
eWatch: A Wearable Sensor and Notification Platform

Uwe Maurer1, Anthony Rowe2, Asim Smailagic3, Daniel P. Siewiorek3
3School of Computer Science, Carnegie Mellon University, Pittsburgh

2Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh
1Computer Science Department, Technische Universität München, Germany

Abstract

The eWatch is a wearable sensing, notification, and com-
puting platform built into a wrist watch form factor making
it highly available, instantly viewable, ideally located for
sensors, and unobtrusive to users. Bluetooth communica-
tion provides a wireless link to a cellular phone or stationary
computer. eWatch senses light, motion, audio, and tempera-
ture and provides visual, audio, and tactile notification. The
system provides ample processing capabilities with multiple
day battery life enabling realistic user studies. This paper
provides the motivation for developing a wearable comput-
ing platform, a description of the power aware hardware and
software architectures, and results showing how online near-
est neighbor classification can identify and recognize a set of
frequently visited locations.

1. Introduction

The eWatch is a wearable sensor and notification plat-
form developed for context aware computing research. It
fits into a wrist watch form factor making it highly avail-
able, instantly viewable, and socially acceptable. eWatch
provides tactile, audio and visual notification while sensing
and recording light, motion, sound and temperature. The
eWatch power management was designed to operate similar
to a cellular phone, requiring the user to recharge overnight.
The eWatch needs to be small and energy efficient enough to
allow for multiple day user studies by non-technical partici-
pants. Given these energy and size constraints eWatch should
provide the most computation and flexibility to allow an as-
sortment of applications. The goal was to move beyond sim-
ple sensor logging and allow for online analysis that could
query the user for feedback while collecting data or provide
services to showcase context aware applications.

eWatch can be used for applications such as context
aware notification, elderly monitoring and fall detection,
wrist PDA, or a universal interface to smart environments.
The ability to sense and notify allows for a new variety of
enhancements. For instance, much work has been done on
fall detection for the elderly [7]. Existing systems do not
function appropriately when a patient loses consciousness

and cannot press a button. Current automatic systems have a
high rate of false positives. An eWatch system could sense
if the user was in distress and then query to confirm that it is
an emergency. If the user does not respond, then the eWatch
could use its networked abilities to call for help. The use
of online learning could profile a patient’s daily activity and
notify a caretaker if a patient no longer performs their daily
routines. The eWatch can also notify a patient when they
should take certain medication.

2. Related Work
Several groups have developed wearable computing plat-

forms and wearable sensor recording and processing devices
[2, 1, 8]. However, most of these devices do not interact di-
rectly with the user, have insufficient battery life, or are too
cumbersome for a long-term study with non-technical sub-
jects. The idea of a smart wrist watch dates back as early as
the 1930s [3] and first took a functional form with the IBM
Linux Watch [6]. In its original form, the Linux Watch was
a PDA on the wrist, and did not possess sensors. Later re-
visions of IBM’s Linux Watch added acceleration and audio
sensors; however they lacked light and temperature sensors
and have not targeted user context or location tracking appli-
cations. The power consumption of the Linux Watch is too
great for day long operation.

Current location tracking systems offer high accuracy
[10, 5] using triangulation methods, however, they require
infrastructure support. In this paper we demonstrate a sim-
ple, coarse-grained location tracking method to show how
eWatch can use sensor information to reason about the envi-
ronment. Our method relies only on sensor samples from the
environment in order to categorize the user’s location.

3. Hardware Architecture
Figure 1 shows the eWatch architecture which consists of:

the main CPU, sensors, power control, notification mech-
anisms, and wireless communication. The main CPU is a
Philips LPC2106 ARM7TDMI microcontroller with 128Kb
of internal FLASH and 64Kb of RAM. The LPC2106 is a
32bit processor capable of software controlled CPU scal-
ing up to 60Mhz. eWatch communicates wirelessly using
a SMARTM Bluetooth module and an infrared data port for



Figure 1. eWatch hardware architecture

Part Avg. Power(mW) Peak Power(mW)

ARM7 processor 29.7 132
ADC 4.95 4.95
Microphone Amp 2.5 2.5
Accelerometer 2.0 2.0
LCD Controller 0.23 0.33
Serial Flash Memory 0.003 13.2
Bluetooth Module 0.09 90
Vibration Motor 0 63
Backlight LED 0.03 33
Light Sensor 0.825 0.825
Temperature Sensor 0.825 0.825

Average Life Time: 56 hours

Table 1. Power and Current

control of devices such as a television. A previous version of
eWatch based on different hardware is described in [9].

Sensor data is acquired using an external TLV1544 10bit
ADC and can be stored in a 1Mb external FLASH device.
eWatch is capable of sensing temperature, light, two axes of
acceleration and audio at user controllable sampling inter-
vals up to 100Khz. A MAX4061 amplifier is used for audio
conditioning. We use an ADXL202 MEMs accelerometer to
measure the planar acceleration of the user’s hand. The user
can be notified using a 128x64 pixel display, an LED, vibrat-
ing motor and tone generating buzzer. Three push buttons are
distributed around the outside of the housing in the standard
configuration of a digital watch.

eWatch is powered by a 3.6 volt 700mAh rechargeable
lithium polymer battery with a linear regulator active during
peak voltages and a DC to DC voltage pump as the battery
drains. Table 1 shows the power consumption of each com-
ponent in the system. The chart shows the maximum possible
power usage of each device followed by an average power
consumption computed from a trace of daily use.

The final housing is made from epoxy resin that was cast
in a silicon mold and measures 50mm x 48mm x 17.5mm.
The limiting factor with resepect to eWatch’s size is the bat-
tery which can later be reduced as the device is customized
for a specific application.

4. Software Design

The eWatch system was designed as a platform for de-
veloping context aware applications. The main goals that

influenced the design decisions wereease of useandflexibil-
ity. eWatch provides the developer with an API that enables
rapid prototyping. The eWatch software system consists of
three layers: Application, System Functionality, and Hard-
ware Abstraction.

Applications access functionality of lower layers to ren-
der screen images, interact with the user and retrieve infor-
mation from the storage, sensors or wireless network. The
System Functionality Layer provides an API for shell, task
and power management. The Hardware Abstraction Layer
contains the drivers for all the hardware components provid-
ing access to all eWatch functionality.

The layered architecture helps to achieve our goal of flex-
ibity by reducing the effort necessary to port to another hard-
ware or software environment. For example, we developed
a Linux port of the software system that replaces the hard-
ware abstraction layer with simulated hardware. This enables
rapid development cycles since the code can be tested on
the developers machine without actually updating the eWatch
firmware.

4.1. Interface

eWatch offers two interfaces for a user or developer to
control its functionality: the eWatch shell and the Graphical
User Interface (GUI) on the built-in display.

The eWatch shell allows users to execute functions and
configure variables via Bluetooth. A text-based protocol is
used to transmit commands similar to a Unix shell. The ap-
plications on eWatch can register functions and variables,
making them accessible through the shell. The commands
can be typed by a user or developer through a keyboard or
sent from a program running on the PC. This enables auto-
mated scripting of the system and allows remote applications
to access eWatch functionality.

The primary GUI of eWatch is the menu system. As
shown in Figure 3(a), the menus allow the user to scroll
through lists of items and select entries to activate them. The
menu structure is organized hierarchically - entries can be
modified, added, or removed during runtime. Each menu
entry is linked to a shell command that is executed when the
entry is selected. The eWatch GUI library supports TrueType
fonts, drawing of geometric shapes, and displaying bitmaps.

4.2. Applications

Several applications make use eWatch’s capabilities. Fig-
ure 3 shows screenshots of the eWatch user interface and ap-
plications.

Like a standard wrist watch, eWatch provides the user
with the current time (Figure 3(b)). In addition, it shows in-
formation about incoming text messages and upcoming cal-
endar events. Information about the sensor logging and avail-
able memory is shown while logging is in progress. Fig-
ure 3(c) shows a real-time plot of sensor data.

The calendar application stores and notifies the user of
events (Figure 3(d)). The calendar can be synchronized with



(a) Top view of eWatch board (b) Bottom view of eWatch board (c) eWatch with housing

Figure 2. eWatch board and housing

(a) First page of menu (b) Watch screen

(c) Sensor overview (d) The eWatch calendar

Figure 3. The eWatch GUI

a personal computer using the standard iCal format. The data
from the calendar can be used for context aware applications
that recognize the user’s location and activity.

4.3. Sensor Sampling and Recording

Recording sensor data is a core system functionality. The
sensor sampling and recording system is designed to con-
sume minimal power and make efficient use of memory. Sen-
sor sampling is interrupt-based to minimize sampling jitter.
Every sensor has a timer interrupt with a configurable sam-
pling frequency. In the interrupt handler, the ADC value is
read and then stored in a memory buffer. Between interrupts
the system remains primarily in the idle state to conserve
energy, occasionally powering up to compress the collected
data and write it to flash.

We wanted a lossless compressor to allow for 24 hours
of data recording. We chose an algorithm described in [4]
that performs compression using four linear predictors and
efficient coding of residuals. Our experiments showed that it
reduced the memory consumption of the sensor data to 20%
- 50% of the original size.

4.4. Power Management

The ARM7TDMI microcontroller supports two power-
saving modes and frequency scaling. An event-based archi-
tecture that waits in idle mode for incoming events was se-
lected. When an event occurs, the processor wakes up to
service it. After the application completes, it relinquishes
control to the scheduler that can then return the processor to
idle mode.

5. Location Recognition
Knowing about the user’s location is an important aspect

of a context aware system. Using eWatch we developed
a system that identifies previously visited locations. Our
method uses information from the audio and light sensor to
learn and distinguish different environments.

We recorded and analyzed the audio environment and the
light conditions at several different locations. Experiments
showed that locations have unique background noises such as
car traffic, talking, noise of computers, air conditioning and
television. The light sensor sampled at a high frequency can
also provide additional information beyond the brightness of
the location. Frequency components generated by electric
lights (at 120Hz and 240Hz) and displays (television, com-
puter screen at 60Hz) can be observed. We observed that
the frequency characteristics of light conditions tend to re-
main constant in most locations. For our study, audio data
was recorded with the built-in microphone at a sample rate of
8kHz and the light sensor at a frequency of 2048Hz. At every
location five consecutive recordings of audio and light were
taken, separated by 10 second pauses. For every recording,
we sampled the microphone for four seconds (32000 sam-
ples) and the light sensor for 0.5 seconds (1024 samples).

The recorded data was then compressed and stored into
flash memory. Locations frequently visited by the user were
recorded; the rooms of the user’s apartment (living room,
kitchen, bedroom, bathroom), their office, the lab, different
street locations on the way to university, the interior of a bus,
and several restaurants and supermarket. Each location was
visited multiple times on different days. In total, we collected
600 recordings at 18 different locations.

5.1. Feature extraction
We estimated the power spectral density of the recorded

sensor data using Welch’s method. A 128-point FFT was
calculated for a sliding window over the complete recording
and averaged over frequency domain coefficients for all win-
dows. The result is a smoothed estimation of the power spec-
tral density. To reduce the number of feature components, the
Principal Component Analysis was used. The dimensional-
ity of the feature vector was reduced to its first five principal
components. To visualize the feature space, Figure 4 shows
the first three components of the feature vectors after a Linear
Discriminant Analysis (LDA) transformation.



0.25
0.3

0.35
0.4

0.45
0.5

0.1

0.15

0.2

0.25

0.3

0.1

0.15

0.2

0.25

0.3

0.35

apt

bus

lab

office

restaurant

street

supermarket

Figure 4. Features after LDA transformation

Location Sensors
Light only Audio only Audio & Light

apartment 98.2% 90.9% 95.9%
bus 35.6% 84.4% 77.8%
lab 64.0% 90.0% 98.0%
office 84.6% 76.9% 89.2%
restaurant 62.5% 77.5% 90.0%
street 93.5% 91.2% 90.6%
supermarket 73.3% 66.7% 66.7%

Class average 73.1% 82.5% 86.9%
Overall 84.9% 87.4% 91.4%

Table 2. Location recognition accuracy

5.2. Location Recognition Results

The nearest neighbor method with a 5-fold cross valida-
tion was used for classification. Three different feature sets
were evaluated: features from the light sensor only, micro-
phone only and both sensors combined. As expected, the
combination of both sensors gave the best results in identify-
ing the location. The classification with the light sensor alone
gave an overall result of 84.9% correctly classified samples.
The classifier confused thelab andoffice location and also
thebuswith thestreet. This occurred because both location
pairs can have similiar light conditions. Using only the audio
sensor the overall recognition accuracy was 87.4%. Theof-
ficeandapartmentlocation were confused in this case. Both
sensors combined gave the best result of 91.4%. Locations
that could not be distinguished well with only one sensor
were classified more accurately with both sensors combined.
Table 2 shows an overview of the classification results for the
individual locations.

5.3. Online Classification and Performance

The 1-NN classification method was implemented on the
eWatch to allow online classification in realtime. The sen-
sor recording uses 4.5 seconds of data (4 seconds for audio,
0.5 seconds for light), the computing time for the classifica-
tion is about 1.4 seconds. 98.5% of the classification time is
spent performing the feature extraction. The PCA and near-
est neighbor search take less than 20ms to compute. In order
to reduce the time spent in the feature extraction, other fea-
tures are being investigated, such as time domain character-
istics.

6. Conclusions and Future Work
This paper describes eWatch, a wearable sensor and noti-

fication computing platform for context aware research. The
hardware design focused on providing enough computational
resources to perform machine learning algorithms locally,
while still allowing a comfortable form factor and a bat-
tery capacity sufficient for extended user studies. Likewise,
the software environment was designed to facilitate easy de-
velopment while automatically managing resources such as
power and sensor data. We also described a system that uses
the eWatch and its sensors to categorize its environment in
real-time.

Future work will focus on activity recognition and com-
bining activity data with location information. Integration of
an 802.15.4 radio is planned to allow the eWatch to function
as a mobile node in a sensor network. This added flexibil-
ity will further integrate the eWatch into its environment by
allowing a larger area of network coverage.

6.1. Acknowledgments
This material is based upon work supported by the De-

fense Advanced Research Projects Agency (DARPA) under
Contract No. NBCHD030010, the National Science Foun-
dation under Grant Nos. 0205266 and 0203448, and a grant
from Intel Corporation.

References

[1] N. B. Bharatula, M. Stäger, P. Lukowicz, and G. Tröster.
Empirical Study of Design Choices in Multi-Sensor Context
Recognition Systems. InIFAWC: 2nd International Forum on
Applied Wearable Computing, pages 79–93, Mar. 2005.

[2] R. W. DeVaul and S. Pentland. The MIThril Real-Time Con-
text Engine and Activity Classification. Technical report, MIT
Media Lab, 2003.

[3] C. Gould. Dick Tracy.Comic, Chicago Tribune, Oct 1931.
[4] M. Hans and R. Schafer. Lossless Compression of Digital

Audio. IEEE Signal Processing, 18:21–32, July 2001.
[5] K. Lorincz and M. Welsh. Motetrack: A robust, decentralized

approach to rf-based location tracking. InProceedings of the
International Workshop on Location and Context-Awareness
(LoCA 2005) at Pervasive 2005, May 2005.

[6] C. Narayanaswami and M. T. Raghunath. Application de-
sign for a smart watch with a high resolution display. In
ISWC ’00: Proceedings of the 4th IEEE International Sym-
posium on Wearable Computers, page 7, 2000.

[7] N. Noury. A smart sensor for the remote follow up of activity
and fall detection of the elderly. InProc. of the IEEE Special
Topic Conference on Microtechnologies in Medicine & Biol-
ogy May, 2002.

[8] A. Smailagic and D. P. Siewiorek. Wearable and Context
Aware Computers: Application Design. InIEEE Pervasive
Computing, Vol. 1, No. 4, pages 20–29, Dec 2002.

[9] A. Smailagic, D. P. Siewiorek, U. Maurer, A. Rowe, and
K. Tang. eWatch: Context-Sensitive Design Case Study. In
In Proc. of the IEEE Annual VLSI Symposium, pages 98–103.
IEEE Computer Society Press, May 2005.

[10] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The ac-
tive badge location system. Technical Report 92.1, ORL, 24a
Trumpington Street, Cambridge CB2 1QA, 1992.


