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In this paper, we present Sensor Andrew, an infrastructure
for Internet-scale sensing and actuation across a wide range
of heterogeneous devices designed to facilitate application
development. The goal of Sensor Andrew is to enable a variety of
ubiquitous large-scale monitoring and control applications in a way
that is extensible, easy to use, and secure while maintaining privacy.
To illustrate the requirements of Sensor Andrew, as well as the
capabilities and limitations of the system, we outline one such
application in which multiple classes of energy sensors are combined
with environmental sensors to not only monitor energy usage but
also identify energy waste within buildings.

Introduction
In recent times, there has been a considerable increase in
the number of sensors and actuators being embedded in
the environment, electronic devices, and home appliances.
Most modern buildings, for example, are equipped with
transducers that allow one- or two-way communication
of information such as electrical power-meter data,
environmental sensors, and actuators that are part of building
control and automation systems. The richness of sensors
and actuators will only continue to increase with the
convenience of technologies such as wireless sensor
networks, and many real-world problems benefit from this
type of distributed monitoring approach [1].
One application that has been of considerable interest

and can utilize these sources of data involves the
conservation of energy in buildings. Energy use by buildings
in the United States alone, residential and commercial,
accounts for a total of approximately 30 quadrillion British
thermal units every year [2], which is close to 30% of all the
primary energy consumed in the country. Optimizing the
consumption to reduce that number has been a primary target
of many energy-saving campaigns. Effective solutions to this
problem require the fusion of data from many different
sources, which is typically a difficult task. A single unifying
infrastructure that enables the users to make use of the
information from multiple different data streams is lacking.

To meet these demands, we have built Sensor Andrew, an
infrastructure to support large-scale sensing and actuation
across Carnegie Mellon University. We envision a broad
set of applications, including infrastructure monitoring,
first-responder support, quality-of-life applications for the
disabled, water distribution monitoring, building power
monitoring and control, social networking, and biometric
systems for campus security. Sensing devices that are used
range from cameras and battery-operated sensor nodes to
energy-monitoring devices wired into building power
supplies. Supporting multiple applications and heterogeneous
devices requires a standardized communication medium
capable of scaling to tens of thousands of sources.
The Sensor Andrew infrastructure provides the following

five services: 1) uniform access to heterogeneous devices,
2) sharing of transducers across applications, 3) scaling to
many devices, 4) integration of many currently isolated
subsystems; and 5) security and privacy protection for the
data that is shared. Uniform access to devices is achieved
using self-describing data objects defined by a transducer
schema. Sharing transducer information across applications
is achieved through a publish–subscribe software layer.
Scalability is achieved through the use of encapsulated
addressing: Each device in the system is addressed with a
unique name, server address, and namespace attribute.
Integration of subsystems is possible because of standardized
communication mechanisms with software adapters,
providing the last link of translation to the different
communication protocols used by each subsystem. Finally,
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security and privacy are achieved through encryption, key
management, access control, and policies. With these key
services available, Sensor Andrew enables researchers to
easily utilize an Internet-scale resource of sensors and
actuators in a manner that is extensible, easy-to-use, and
secure while maintaining privacy.
The core Sensor Andrew architecture is built around the

Extensible Messaging and Presence Protocol (XMPP) [3],
in which transducers are modeled as event nodes in a
push-based publish–subscribe architecture. Sensor Andrew
allows for easy integration of new sensors, as well as support
for legacy systems. A data handler provides registration,
discovery, and data-logging facilities for each device.
These tools allow easy and controlled access to transducer
information, which streamlines application development,
promotes transducer reuse, and allows for interapplication
collaboration.
We use building energy conservation as an application to

motivate a system such as Sensor Andrew because this
application requires cooperation between multiple sensing
subsystems. Our specific application targets energy reduction
in buildings by automatically identifying particular
instances of waste. We made use of sensor readings from
a collection of different plug-level (between the appliance
and the outlet) and electric panel power sensors and
actuators, environmental sensors, and motion detectors.
We present two techniques that are based on statistical
patterns and correlation between sensors as a starting point
for a generalized waste-detection framework. The first
technique correlates electrical load usage with occupancy
sensors to establish a relationship that can be used to identify
when loads are running in unoccupied areas of a building.
The second technique monitors individual appliances through
time in an attempt to recognize anomalous behavior. By
using Sensor Andrew, this application can now be easily
scaled to cover an entire city with easy-to-configure access
control, security, and data management.

Related work
Multiple efforts have been made with respect to interfacing
sensors with existing Internet Protocol (IP) infrastructures.
In [4], the authors state that much of the work concerning
sensor systems has resulted in Bvertically built[ designs in
which individual components are only compatible with
one another and not with other systems. The authors put
forth the challenge of making a protocol for sensor networks
that can unify communication in the same way that IP was
able to support the Internet. Due to the resource-constrained,
tightly coupled, and highly optimized nature of sensor
networks, this problem continues to exist. Our objective
in this work is not to standardize low-level sensor networking
communication, but instead to enable unified tools and
interoperability across multiple deployments. Some
researchers have also tried to integrate sensor networks

with IP version 6 (IPv6) [5, 6]. IPv6 solves many of the
problems of addressing and sending/receiving data packets
to and from individual sensor devices. It allows standard
tools such as traceroute and ping to be used for network
diagnostics. However, IPv6 does not solve many of the
higher level challenges associated with managing and
providing applications with the data. In this paper, we
provide a framework that runs on top of existing network
protocols such as IPv6 and IPv4 and addresses access
control, registration, discovery, event logging, and
management of transducer devices beyond a single
subnet.
Multiple projects have created architectures that are

associated with many of the goals of the Sensor Andrew
projectVby enabling transducer reuse and collaborative
Internet-scale sensing. The Internet-scale Resource-Intensive
Sensor Network Service (IrisNet) [7] project uses a
distributed database-centric architecture that facilitates the
storage, processing, and retrieval of transducer information.
It was primarily intended for Internet-connected desktop
personal computers and inexpensive commodity off-the-shelf
sensors such as webcams. In contrast, the Sensor Andrew
project focuses on the management of a wide range of
devices, including resource-constrained transducers, which
may not have direct Internet connectivity. It also provides
presence notification essential for supporting mobile devices.
In Global Sensor Networks (GSNs) [8], the authors propose
a service-oriented architecture in which sensors can be
queried using commands in the style of Structured Query
Language and using web services. A peer-to-peer
architecture is used for efficiently indexing data. Unlike
Sensor Andrew, the GSN is largely focused on single-user
applications with little support for access control. Simple
Sensor Syndication [9] creates a publish–subscribe model
for sensor data using Really Simple Syndication feeds.
A small python server located at a sensor gateway
preprocesses sensor data and can be configured to publish
particular events of interest. Again, the system does not
address issues of access control or resource management
that are central to the design of Sensor Andrew. The
Arch Rock [10] edge server provides a web front end for
mote-based devices in which data can be retrieved via web
pages and services based on the Simple Object Access
Protocol. While they provide a very capable front end for
a single network, their system does not address issues in
data sharing or discovery at a larger scale. In [11], the authors
present a system for making sensor data shareable and
searchable over the Internet. The system is primarily
designed for searching sensor data. It does not focus on
management of sensors between different users with different
access control rights. The same is true for the system
presented in [12]. Sensor Andrew provides device presence
information and is more suitable for real-time communication
to support actuation.
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Multiple research groups have worked on collaborative
sensing services such as SenseWeb [13] from Microsoft
Research, SensorWeb [14], and Sensorpedia [15]. These
systems are targeted toward visualizing and sharing data
with end users. They currently appear to have little support
for managing actuators. The aim of Sensor Andrew is not
only to collect sensor data but also to support control of
environments and to enable interaction between software
agents. These projects complement Sensor Andrew and
could be integrated to aid in navigation and visualizing
events.
Sensor Model Language (SensorML) [16] and Transducer

Markup Language [17] are emerging standards that
essentially create a common description of sensors and
actuators, as well as the systems that generate the data. In
the future, we hope to integrate these models with Sensor
Andrew, but at the time of development, the schemata were
overly complex for our applications, and there was little
existing support software available to aid in adoption. In
contrast with existing models, the Sensor Andrew schema
is biased toward the streaming of sensor and actuator data
rather than describing the details of the sensed phenomena.
Despite all of these challenges, domain-specific solutions

continue to be developed and deployed at an ever-growing
rate. In power distribution systems, for example, there is
currently a large effort to integrate various sensing and
actuation components to better manage the electric grid.
Electric utilities provide their customers with monthly reports
of their consumption, but automated meter reading systems
are starting to provide more frequent updates. Additionally,
there is a growing number of commercially available
power meters that can provide traditional power metrics in
real time at varying degrees of details such as the main
electrical feed of the building, the circuit panels, the
individual circuits, or individual outlets. The costs of the
latter solutions range from hundreds to tens of thousands
of dollars, with their cost increasing with the level of
detail obtained.
Commercial efforts are underway to add sensing devices

in homes to provide users with energy-usage feedback.
Google PowerMeter [18] is a software package that has
an interface with smart metering technology to display
household energy usage. Companies such as Tendril, Inc.
[19], AlertMe [20], and Trilliant [21] are taking a more
proactive approach by offering monitoring devices that home
owners can install themselves to monitor energy usage.
These efforts exclusively focus on electrical appliances,
and most do not provide actuation capabilities or access to
other diverse sensors. There are, however, some projects that
do address the sensor fusion and actuation strategies for
energy management [22, 23]. Additionally, there is a small
number of research [24] and commercial [25] projects on
nonintrusive load monitoring (NILM), a technique that
utilizes signal processing and statistics-based algorithms for

processing the power data for the entire house to infer the
consumption of individual appliances.
The building industry has been working for a number of

years toward standard communication protocols and data
formats to simplify the exchange of information between
monitoring and control equipment in commercial and
residential buildings [26, 27]. Multiple attempts [28, 29]
have been made to translate communications between
different systems to facilitate cross-domain interactions.
These systems are narrowly focused on supporting control
and automation interactions and were never intended to
operate with the number of users or scale of Sensor Andrew.

Paper organization
The remainder of this paper is organized as follows. The
following section describes the architecture requirements,
design goals, and tradeoffs associated with the Sensor
Andrew infrastructure. The section that follows describes the
architecture we chose for Sensor Andrew and where it is
located in the design tradeoff space. We then discuss the
implementation of various system components. Later, we
present a section that describes how these components are
used in a building energy-management application, and
finally, the last section summarizes our contributions and
discusses our future plans.

Sensor Andrew architecture and design goals
We adopted the following design goals for Sensor Andrew:

1. Ubiquitous large-scale monitoring and controlVThe
sensing infrastructure should exist at a significantly
large scale to encourage the development of new and
innovative applications. The infrastructure should support
both sensing and actuation.

2. Ease of management, configuration, and useVThe ease
of use of the system needs to be considered for both
managing the infrastructure and providing simple ways
for application developers to form interfaces with their
own and other subsystems. A process for registering and
discovering transducers relevant to the user’s project
should also be included.

3. Scalability and extensibilityVThe ability to support
a large number of devices and users is of paramount
importance. Extensions made by a particular project to
satisfy a new requirement should ideally benefit the entire
community.

4. Built-in security and privacyVThe system should support
security and privacy considerations, including encryption,
key management, access control, and account/user
management. Various aspects of privacy should be
governed through well-defined policies.

5. True infrastructure sharingVOne of the most unique
contributions of Sensor Andrew is the notion of multiple
heterogeneous applications and devices that can utilize
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one another’s services. The architecture must easily
integrate information from multiple applications, creating
additional value to all users as new types of applications
are envisioned.

6. EvolvabilityVThe architecture must be capable of
evaluating different computation paradigms. It must
also allow for rapid prototyping in large quantities to
demonstrate practical usage and utility. It also needs
to be able to change over time. Being able to evolve
with and support these changes will be important for
incorporating unforeseen and innovative applications in
the future.

7. RobustnessVThe system should be robust and be able to
reconfigure itself.

Given these challenging goals, it would be infeasible to
design every component of Sensor Andrew without relying
on previous technologies. We utilize existing technologies
wherever possible and innovate as necessary. In this section
and the next, we discuss how each of these goals was met
by describing the different components of the system.

Figure 1 illustrates the classic three-tiered architecture
we adopted with a front-end agent layer, a gateway layer,
and a transducer layer. The servers and gateways operate as
part of the campus network, whereas the transducer layer
may communicate over a variety of different bus or network
protocols. What follows is a description of each of the
elements of this architecture.

Communication
An infrastructure such as Sensor Andrew has many
communication requirements, namely, standard messaging
formats, extensible message types, point-to-point and
multicast messaging, support for data tracking or event
logging, security, privacy, access control, and Internet-scale
performance. To meet these requirements, we chose to
make use of XMPP, an open Internet protocol inspired by
Extensible Markup Language (XML), traditionally used
for online chat communications and supported by industry
leaders such as IBM, Google, and Apple.
Much in the same way a domain can run its own email

server, addressing in XMPP is defined first with a client

Figure 1

Three-tiered architecture of Sensor Andrew. Dashed and solid lines represent wireless and wired connections, respectively. Actuators and sensors are
both transducers and can be attached to sensor devices or mobile nodes.
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identification [referred to as a Jabber identification (JID)]
followed by a domain name and then a namespace. Entities
using XMPP are classified as clients and servers. For
example, gw x@sensor:xxx:xxx:edu=refrigerator

identifies a particular gateway node’s address ðgw xÞ at
an XMPP server address (sensor:xxx:xxx:edu) with its
namespace specified as refrigerator. An XMPP server
with the correct access permissions can pass a local
client’s requests to another XMPP server, which, in turn,
can pass the request to the destination client. The addition
of namespaces appended to the addresses allows for the
creation of multiple views.
XMPP supports publish–subscribe messaging, where

JID clients can send and receive messages through event
nodes. Event nodes are addressable data channels that allow
clients to publish and subscribe to event feeds. Nodes may
also maintain a history of events, provide meta-information
about the event feed, and contain access control lists (ACLs).
This push model of communication provides a powerful
mechanism for distributing sensor data to any interested
application or user.
XMPP satisfies our initial requirements in five ways.

First, it provides a standard scalable messaging and presence
protocol with user/group authorization, authentication,
and access control. Since XMPP is already an Internet
standard, we can make use of commercially available servers
that are maintained by the open-source community.
Second, the addressing and messaging scheme of XMPP
is optimized for short messages with point-to-point and
broadcast capabilities. The addressing scheme is not bound
to a physical network location, making it ideal for mobile
devices. Third, XMPP provides a publish–subscribe
functionality for pushing (e.g., transmitting) sensor data.
This is an ideal model for mass distribution of data.
Fourth, XMPP provides organized event messages with an
internal database for storing transaction records. Finally,
XMPP can utilize clustering or replications to meet
large-scale demands and provide primary-backup fault
tolerance.
Building upon XMPP as a transport layer, we still require

various additional components in the system. First, we need
schemas to describe a wide range of transducers. Next,
we need a set of adapters to facilitate communication
between low-level hardware and XMPP. We also require
a set of software agents and libraries to streamline
development and help manage all of the data streams. In
the following section, we describe each of these components
in more detail.

Transducer layer
Elements of the transducer layer are end-point sensors or
actuator devices with little or no processing power, which
have the ability to measure or change some physical
characteristic of the environment. These devices typically

require custom software (often running on a microcontroller
interface) to read general-purpose input/output pins,
analog-to-digital converters, serial messages, wireless
sensor nodes, or other similar low-level devices and
protocols. The goal of the transducer layer is to pass
information to an Internet-connected device that is part of
the gateway layer. In our building energy optimization
application, for example, the most critical transducers include
motion sensors, current and voltage transformers, and
temperature, light-intensity, and audio-level sensors.
Figure 2 shows these transducers and the devices that
host them.
The heterogeneous nature of Sensor Andrew requires

supporting vastly different types of transducer devices.
To this point, we have mostly described low-data-rate
devices such as wireless sensor nodes. Sensor Andrew must
also support high-data-rate devices such as video-streaming
systems. For devices with high bandwidth requirements,
XMPP offers a hands-off mechanism for establishing a secure
link between two clients. In these cases, there is no
transaction logging, but devices still benefit from addressing,
access control, encryption, and authentication.

Gateway layer
The gateway layer consists of devices that have access to
the Internet. As described in the next section, these devices
run a full XMPP client with associated software adapters
for any attached transducers. Gateways are responsible
for running adapters that format the transducer layer
information so that it can be passed onto the server layer.
They also have the ability to create and manage the event
nodes to which they publish data. Information is passed from
the transducer layer to the gateway layer using low-level
protocols. Messages are then passed between the gateway
layer and the server layer using XMPP with the Sensor
Andrew transducer schema. Devices at the server layer can
then subscribe to event nodes to receive data once it is
published.
For example, a gateway in a classic wireless sensor

network, such as the one depicted in Figure 2, would be
part of the gateway layer and would publish sensor values for
each sensor node. In contrast, the sensor nodes would be
considered part of the transducer layer. In general, the device
on the Internet that does the publishing would be considered
part of the gateway layer.
Adapters publish to unique XMPP event nodes for

each device. Figure 3 shows an overview of the XMPP
publish–subscribe system. Event nodes can be hierarchically
organized so that subscribers can be notified when particular
related groups of nodes produce data.

Agent layer
The agent layer consists of the XMPP servers along with
various client applications called agents. The purpose of the
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server layer is to provide a simple means for applications
running on desktop-class machines to communicate with
each other. Applications can subscribe to event nodes
and publish their own meta-events. These meta-events can
then be Bconsumed[ and used by applications creating
increasingly richer data streams.

Actuation support
Actuation in Sensor Andrew must be implemented with a
consideration toward security and resource sharing; hence,
it takes place as a split-phase operation with an action signal
followed by a completion callback. First, gateway devices
that support actuators are required to subscribe to their
respective actuator event nodes. An agent can publish an
actuation request to the event node, which is then translated
by the adapter of the gateway into a native command for
the actuator. Once the actuator operation has completed its

transaction, the local adapter is responsible for publishing
updated state information back to the event node. An agent
could subscribe to this event node to confirm the requested
transaction. The low-level actuation transaction occurs at
the transducer and gateway layers, but the authentication,
permission, and messaging associated with the actuation
are handled at the server layer.

System components
Sensor Andrew is designed to operate using a standard
XMPP server that supports messaging and event publishing.
In our current deployment, we use the Openfire [30] server
from Ignite Real-Time Software. Access control for users
is provided through ACLs associated with users, groups, and
event nodes. Each event node has whitelists and blacklists
describing which users can read or write data. The details
of how the server manages access control are outside the

Figure 2

Components of our building energy optimization application. Here, TED refers to a simple but accurate energy monitor that allows users to observe
electricity usage throughout the house in real time. The red dashed lines indicate the wireless mesh network formed by all the sensor nodes.

6 : 6 A. ROWE ET AL. IBM J. RES. & DEV. VOL. 55 NO. 1&2 PAPER 6 JANUARY/MARCH 2011



scope of this paper, but the interested reader can find
more information about access control in the XEP-0074
extension of XMPP, where XEP stands for XMPP Extension
Protocol.
We developed the Sensor Over XMPP (SOX) library as

a layer on top of XMPP that provides a set of common tools
and a uniform interface for all Sensor Andrew applications.
Various command-line tools wrap different application
programming interface calls for simple use on any
UNIX**-based computer. To support a variety of hardware
platforms and operating systems, we have implemented
the SOX library in C, .NET, LabVIEW**, Java**, and
Python.
Adapters utilize the SOX library to convert transducer

data into SOX-compatible messages. These interfaces, as
previously explained, run on the gateway layer collecting and
formatting information from the transducer layer. This library
facilitates the development process for new adapters.
Currently, we support more than a dozen commercial and
research-grade devices such as The Energy Detective (TED)
energy meter, HOBO** environmental sensors, FireFly
802.15.4, and wireless sensor nodes. All of the sensors
and actuators used in our energy application have a

corresponding software adapter that leverages our SOX
library.

Data handler
The data handler is a web application that oversees all
read/write activities on the transducer registry and transducer
value archive. At the core, the data handler contains the
registry and archive schema, business rules, and read/write
functions. A web interface was constructed to allow
browsing, editing, and creating transducer and device
metadata records in the registry. The registry interface will
guide the users through the data-entry process to facilitate
participation in the Sensor Andrew network. It also allows
users to browse and search existing transducers and archived
data. The data handler inherits the permission model of
the XMPP server by requiring users to log in with a valid
JID, which it then uses to authenticate them with the
XMPP server.
A database system supports the data handler by

implementing the transducer registry and data value archive
schema that defines the relationships among the numerous
kinds of metadata that Sensor Andrew supports. The details
of this schema are beyond the scope of this paper. For

Figure 3

XMPP publish–subscribe transactions to support collection of sensor networking data. (SOX lib: Sensor over XMPP library.)
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more information on the data handler, please refer to our
technical report [31].

Security and privacy
Given the physical nature of the information collected and
exchanged throughout the Sensor Andrew system, one has
to be naturally concerned about security and privacy issues.
Our privacy mechanisms range from technological solutions,
such as encryption, to informal policies, such as proper
information distribution to the users and labeling of devices.
The principal investigators of each project using Sensor
Andrew is required to be compliant with a project-wide
privacy policy and the university Institutional Review Board
requirements. Devices placed in public areas must clearly
display what information they are capturing and where
further information about the project can be located.
All server-layer communication takes place over XMPP

using Transport Layer Security connections. All client
applications are also required to authenticate with a
username and password. Any guest access to the network
is automatically restricted by the ACLs to anonymous data
that could not be used to identify individuals. Whenever
possible, security is used within individual transducer
layer subnets. For example, our example wireless sensor
networking deployment uses encryption for all infrastructure
communications.

User workflow
In order for users to access Sensor Andrew, they must
register to obtain a username and password. This login
is the XMPP JID that is used to track the creation of
event nodes and their associated permissions. Users can
immediately log in to the main web interface and search for
existing publicly available sensors. The system supports
browsing through the use of a hierarchical map interface or
by transducer attributes as described by the meta-information
of each device. The data handler provides plotting of
historical data over user-defined time periods for quick
previewing and the ability to export data files for local
processing. To add a transducer into the system, the user
must first describe the device through the web interface of the
data handler, and in return, an event node and a set of
database keys are generated for each transducer. At this time,
the user can also specify the username that the transducer
adapter will use to publish data (this could also be the
original username if desired). Once a device has been
registered, the data handler will automatically subscribe to
the new event node and begin logging data. The user must
add the provided event-node JIDs and database keys into
the configuration file for the specific SOX transducer adapter.
Once the adapter starts, it will connect to the main
XMPP server and begin to publish data to the configured
event nodes.

SOX-specific enhancements
Anytime a system leverages existing components, technical
and design incompatibilities will likely arise. We now
summarize a few notable enhancements to the core Sensor
Andrew technologies that were required to streamline the
interconnection of each system layer. To utilize XMPP,
we developed the SOX library and data schema required to
represent and transfer sensor data. This included an extensive
set of adapters (often running on embedded platforms)
required for interfacing with transducers. Modification of the
XMPP server was required to add group permissions to
publish–subscribe event nodes since, by default, access
control only applies to users. We are suggesting this ACL
addition along with our schema as part of an XMPP
extension protocol to the XMPP community. Finally, we
provide an extensive set of core SOX agents for registration,
discovery, logging, and viewing of sensor data. Access to
these tools allows new users to quickly store and visualize
data before building more complex analytical tools.

Building energy optimization
We now turn to a specific application to illustrate the
advantages of utilizing an infrastructure such as Sensor
Andrew when developing applications that require access
to multiple transducers.
To optimize the energy usage within a building, it is first

necessary to identify which appliances consume the most
energy and then highlight possible areas that users could
intervene. Monitoring electrical loads can be achieved using
energy meters at various points in a building’s electrical
distribution tree. The more difficult challenge is to identify
energy waste within the system to provide users with
suggestions for optimization. Examples of energy waste
include unused appliances being left on, windows or
doors left open allowing hot or cool air to be lost, appliances
slowly degrading in performance over time, and so-called
phantom loads associated with inefficient electronic wakeup
circuits. Many of these sources of waste are unique to
one particular environment; however, we present two
techniques based on statistical patterns and correlation
between sensors as a starting point for a generalized
waste-detection framework. The first technique correlates
electrical load usage with occupancy sensors to establish
a relationship that can identify when loads are left running
in unoccupied areas of a building. The second technique
monitors individual appliances over time in an attempt
to recognize anomalous behavior. For example, if the
refrigerator door is left ajar, the refrigerator begins to
consume more energy than usual. Less obvious anomaly
examples include situations in which devices such as printers
or flat-panel televisions are locked in error states that
cause them to continue consuming energy even though
they appear to be off. Both of the management techniques
presented here share the goal of providing users with
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meaningful information about where energy may be wasted
as opposed to simply displaying energy plots over time.
The first step toward deploying our energy management

system was to outfit two apartments with a set of sensors
and actuators to capture relevant information regarding the
occupancy status and power consumption of the different
areas in the living space. Figure 2 shows a diagram of
the primary hardware components used to support our
application. At the main circuit panel in each house, a NILM
system [32] was used to measure the total electricity
consumption of the space. The NILM system analyzes power
transients generated when appliances turn on and off to
identify devices that are consuming energy. Each time an
appliance changes state, a unique voltage and current
signature can be used as a fingerprint to match against a
prerecorded set of appliances. This allows the NILM system
to make estimates, solely from the circuit breaker, as to
what types of appliances are currently running and how
much power they consume. The NILM system runs on
a desktop computer with a National Instruments analog
data-acquisition card and sensors attached to the breaker
panel of the home. We provide a LabVIEW Sensor Andrew
adapter that publishes the total power information and the
virtual-appliance information to the NILM event node.
In addition to panel-energy instrumentation, we deployed

a set of plug-level energy meters [33] as part of a FireFly
wireless sensor network. The plug-level sensors can directly
sense and actuate individual electrical outlets providing
control, as well as Bground truth[ to help validate the NILM
estimations. Here, ground truth refers to unequivocal
measurements that can be used for various comparisons.
As part of the wireless sensor network, we also deployed
environmental sensors in each room that would periodically
report temperature, light, acceleration, and sound level
to Sensor Andrew. To detect occupancy, we deployed
commercial passive infrared motion detectors in a
configuration such that they covered the main areas of
each room. A modified Linux**-based 802.11 wireless router
was running the Sensor Andrew adapters to publish data
on behalf of each sensor. The gateway subscribes to any
event nodes that might need to service actuation requests
from the server layer. In total, each apartment was equipped
with a NILM computer, a router, approximately six
environmental sensors, six motion sensors, and ten plug
meters. All communication from these devices is collected
(as part of the transducer layer) and eventually published
to Sensor Andrew event nodes using the SOX adapters.

Occupancy-correlated energy usage
We collected three months of data from two off-campus
apartments using the Sensor Andrew data-handler database
agent. This could have been also collected using a
user-defined agent that subscribes to each event node of
interest. During the initial deployment setup, the users

labeled appliances associated with each energy meter
and named the various sensors with human-readable
descriptions through a web interface. A correlation matrix
with correlation values for all possible pairings between
signals from motion detectors and metered electrical
appliances in the apartment was obtained. If the electrical
usage was significantly correlated with a particular motion
sensor, it was considered a good indication that the appliance
is physically colocated with the device. Devices such as
overhead lights that are typically used while there is motion
in the room tend to be better correlated. Appliances such
as washers or dryers will have a high correlation during
initial activation, but after the user leaves the room, they
continue to run without motion. The correlation between
signals from each motion detector and each electrical
appliance automatically identifies these associations over
time without requiring the user to explicitly configure them.
Table 1 shows an example of the correlation coefficient
matrix for one of the test apartments. Highlighted values
have low p values for testing the hypothesis of no correlation
and, hence, indicated a strong linkage between the sensors.
In this case, we are interested in both positive and negative
correlations. The bottom two rows list the best overall
correlated sensor and the best correlated motion sensor.
Once the mapping between appliance usage and motion data
is found, a Sensor Andrew agent subscribes to all energy
streams correlated with a motion detector and triggers an
alert anytime an appliance is being used for more than
15 minutes without any accompanying motion. Figure 4(a)
shows two clusters of appliances and highlights (in light
green) those sections detected as waste.

Energy anomaly detection
In addition to detecting occupancy-inferred energy waste,
we developed another agent that monitors the energy data
streams to find usage anomalies in daily energy consumption
over time. There are multiple possible techniques for
detecting anomalies in data streams that perform better
or worse depending on how much application-specific
information they are provided. In our initial deployment,
we wanted to create a simple generalized model that could
operate on a wide variety of appliances. The algorithm
uses a seven-day moving window to calculate the average
energy consumption of each device. An anomaly is then
defined as any daily value on which the appliance uses
more than twice this weeklong rolling average. Figures 4(b)
and 4(c) show two examples of this filter running over a
period of 70 days. The black bars denote the energy usage
of one day, whereas the horizontal red sticks show the
threshold used to detect an anomaly. Any time the black bar
exceeds the anomaly threshold, the system alerts the user.
Figure 4(b) shows the energy usage of a refrigerator as an
example of a device that varies over time (potentially based
on room temperature) but should generally not trigger the
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anomaly detector. Figure 4(c) shows television (TV) usage
and how, in a few cases, it triggered the anomaly detector.
In three out of the four instances when the alert was
triggered, it was due to the TV continuing to operate after the
user had left the room or fallen asleep. The first triggering
was a false alarm due to erratic viewing patterns and lack of
historical values for the moving average filter. In the future,
more complex detectors could prevent these situations.

Limitations
As shown in the previous sections, Sensor Andrew provides
an easy-to-use framework for developers to access and
share large numbers of sensor data streams. However, there
are a few limitations that warrant further investigation.
Our requirement of transaction logging, for example, forces
all messages to pass through a server even if the action could
be completed with a point-to-point message. To help

Figure 4

Experimental results. (a) Energy waste identification. (b) Daily consumption with anomaly trigger points for refrigerator. (c) Daily consumption with
anomaly trigger points for television. Note that the vertical axis for the graphs in (a) shows the binary values for the motion sensors and active power
values (in watts) for the plug-level sensors.
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alleviate server bottlenecks, a unique server can be used for
a single domain of interest. For high-speed sensor data, there
is currently no database-logging capability. A transaction
record exists, but the bandwidth of streaming data would be
too much burden on the main message server.
With respect to privacy, our current permission model does

not support fine-grained access control over individual record
elements. The model only provides access control at the
event-node level. This makes it difficult to provide a user
permissions to read one sensor value, but not another on
the same device. This would only be possible if each
individual sensor was modeled by its own event node.
Another current weakness in the architecture that we are

trying to address is the ability to capture meta-information
about virtual sensors. We would like a way to exactly capture
an operation performed on a data stream and trace its
relationships back to the source sensor set. For example,
dew point is computed using information on humidity and
temperature. If there is a dew point sensor, one should be
able to extract exactly what operations were performed in
each sensor to compose the final value. This becomes
extremely difficult when the relationships are not simple
linear functions. For example, room occupancy can be
composed with any number of heuristics.
The potentially vast volume of information could

eventually become a performance bottleneck. Our initial tests
indicate that XMPP is compute limited by Transport Layer
Security. The current solution is to distribute the servers
to avoid individual bottlenecks. However, it could also
be possible to increase performance by optimizing the
underlying XML messages by converting them into a more
compact binary form. This could have a significant impact
on processing speed at the cost of obfuscating our packet
format. For now, since most transducer packets are small,
XML is sufficient and easy to work with. Finally, the time
taken to establish an initial XMPP connection is significant
compared with just sending a transducer packet, which
indicates that it is better to maintain an open session rather
than periodically opening and closing it.

Conclusions and future work
In this paper, we presented a multidisciplinary campus-wide
scalable sensor network called Sensor Andrew that is
designed to host a heterogeneous mix of sensing and
low-power applications. We presented the requirements,
goals, and design tradeoffs associated with such a large-scale
system. Specifically, the goals of Sensor Andrew are to
support ubiquitous large-scale monitoring, operation, and
control of infrastructure in a way that is extensible and easy
to use and that provides security while maintaining privacy.
Our architecture provides a complete communication
framework allowing new projects to be easily integrated with
existing projects to extend overall capabilities. A three-tiered
architecture allows for ease of management and facilitates

security and privacy controls. Open-source software,
customized and integrated with our extensions, enables
seamless and scalable communications across layers.
We highlighted the features of Sensor Andrew through a

building energy-waste identification application. Although
our main goal was to present the application to demonstrate
the flexibility, security, and data management facilities of
Sensor Andrew, the preliminary waste-detection results show
promise. In one of the test apartments, the system detected
that lights and computers were left unattended for as much
as 25% of the time they were in use.
As future work, we plan to enhance the proposed

architecture by streamlining the interface for registering,
configuring, and querying sensors through web services.
We also plan to continue the development of tools and
applications exploring real-world sensing and actuation
scenarios. Efforts are already underway to build applications
that integrate sensor data with Building Information
Models [34], as well as with the Building Interior Data Space
Model [35], to provide better models for exploring sensor
metadata. We are also investigating integration with
SensorML and continuing support for new applications.
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