM are consumed by the OS and
underlying network layer.

IV. NETWORK OPTIMIZATIONS

In this section, we describe how the manipulation of ex-
pressions using boolean algebra can be used to adjust network
performance. There are many dimensions of QoS that could be
optimized in a sensor-actuator network based on the applica-
tion including energy, throughput, message latency, reliability

a b

x

a b

x

t1

x = a b t = a b x = t 11

(a) (b)

Fig. 7. Adding terms and mapping them to nodes can change message
passing behavior.

0 0.4 0.8 1.2 1.6 2.0 2.4
0

100

200

300

400

500

600

Avg. Outputs per node

M
es

sa
g

es

Direct Network Mapping
Optimized Network

Fig. 8. Number of messages as a function of average number of output terms
mapped onto each node. As the number of outputs increase, the opportunity
to share input data increases.

0 .2 .4 .6 .8 1.0 1.2
0

20

40

60

80

100

120

Avg. Inputs per node

M
es

sa
g

es

Directly Mapped Network
Optimized Network

Fig. 9. Number of messages as a function of average number of input terms
mapped onto each node. As the number of inputs increase, the opportunity to
optimize data remains relatively consistent.

and extensibility. We focus primarily on energy reduction.
However similar techniques can be used to optimize for any of
the other metrics. We show that by combining common terms
and intelligently mapping them, we can significantly reduce
the number of messages required to react to changing inputs

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

Network Size

M
es

sa
g

es

Direct 5
Direct 10
Direct 15
Opt 5
Opt 10
Opt 15

Fig. 10. Number of messages as a function of network size for various
numbers of inputs and outputs.

in the system.

A. Topology Mapping

When mapping a boolean expression onto a network, one
approach is to pass all relevant sensor inputs to their associated
actuator output nodes which in turn locally evaluate the logic
expressions for each output. This is analogous to what human
designers often do when building sensor-actuator systems
that directly pass messages from sensors to their destination
actuators. This approach is functionally correct; however, it
does not capitalize on the ability to manipulate the underlying
logic expressions which may contain common terms. Input
and output signals generated by transducers must be mapped to
their corresponding physical node. Intermediate signals can be
mapped anywhere on the network topology if it is a connected
graph. Additional terms can be added to expressions that do
not change their functionality, but simply provide a means of
moving message passing patterns around in the network. Take,
for example, the expression x = ab, where x is an actuator
while a and b are sensors. Using shortest path routing, one
possible configuration is shown in Figure 7 (a). By adding an
intermediate term and mapping that to the topology, we can
change the way messages are passed as shown in (b) with the
addition of signal t1. In the next section, we will show how
this simple concept in conjunction with logic simplification
techniques can provide a powerful means to reduce messages
count which saves energy.

B. Literal reduction and short-circuited expressions

The goal of most logic simplification tools is to reduce the
overall literal count of a logic expression usually resulting in
fewer gates. All logic expressions can be represented as a two-
level Sum-Of-Products (SOP) where each input is AND’ed
together forming intermediate values that are passed to a
single OR gate. The problem with this approach is that many
AND gates are needed to encode the entire truth-table. Logic
synthesis techniques like Karnaugh maps, Quine-McCluskey
and Espresso [2] convert SOP equations into smaller multi-
level logic functions. By increasing the depth of the logic,
they capitalize on reusing common terms in order to minimize
gates. This same concept can be used to reduce the number
signal literals in a SAN-Logic scheme. Unfortunately, logic
simplification is known to be an NP-hard problem. Karnaugh
maps and the Quine-McCluskey algorithms require exponen-
tial time and are not suitable for expressions beyond a few
variables. Espresso is based on heuristics and can be quite
effective at minimizing literals.

Figure 7 (a) shows a topology where messages are passed
from sensors to actuators using the naive shortest path ap-
proach where all execution occurs at the actuator. Notice
that there are two sets of expressions that share the common
term ab. Figure 7 (b) shows the logic output after running
Espresso. The obvious simplification is to combine the ab
terms. However, care must be taken when placing the inter-
mediate variables. If the intermediate signal is placed at an
extreme location, near the x term, then the overall number of

x = a b + c

a

b

x

t = a b

t

(a) (b)
1

1

1

1

x = t + c
y = t

y
a

b

xy

y = a b

c c

Fig. 11. Combining terms across expressions can significantly reduce message passing. Often times there is the additional benefit of terms being evaluated
near the inputs (short-circuit evaluation) with no change which suppresses further message passing.

messages would increase. We apply a heuristic that places the
intermediate terms at the node in the graph that minimizes
the distance from all input values. The reasoning for biasing
the location towards the inputs and not the outputs is because
many times if the expression is locally evaluated and does not
change, additional messages can be avoided. This is known
as short-circuit evaluation which is a property of boolean
operators, where the outcome of an early operation removes
the need to perform further evaluation. As with most heuristics,
there are situations where this is not optimal. However, in
practice, it performs quite well.

In order to evaluate the effectiveness of different optimiza-
tions, we require a method for comparing the performance
of two given topologies with logic interactions. Ideally, we
would need to simulate the number of message transactions
given every possible set of input transitions. This approach
is computationally infeasible even for medium-sized networks
and assumes a uniformly distributed workload model which
may change based on the application. Instead, we approximate
this value by calculating the number of message transac-
tions between each related signal across the network. This
is achieved by summing up the total messages required for
each right-hand term to reach the left-hand destination across
all expressions. For example, in Figure 11 (a), the number of
messages is computed as follows:

x = ab + c (a → x = 3)(b → x = 4)(c → x = 2) (1)
y = ab (a → y = 2)(b → y = 3) (2)∑

x +
∑

y = 14 (3)

For Figure 11 (b) the total number of messages is:

t1 = ab (a → t1 = 1)(b → t1 = 1) (4)
x = t1 + c (t1 → x = 4)(t1 → y = 2) (5)

y = t1(t1 → y = 2) (6)∑
t1 +

∑
x +

∑
y = 10 (7)

Using the above metric, we evaluate how optimizing the
logic given different sensor and actuator configurations per-
form across networks at different scales. In the following
experiments, we randomly generate logic expressions in SOP
form and uniformly mapped inputs and outputs onto a ran-
domly generated geometric graph. Figure 8 shows that our

optimizations drastically decrease the number of messages as
the number of output terms increase. At above 1.6 outputs
per node we see a consistant reduction in messaging of about
40%. The intuition behind this is that as the number of outputs
increases, the amount of shared information between outputs
also increases and hence factoring out common terms and
placing them in central locations will decrease overall message
passing. After each node has on average more than one output
per node, we see the number of messages begin to saturate
since each node is already communicating with all other nodes
in the network. In contrast, in Figure 9, we see that as the
number of inputs increase and the outputs remain largely
static, the optimization is less effective. With a large number
of uniformly distributed inputs, finding central locations to
combine common factors becomes increasingly difficult. Gen-
erally, they all begin to converge at the center of the graph and
then fan out towards the outputs. It is still worth noting that
optimization never performs worse and does on average 5-10%
better. Figure 10 shows three different sets of input, output
and expression sizes with respect to number of nodes in the
network. Direct-X and Opt-X in the legend refers to the direct
mapping approach for input, output and expression size X in
comparison with the optimized logic mapping. We generally
see that as the system complexity increases, optimizing the
logic further decreases the proportional number of messages
as compared to the direct mapping method.

It is possible to further optimize the placement of signals
on the graph by attempting to simplify each expression into
a minimum spanning tree. Figure 13 shows a variant of the
previous test topology using this strategy. We see that the
original message count of 14 is now reduced to 7. In practice,
this approach may not perform as well as our original heuristic
if the system tends to be biased towards a particular set of
inputs. In this example, if b changes state more frequently
than a, there would be more messages generated than in our
previous example.

C. Coping with packet-loss
In any real sensor networking system one faces packet-loss

as well as intermittent node failures. These failures could be
due to actual hardware failures, or could be as rudimentary as
an object temporarily blocking a node’s antenna. We adopt the
standard approach of using link-level acknowledgments and
retries to increase reliability. Typically a device only transmits

(a) (b) (c)

Fig. 14. Various transducers used in our home automation application (a) FireFly wall power outlet sensing and actuation device (b) PIR and microwave
motion detector interfaced with a FireFly sensor node (c) FireFly sensor node equipped with light, temperature, audio, humidity and acceleration sensors
sitting next to an FireFly to 802.11 gateway device.

when there is a possible state change. To increase reliability,
nodes will also periodically rebroadcast state information. This
periodic rebroadcast can be adjusted at runtime based on link
metrics with neighboring nodes. In our implementation, we
used the average transmit retry at each node to set the gain for
adjusting the periodic node update rate. Nodes with low retry
counts would rarely send out periodic updates, while node with
higher retry rates would more frequently send messages. This
approach can be used in conjunction with multi-path routing
to operate in the presence of node failures.

V. LIMITATIONS

SAN-Logic is best suited for systems with binary variable
values. Non-binary values can be passed using the signal bus
construct that allows multiple signals to represent individual
bits of a variable. Extensive use of wide buses will incur
significant synthesis time overhead since each bus is internally
represented as a set of individual signals. Wide buses will also
increase the size of the logic descriptions passed dispatched
to nodes. SAN-Logic is generally poorly suited for modeling
control interactions based on continuous functions and those
that depend heavily on complex state machines. Sequential
logic optimization systems suffer from scaling due to issues of
NP completeness and state space explosion problems. Current
FPGA systems support millions of gates, which indicates that
the tools involved in logic synthesis should be able to support
even the most demanding sensor network interactions that we
envision in the near future.

t = a b

t

21 1

1

x = t y = t

a

b

xy
c

2t = t + c

t2

1

Fig. 12. Further reduction is possible by performing spanning tree optimiza-
tions ontop of the logic.

VI. EXAMPLE APPLICATION

In this section, we describe a home automation application
where the users specifies multiple sets of interactions using
sensors and actuators in a home environment. We outfitted an
apartment with the four types of wireless sensor networking
transducer shown in Figure 14. This included nine wall-plug
power transducers, three motion detectors, five environmental
sensor nodes and an 802.11 gateway. Each transducer has
a FireFly sensor node which uses a cc2420 radio and an
ATmega1281 micro-controller. The nodes run SAN-Logic
implemented on the Nano-RK real-time operating system. The
wall-plug power transducer shown in Figure 14(a) can not
only sense the amount of power that connected appliances
are consuming, but it can also enable or disable the outlet
with commands from the wireless network. Three lights,
located in different rooms, were independently controlled by
the power nodes. The power usage from the TV and a lamp are
combined to determine if the overhead lamp in the living room
should be disabled while watching TV. Figure 14(b) shows a
combination passive infrared and microwave motion detector
that is wired to a FireFly sensor node. These nodes run a
SAN-Logic driver capable of generating 1 second signal pulses
when motion is detected. Each FireFly environmental sensor,
shown to the left in Figure 14(c), generates signals based on
thresholded analog inputs from temperature, light, sound-level
and acceleration sensors. The FireFly gateway provides a link
to the WiFi network inside the apartment so that the network
can be securely configured and remotely monitored.

The textual description of the system can be found in

t = a b

t

21 1

1

x = t y = t

a

b

xy
c

2t = t + c

t2

1

Fig. 13. Further reduction is possible by performing spanning tree optimiza-
tions ontop of the logic.

#define motion_1 sensor <0x1,binary>
#define motion_2 sensor <0x2,binary>
#define motion_3 sensor <0x3,binary>
#define ff_light_1 sensor <0x4,LIGHT, gt, 200>
#define ff_light_2 sensor <0x5,LIGHT, gt, 200>
#define ff_light_3 sensor <0x6,LIGHT, gt, 200>
#define ff_sound_1 sensor <0x4,AUDIO, dfl, 10>
#define ff_sound_2 sensor <0x5,AUDIO, dfl, 10>
#define ff_sound_3 sensor <0x6,AUDIO, dfl, 10>
#define ff_temp_1 sensor <0x4,TEMP, gt, temp_set_point>
#define plug_node_1 actuator <0x7,AC_PWR, sock_all>
#define plug_node_2 actuator <0x8,AC_PWR, sock_all>
#define plug_node_3 actuator <0x9,AC_PWR, sock_all>
#define plug_node_4 actuator <0xa,AC_PWR, sock_all>
#define light_1 actuator <0xb,AC_PWR, sock_0>
#define light_2 actuator <0xb,AC_PWR, sock_1>
#define light_3 actuator <0xc,AC_PWR, sock_2>
#define tv_pwr sensor <0x7,AC_PWR, sock_0>
#define light4_pwr sensor <0x7,AC_PWR, sock_1>
#define set_point[8] int <0x4,TEMP,INT>
#define ac actuator <0xe,COOLING_ON>

mot_occupied = motion_1 + motion_2 + motion_3
{delay_re: 0ms, policy_re: fifo,
delay_fe: 30000ms, policy_fe: cancel}

audio_occupied = ff_sound_1 + ff_sound_2 + ff_sound_3
{delay_re: 0ms, policy_re: fifo,
delay_fe: 10000ms, policy_fe: cancel}

occupied = audio_occupied + mot_occupied

% Show an array clustering inputs
all_off[0] = plug_node_1
all_off[1] = plug_node_2
all_off[2] = plug_node_3
all_off[3] = plug_node_4
all_off[4] = plug_node_5

% disable lights when unoccupied
all_off = !occupied

light_1 = !(motion_1 + ff_light_1)
{delay_re: 0ms, policy_re: fifo,
delay_fe: 30000ms, policy_fe: cancel}

light_2 = !(motion_2 + ff_light_2)
{delay_re: 0ms, policy_re: fifo,
delay_fe: 30000ms, policy_fe: cancel}

light_3 = !(motion_3 + ff_light_3)
{delay_re: 0ms, policy_re: fifo,
delay_fe: 30000ms, policy_fe: cancel}

% Mood Lighting Scenario
% Also control light 1 based on TV and light 4 usage
light_1 = (tv_pwr * light4_pwr) * occupied

{delay_re: 0ms, policy_re: fifo,
delay_fe: 30000ms, policy_fe: cancel}

% turn on AC if temperature is too hot for 120 seconds
% when the apartment is occupied
ac = ff_temp_1 * occupied

{delay_re: 0ms, policy_re: fifo,
delay_fe: 120s, policy_fe: cancel}

Fig. 15. Text description of home automation application.

Figure 15 with its corresponding graphical description shown
Figure 16. In this example there are three distinct operation
configured by the user that are being mapped onto the system.
The first is occupancy-based management of lights. When
the user is not present in the apartment then the lights are
configured to be disabled. The second task is management of
lights based on TV usage as well as other lighting conditions
in the room. The third task is control of an air conditioning
window unit based on occupancy and temperature from one
of the nodes. In this example we see how a mixture of

motion_1
motion_2
motion_3

�_sound_1
�_sound_2
�_sound_3

occupied

�_light_1

tv_pwr
light4_pwr

light1

�_light_2

�_light_3

light2

light3

�_temp_1(set_point)
occupied ac

Fig. 16. Home automation application circuit.

sensors and actuators could benefit from being shared across
different tasks. Using a structured approach like SAN-logic,
these interactions can also be optimized to improve networking
performance in distributed manner. Reduction of messages
serves two purposes: (1) it increases lifetime for battery oper-
ated nodes and (2) it helps reduce traffic on the network which
limits scalability and adds to timing jitter. In our network,
the battery operated nodes spend the majority of thier energy
on communication (98%). After running our logic reduction
operations on this network we saw 15% less messages due to
early signal termination (short-circuit operations). As shown
in the experimental evaluation section, this performance would
likely further improve in larger networks like those found in
commercial buildings.

VII. CONCLUSION

This paper presented a logic-based programming paradigm
for wireless sensor-actuator networks designed for CPS ap-
plications called SAN-Logic. SAN-Logic provides the fol-
lowing main CPS programming features: (1) specification
of both sensors and actuators, (2) incorporation of physical
topology information, (3) support for timing requirements and
(4) support for heterogeneous devices. Our approach uses
sequential boolean logic relations between inputs and outputs
to model interactions in the network. Modeling the system
using boolean logic allows us to leverage VLSI hardware
design approaches to simplify management and deployment
of large-scale networks. We provide techniques using these
existing logic optimization packages that combine common
terms and benefit from short-circuit evaluation of expressions
to reduce message passing. In complex systems we see up to a
40% reduction in number of messages required to respond to
changing inputs as well as a 15% reduction in our apartment
deployment. Using the VLSI tool-chain allows SAN-Logic
systems to be designed in existing languages like Relay

Ladder Logic and hardware description languages like VHDL
and Verilog. We enhance the boolean logic representation of
the system by including rich timing properties making the
language more suitable for real-time interactions with the
environment required by CPS applications. Each transition
of a signal, rising or falling, can be assigned a delay value
and policy based on a relative or absolute time. This allows
for filtering of spurious sensor values and accurate timing of
actuation events.

REFERENCES

[1] Ashar, P., Devadas, S., Newton A.R. Sequential logic synthesis.
Springer, 1992.

[2] Brayton, R. K., Hachtel, G. D., Curtis, T., Sangiovanni-Vincentelli, A.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[3] Brayton, R. K., Rudell, T., Sangiovanni-Vincentelli, A., Wang, A.R.
MIS: A Multiple-Level Logic Optimization System. IEEE Computer-
Aided Design of Integrated Circuits and Systems, 1987.

[4] Bryant, R. Graph-based algorithms for Boolean function manipulation.
IEEE Transaction on Computers, 1986.

[5] Cheong, E., Liebman, J., Liu, J., Zhao, F. TinyGALS: A Programming
Model for Event-Driven Embedded Systems. ACM Symposium on
Applied Computing, 2003.

[6] Cheong, E., Liu, J. galsC: A Language for Event-Driven Embedded
Systems. Proceedings of the conference on Design, Automation and
Test in Europe (DATE).

[7] Eswaran, A., Rowe, A., Rajkumar, R. Nano-RK: an Energy-aware
Resource-centric RTOS for Sensor Networks. IEEE Real-Time Systems
Symposium (RTSS), 2005.

[8] Gummadi, R., Gnawali, O., Govindan, R. Macro-programming wireless
sensor networks using Kairos. Intl Conference on Distributed Computing
in Sensor Systems (DCOSS), 2005.

[9] Hnat, T., Sookoor, T., Hooimeijer, P., Weimer, W., Whitehouse, K.
MacroLab: A Vector-based Macroprogramming Framework for Cyber-
Physical Systems. ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2008.

[10] Levis, P.,Culler, D. Mate: a tiny virtual machine for sensor networks.
International Converence on Architectural support for programming
languages and operating systems (ASPLOS), 2002.

[11] Li, S., Lin, Y., Son, S. H., Stankovic, J., Wei, Y. Event detection services
using data service middleware in distributed sensor networks. ACM
International Conference on Information Processing in Sensor Networks
(IPSN), 2003.

[12] Mainland, G., Morrisett, G., Welsh, M. Flask: Staged Functional Pro-
gramming for Sensor Networks. International Conference on Functional
Programming (ICFP), 2008.

[13] Newton, R., Arvind, Welsh, M. Building up to Macroprogramming: An
Intermediate Language for Sensor Networks. International Converence
on Information Processing in Sensor Networks (IPSN), 2005.

[14] Newton, R., Morrisett, G. and Welsh, M. The Regiment Macroprogram-
ming System. International Conference on Information Processing in
Sensor Networks (IPSN), 2007.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks. Operating Systems
Design and Implementation (OSDI), 2002.

[16] Sentovich, E., Singh, K., Moon, C., Savof, H., Brayton, R., Sangiovanni-
Vincentelli, A. Sequential circuit design using synthesis and optimiza-
tion. Computer Design: VLSI in Computers and Processors (ICCD),
1992.

[17] Hoque E. Stankovic J. Xie Z. Vicaire, P. Bundle: A group based
programming abstraction for cyber physical systems. IEEE/ACM Con-
ference on Cyber-Physical Systems (ICCPS), 2010.

[18] Welsh, M., Mainland, G. Programming sensor networks using abstract
regions. 2004.

[19] Whitehouse, K., Sharp, C., Brewer, E., Culler, D. Hood: A Neighbor-
hood Abstraction for Sensor Networks. International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2004.

[20] Whitehouse, K., Zhao, F., Liu, J. Poster Abstract: Automatic Program-
ming with Semantic Streams. ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2005.

[21] Yao Y., Gehrke J. The cougar approach to in-network query processing
in sensor networks. ACM Special Interest Group on Management of
Data (SIGMOD), 2002.

	Introduction
	Related Work
	Architecture
	Language Primitives
	Logic Designer
	Logic Synthesizer
	Verification
	Logic Engine

	Network Optimizations
	Topology Mapping
	Literal reduction and short-circuited expressions
	Coping with packet-loss

	Limitations
	Example Application
	Conclusion
	References

