CMUcama3: An Open Programmable
Embedded Vision Sensor

Anthony Rowe Adam Goode Dhiraj Goel
lllah Nourbakhsh

CMU-RI-TR-07-13

May 2007

Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

(© Carnegie Mellon University

Abstract

In this paper we present CMUcam3, a low-cost, open sourcbedded com-
puter vision platform. The CMUcam3 is the third generatidrttee CMUcam
system and is designed to provide a flexible and easy to usesmpgce develop-
ment environment along with a more powerful hardware ptatfor he goal of the
system is to provide simple vision capabilities to small edded systems in the
form of an intelligent sensor that is supported by an opemcgocommunity. The
hardware platform consists of a color CMOS camera, a frarffetba low cost 32-
bit ARM7TDMI microcontroller, and an MMC memory card sloth& CMUcam3
also includes 4 servo ports, enabling one to create entioekimg robots using
the CMUcam3 board as the only requisite robot processorto@u€ code can
be developed using an optimized GNU toolchain and exeaegatdn be flashed
onto the board using a serial port without external dowriloggtiardware. The de-
velopment platform includes a virtual camera target allmnfior rapid application
development exclusively on a PC. The software environmentes with numer-
ous open source example applications and libraries inoudiPEG compression,
frame differencing, color tracking, convolutions, histagiming, edge detection,
servo control, connected component analysis, FAT file syst@pport, and a face
detector.

1 Introduction

The CMUcam3 is an embedded vision sensor designed to be lety ftdly pro-
grammable, and appropriate for realtime processing. lufea an open source de-
velopment environment, enabling customization, codeigsgaand community.

In the world of embedded sensors, the CMUcam3 occupies aiemdhe. In
this design exercise we have avoided high-cost comporeemdsherefore do not have
many of the luxuries that other systems have: L1 cache, an MIMUJA, or a large
RAM store. Still, the hardware design of the CMUcam3 prosidaough processing
power to be useful for many simple vision taskis [IL], [2], [, [B] .

An ARM microcontroller provides excellent performance adldws for the exe-
cution of a surprisingly broad set of algorithms. A high sp&FO buffers images
from the CIF-resolution color camera. Mass storage is piexiby an MMC socket
using an implementation of the FAT filesystem so that the fiiet@n by the CMUcam3
are immediately readable to an ordinary PC. User interadizurs via GPIO, servo
outputs, two serial UARTS, a button, and three colored LEDs.

We provide a full C99 environment for building firmware, amtlude libraries
such adibjpeg |, libpng , andzlib . Additionally, we have developed a library of
vision algorithms optimized for embedded processing. alirce is provided for all
components under a liberal open source license.

The system described in this paper has been implemented dalllyi functional.
The system has passed CE testing and is available from mettiternational commer-
cial vendors for a cost of approximately US$239.][12]

Figure 1. Photograph of the CMUcam3 mated with the CMOS carbeard. An
MMC memory card used for mass storage can be seen protruditigeaight side of
the board. The board is 5.5cm5.5cm and approximately 3cm deep depending on the
camera module.

1.1 Embedded Vision Challenges

Embedded Vision affords a unique set of functional requéetaupon a computational
device meant to serve as a visual-sensor. In fact, taken @sexa purpose processor,
the CMUcama3 is rather underpowered compared to desktop a@nrgor even PDAS.
However, if examined as a self-contained vision subsystaweral benefits become
clear.

The system excels in 10-constrained environments. Thelsizaland low power
of the CMUcam3 enables it to be placed in unique environmeottecting data au-
tonomously for later review. If coupled with a wireless netllink (such as 802.15.4
or GPRS), the CMUcam3 can perform sophisticated processisgnd data only as
needed over a potentially expensive data channel.

Its low cost allows the CMUcam3 to be purchased in greatentifies than other
solutions. This makes the CMUcam3 more accessible to arlamgramunity of de-
velopers. In several applications, for instance surveiéa reduced cost allows for
a meaningful tradeoff between high performance from a siggihsor node and the
distribution of lower-cost nodes to achieve greater cayera

The CMUcam3 also has benefits when used as a self-contaimedfgagreater
system. Because of its various standard communicatiorts fR6-232, SPI,2C),
adding vision to an existing system becomes straightfatwaarticularly because the
computational overhead is assumed by the separately dedi€AUcam3 processor
rather than imposed upon the main processor and its I/Orayste

Finally, having completely open source firmware allows tdity and reproducibility—
anyone can download and compile the code to run on the haedwalternatively a
desktop computer (using tivirtual-cam module).

1.2 Reated Work

There have been numerous embedded image processing sysirstsicted by the
computer vision community in the service of research. In #action we will present
a selection of systems that have similar design goals tafttae CMUcama3.

The Cognachromé [10] system is able to track up to 25 objeéctpeeds as high
as 60 Hz. Its drawbacks include cost (more than US$200®,(far by two by ten
inches) and power (more tharx3hat of the CMUcam3) as limitations when creating
small form factor nodes and robots.

The Stanford MeshEy&][6] was designed for use in low powes@ametworks. The
design uses two different sets of image sensors, a low résolair of sensors is used
to wake the device in the presence of motion, while the se®Ad CMOS camera
performs image processing. The system is primarily focusedensor networking
applications, and less on general purpose image processing

The UCLA Cyclopsl[¥], also designed around sensor netwgréjplications, uses
an 8-bit microprocessor and an FPGA to capture and procesgeisn The main draw-
backs are low image resolution (12828) due to limited RAM and slow processing
of images (1 to 2 FPS).

Specialized DSP based systems like the Bluetechnix [9]KEilacamera boards
provide superior image processing capabilities at the cbgbwer, price and com-
plexity. They also typically require expensive commerciamnpilers and external de-
velopment hardware (i.e. JTAG emulators). In contrasthttJcam3'’s development
environment is fully open source, freely available and hait-in firmware loading
using a serial port.

Various attempts have been made to use general purpose biogid computers
including the Intel Stargat&l[8] running Linux in combiratiwith a USB webcam for
image processing. Though open source, such systems aeeegpinsive, large, and
demanding of power. Furthermore, USB camera acquired imaggetypically trans-
mitted to the processor in a compressed format. Compresgadekults in lossy and
distorted image information as well as the extra CPU ovethequired to decompress
the data before local processing is possible. The use ofekb@rnal serial bus proto-
cols including USB v1.0 limits image bandwidth resultindamw frame rates.

Finally, a number of system§&l1[1].1[2]L][3] consist of highlptomized software
designed to run on standard desktop machines. The CMUcamidse in that it
targets applications where the use of a standard desktopimeacould be prohibitive
because of size, cost or power requirements.

2 CMUcam3

In the following section, we will describe and justify thesilgn decisions leading to
the hardware and software architecture of the CMUcam3.

Debug

Serial Port (802.15.4) GPIO

————» SD/MMC Slot
2 2 4

uart_0 uart_1 GPIO

Button (ISP) ———» Servos (PWM)

e >
LEDs

4

start_of frame

LPC2106
ARM7TDMI

camera config

write_enable

read_pixel

true

_’D—> read_enable
—>

read_clock

Averlogic
AL4V8M440
FIFO

write_enable

write_clock

|

2SCCB

pixel_clk L.
Omnivision

CMOS
Sensor

href

camera_config

vref

Figure 2: CMUcam3 hardware block diagram consisting oféhrain components:
processor, frame buffer and CMOS camera.

2.1 Hardware Architecture

As shown in Figur&l2, the hardware architecture for the CMh&&onsists of three
main components: a CMOS camera chip, a frame buffer, and eocuintroller. The
microcontroller configures the CMOS sensor using a two-wesal protocol. The
microcontroller then initiates an image transfer direéthm the CMOS camera to the
frame buffer. The microcontroller must wait for the starbafew frame to be signaled
at which point it configures the system to asynchronously tba image into the frame
buffer. Once the CMOS sensor has filled at least 2 blocks ofdrauffer memory (128
bytes), the main processor can begin asynchronously cigakta 8 bits at a time out
of the image buffer. The end of frame triggers a hardwaretinp at which point the
main processor disables the frame buffer’s write contrd lintil further frame dumps
are needed.

The CMUcam3 has two serial ports (one level shiftedy;, ISPI, four standard
hobby servo outputs, three software controlled LEDs, aobugind an MMC slot. A
typical operating scenario consists of a microcontroleenmunicating with the CMU-
cam3 over a serial connection. Alternative§Cland SPI can be used, making the
CMUcam3 compatible with most embedded systems withouinglsoley on RS-232.
The SPI bus is also used to communicate with FLASH storageexiad to the MMC
slot. This allows the CMUcam3 to read and write gigabyteserihyanent storage.

\%

Unlike previous CMUcam systems, all of these peripheradswamw controlled by the
processor’s hardware and hence do not detract from processie. The expansion
port on the CMUcam3 is compatible with various wireless semetworking motes
including the Telod[1l5] motes from Berkeley.

The image input to the system is provided by either an OmioRiO©OV6620 or
OV7620 CMOS camera on a chip]14]. As in the CMUcam and CMUcah&CMOS
camera is mounted on a carrier board which includes a lensapplorting passive
components. The camera board is free running and will owstiteam of 8-bit RGB
or YCbCr color pixels. The OV6620 supports a maximum resofudf 352< 288 at 50
frames per second. Camera parameters such as color satutaightness, contrast,
white balance gains, exposure time and output modes ardledtusing the two-wire
SCCB protocol. Synchronization signals including a pixetk (directly connected to
the image FIFO) are used to read out data and indicate nevefragwell as horizontal
rows. The camera also provides a monochrome analog signal.

One major difference between the CMUcam?2 and the CMUcant&isise of the
NXP LPC2106 microcontroller. The LPC2106 is a 32-bit 60 MHRM7TDMI with
built-in 64 KiB of RAM and 128 KiB of flash memory. The processs capable of
software controlled frequency scaling and has a memorye@t®n module (MAM)
which provides it with near single cycle fetching of datanfr&LASH. A built-in boot
loader allows downloading of executables over a serialwithout external program-
ming hardware. Since the processor uses the ARM instrusgtncode can be com-
piled with the freely available GNU GCC compiler. Built-im@nloading hardware
and free compiler support makes the LPC2106 an ideal procéssopen source de-
velopment.

The frame buffer on the CMUcam3 is a 50 MHz, 1 MB AL4V8M440 vadelFO
manufactured by Averlogic. The video FIFO is important hesgait allows the camera
to operate at full speed and decouples processing on the fRUtiie camera’s pixel
clock. Running the camera at full frame rate yields bettéomatic gain and exposure
performance due to factory default tuning of the CMOS sen&wen though pixels
can not be accessed in a random access fashion, the FIFOloefoa resetting the
read pointer which enables multiple pass image proces€dng. disadvantage of the
LPC2106 is that it has relatively slow 1/0. Reading a singbkepvalue can take as
long as 14 clock cycles, of those 12 are spent waiting on I6@w&re down sampling,
operating on a single image channel, or doing software wimapgreatly accelerates
image processing since skipping a pixel takes only 8 cyclésing the FIFO, algo-
rithms can be developed that first process a lower resolirtiage and can later rewind
and revisit regions at higher resolutions if more detaikiguired. For example frame
differencing can be performed on a low resolution gray stakyge, while frames of
interest containing motion can be saved as high resolutidor éimages. Since pro-
cessing is decoupled from individual pixel access timespiilkel clock on the camera
does not need to be set to the worst case per pixel processiagThis in turn allows
for higher frames rates that would not be possible withoattame buffer.

In many embedded applications, such as sensor network®rpmmsumption is
an important factor. To facilitate power savings, we previtlree power modes of
operation 4ctive, idleandpower dowi as well as the ability to power down just the
camera module. In the active mode of operation when the CBldera and FIFO

\Y,

Voltage (V) Current(mA) Power (mW)

CPU core 1.8 60 108
CPU peripherals 3.3 15 49.5
Frame Buffer 3.3 52 171
Camera 5 25 125
MMC 3.3 4 13.2
Misc 3.3 10 33

Total na na 499.7

Table 1: This table shows a breakdown of the power consumpfizarious compo-
nents while the camera is fully active.

are all fully operating the system consumes 500 mW of poweiblell shows the
distribution of power consumption across the various camepts. When in amdle
state, where RAM is maintained and the camera is disabledsyktem consumes
around 300 mW. The transition time betwddle andactiveis on the order of 30 us.
For applications where very low duty cycles are requiredstadup delays of up to 1
second can be tolerated, we provide an exteppaler dowrpin which gates external
power to the board bringing the consumption down to neartp 85 uW). In the
power dowrstate of operation, the processor RAM is not maintained amdé camera
parameters must be restored by the firmware at startup.

2.2 Software Architecture

Standard vision systems assume the availability of PGsdiasdware. Systems such
as OpenCVI[17], LTI-Lib[[18], and MATLABI[13] require megat®s of memory ad-
dress space and are written in runtime-heavy languagesasu€i++ and Java. The
CMUcama3 has only 64 KiB of RAM and thus cannot use any of thémedard vision
libraries.

To solve this problem, we designed and implementedt3evision system as the
main software for CMUcam3. We also implement several coreptsion top otc3
as described in this section.

2.2.1 Thecc3 SoftwareVision System

Thecc3 system is a C API for performing vision and control, optintiZer the small
environment of the CMUcam3.
Features:

e Abstraction layer for interfacing with future hardware &yas

Modern C99 style with consistently named types and funstion

Support of a limited number of image formats for simplicity

Documentation provided via Doxygen 18]

Versioned API for future extensibility

virtual-cam module for PC-based testing and debugging (see below)

Vi

cc3 is a part of the CMUcama3 distribution, and is openly avaiadiithe CMUcam
website [1P2]. Below is an example of tike3 based source code showing you how to
track a color:

int main(void)

{
cc3_image_t img;
cc3_color_track_pkt t_pkt;

/I init filesystem driver
cc3_filesystem_init ();

/I configure uarts
cc3_uart_init (0, CC3_UART_RATE_115200, CC3_UART_MODE_ 8N1, CC3_UART_BINMODE_TEXT);

cc3_camera_init ();

cc3_camera_set_colorspace(
CC3_COLORSPACE_RGB);
cc3_camera_set_resolution (
CC3_CAMERA_RESOLUTION_LOW);
cc3_camera_set_auto_white_balance (true);
cc3_camera_set_auto_exposure (true);

printf("Enter color bounds to track: ");

scanf("%d %d %d %d %d %d\n", &t pkt.lower_bound.chan[CC3_ RED_CHAN],
&t_pkt.lower_bound.chan[CC3_GREEN_CHAN], &t_pkt.lowe r_bound.chan[CC3_BLUE_CHAN],
&t_pkt.upper_bound.chan[CC3_RED_CHAN], &t pkt.upper_ bound.chan[CC3_GREEN_CHAN],

&t_pkt.upper_bound.chan[CC3_BLUE_CHAN]);

img.channels = 3;

img.width = cc3_g_pixbuf_frame.width;
img.height = 1,

img.pix = cc3_malloc_rows (1);

while(1) {
cc3_pixbuf_load ();
cc3_track_color_scanline_start (t_pkt);

while (cc3_pixbuf_read_rows(img.pix, 1)){
cc3_track_color_scanline (&mg, t_pkt);
}

cc3_track_color_scanline_finish (t_pkt);

printf("Color blob found at %d, %d\n", t_pkt.centroid_x, t _pkt.centroid_y);

VII

The next example shows how a developer can access raw pikiésfollowing
code section returns the location of the brightest red gowhd in the image:

uint8_t max_red, max_red_y, max_red_x;
cc3_pixel_t my_pix;

max_red=0;
cc3_pixbuf_load ();
while(cc3_pixbuf_read_rows(img.pix, 1)){
/I read a row into the image
/I picture memory from the camera
for(uintl6_t x = 0; x < img.width; x++) {
/I get a pixel from the img row memory
cc3_get_pixel (&img, x, 0, &my_pix);
if(my_pix.chan[CC3_CHAN_RED] > max_red){
max_red = my_pix.chan[CC3_CHAN_RED];
max_red X = X;
max_red_y =vy;
}
}

y++;

}
printf("Brightest Red Pixel: %d, %d\n",

max_red_x, max_red_y);

2.2.2 virtual-cam

Thevirtual-cam module is part of thec3 system as mentioned above. It provides
a simulated environment for testing library and projecteod any standard PC by
compiling with the system’s native GCC compiler. This alfovor full use of the
PC'’s debugging tools to diagnose problems in user code. nt@ftes, a difficult to
understand behavior observed on the CMUcam3 will easilyifestnitself as a bad
pointer dereference or other easily found bug when run oaralstrd PC with memory
protection.

While not all of CMUcam3'’s functionality is implementedvirtual-cam (miss-
ing features include the hardware-specific components rebseontrol and GPIO),
enough functionality is provided to enable off-line diagtiotesting.

2.2.3 CMUcam2 Emulation

The CMUcam2([20] provides a simple human readable ASCII canipation proto-
col allowing for interactive control of the camera from aiakterminal program or a
micro-controller. The CMUcam2 is capable of many functiomduding in-built color
tracking, frame differencing, histogramming as well asapjnimage transfers. The
CMUcam?2 comes with a graphical user interface running on #éh@Callows users to
experiment with various functions. The CMUcam3 emulatestrobthe CMUcam?2'’s

VIII

(@) (b)

(© (d)

Figure 3: The following images show the advantage of cobmking in the HSV color
space. Figure (a) shows an RGB image, (b) shows the intef\gjtgomponent of
the HSV image, (c) shows the Hue and Saturation componeriteediage without
intensity (d) shows the segmented hand with the center of inake middle.

functions making it a drop-in replacement for the CMUcam&e TMUcam2 emu-
lation extends upon the original CMUcam2 with superior adiiering, HSV color
tracking and JPEG compressed image transfers.

2.24 Color Tracking

The original CMUcam tracks color blobs using a simple RGEshiold color model.
Though computationally lightweight, it does not adapt welchanging light condi-
tions and can only track a single color at one time. The CMWanproves tracking
performance by providing the option to use the Hue Saturatalue (HSV) color
space, provisions for connected component blob filterirdytae ability to track mul-
tiple colors. Figurd13 shows how the HSV color space can renlighting effects
simplifying color segmentation. Since the system is opamc it is simple for end
users to further improve color tracking by building more gbex color models.

2.25 FrameDifferencing

As an example program to illustrate frame differencing, wevjgle a simple security
camera application. The camera continuously comparesrthéopis image and the

IX

current image. If an images changes by more than a presshtiids the image is
saved as a JPEG on the MMC card.

2.2.6 Convolutions

We provide a general convolution library that allows custkemels to be convolved
across an image. This can be used for various filters thabperfasks like edge
detection or blurring.

2.2.7 Compression

New to the CMUcam3 is the ability to compress images with Hifjpeg and
libpng . Using different destination managers, one can redireattiput ofibjpeg

to the MMC, serial output, or any other communication busp&weling on the quality
of the imagelibjpeg can produce images as small as 4 KiB.

2.2.8 Face Detection

The CMUcam3 incorporates the ability to detect faces innpleickground environ-
ments. The face detector technique is based on the featisestlapproach, proposed
by Viola and Jones, in which a cascade of classifiers arecudior Haar-like rectan-
gular features selected by AdaBodsti[16].

The integral image is a key data structure used in Viola-gotnfortunately, it
consumes significant memory. Even a low resolution inteignage of 176<144 re-
quires about 76 KiB of memory, far exceeding available mgmor

Along with memory constraints, the processor lacks floainmt hardware. As
a result, two unique customizations were applied to the d@tection implementation
for CMUcama3:

e Only a part of the whole image is loaded in main memory at amgti As a
consequence, the maximum resolution of a detected faceited to 60<60
pixels.

o All the classifier thresholds and corresponding compardaegsare computed
using fixed point arithmetic, via a binary scaling method.

A few other optimizations were made to improve performance:

e When scanning sub-windows, neighboring sub-windows #uenihation nor-
malized with iteratively computed standard deviation)dttstead of being com-
puting independently. This can provide a speed up of apprataly 3x.

e Sub-windows that are are too homogeneous ¢sidl) or too dark or bright
(mean<30 or mearn>200) are discarded immediately, short-circuiting unnec-
essary computation in regions unlikely to yield positivéedéion hits.

With these changes, CMUcam3 face detection operates amnt-bod Hz.

X

(b)

Figure 4: Sample output from a modified Viola-Jones facealeteFaces are denoted
with boxes. Image (b) shows how texture in the backgroundocaasionally be de-
tected as a false positive.

229 Polly

The Polly [3] algorithm provides visual navigation infortitan based on color. This
navigation was used on the Polly robot to give tours of the MITaboratory in the
early 90's. The algorithm originally consisted of threepsteblurring the image, edge
detection and generating a free space map starting fronottanb of the image upward
towards any edges. Our implementation applies a 3x3 bliovield by a simple edge
detector. We then filter out small edges using our conneatatponent module. As
can be seen in Figufé 5 the algorithm returns a histogrameofrée space in front of
the robot. Polly is able to run on-board CMUcama3 at 4 fps, afileg on a 176x144
image.

2.2.10 SpoonBot

SpoonBot is a small mobile robot consisting of a CMUcam3, te@ntinuous rotation
hobby servos mounted to wheels, a four AA battery pack andceoasiervo connected
to a plastic spoon. The two hobby servos allow SpoonBot tweddrward, backward
and rotate left and right. The rear mounted micro-servo gsisiie spoon up and down
acting as a tilt degree of freedom. SpoonBot can use the Ruglyrithm described
above to drive around a table top or it can follow colored ofgie All control and
navigation is run locally on the CMUcama3, since the boardemanpute and command
servo control signals directly, without the need for cortigral robot control hardware.

3 Performance
In this section we discuss execution time and memory consamfor various CMU-
cam3 software components. Depending on the image resolaid complexity of the

algorithm, these values can vary significantly. The goahdd tection is to provide
some intuition for the various types of image processing #na possible using the

XI

Figure 5: Sample output of the Polly algorithm. The first enfushows the original
image. The second column shows the image after a blur fillge detection and small
connected component filter. The final column shows the hiatagepresenting free
area in front of the camera.

CIFRGB CIFMono QCIFRGB QCIF Mono|
Load Frame 2ms 2ms 2ms 2ms
Copy Memory 210 ms 128 ms 52ms 32ms
Pack Pixels 150 ms 160 ms 38 ms 39 ms
Total FPS 2.76 3.45 10.87 13.70

Table 2: This table shows a breakdown of the time requiredwibading a CIF and
QCIF image in color as well as grayscale.

CMUcam3 and to understand where computational and 1/Odvratks are typically
found.

Table[2 shows the breakdown of time consumed by the threer si@jos involved
in loading a frame into the processor's memory. Tad Framecolumn refers to the
time required once a new frame arrives and before data certestae retrieved from
the frame buffer. This does not directly correlate to¢h8 pixbuf_load() func-
tion because this function incorporates leftover time fiehen the last frame finished.
The Copy Memory column refers to the time required to move data from the frame
buffer into the processor. This directly correlates to theesl of the

Xl

900 1 (149 (1.17)

800 -

700 -

600 -
’g 500 O Processing
= 230) B Pix Packing
“E’ Mem Copy
i= 400 - M Load Frame

(3.05)
300 -
(4.33)
200 -
100
0 -

JPEGCIF TCCIF TC-HSV JPEG TCAQCIF TC-HSV
CIF QCIF QCIF

Figure 6: This figure compares the execution times of loadifigame, copying the
image from the frame buffer to the processor, unpacking tkelpand processing the
new frame. JPEG, Track Color (TC) and Track Color in the HSYocepace (TC-
HSV) are shown at two different resolutions. The numbersirepthesis represent the
frame rate of the operation.

cc3_pixbuf_read_rows() function. Operating at a lower resolution obviously
decreases the execution time because fewer pixels areefet@perating on a single
channel instead of three channels provides only a x628rease in speed. This in-
crease is due to no longer having to read all of the color pj¥ebwever, since the
CMOS camera does not have a monochrome output mode, cabomiafion must still
be clocked out of the FIFO. The finBack Pixelcolumn shows the time required to
convert the GRGB pattern from the camera in memory into thallRGB pixel struc-
ture. This corresponds to thee3_get pixel() function call. It is possible to
greatly reduce the pixel construction time by designingetgms that operate on the
raw memory from the camera. This becomes a trade-off betgiegule portable code
and execution speed. We provide examples of both methoidslégy those interested
in highly optimized implementations.

Figure[® shows the relative time consumption of the prevjomentioned frame
loading operations along with processing times for thréeint algorithms: JPEG,
Track Color and Track Color HSV. The JPEG algorithm in thiareple compresses a

Xl

color image in memory and does not write the output to a seodmyice. The Track
Color (TC) and Track Color HSV (TC-HSV) algorithms are prefildirectly from the
CMUcam?2 emulation code. Each algorithm finds the bounding bentroid and den-
sity of a particular color specified. For this test we showwloest-case performance by
tracking all active pixels. The Track Color HSV benchmarkdmsntical to Track Color
except that it performs a software based conversion frorRB to HSV color space
for each pixel. The general trend found in these plots is veay simple algorithms
such as tracking color are mostly I/O limited. For examplackrColor spends only
17% of the time on processing. A more complex algorithm, JPE®@nds 62% of its
time on processing. JPEG also shows an example of whereiaptrpixel accesses
can drastically reduce the pixel packing time. However astmaseen in the JPEG
operating on a QCIF image, as resolution decreases theiseizgitons become less
relevant.

As previously mentioned, the LPC2106 has 64 KiB of internaMRand 128 KiB
of ROM. By default, 9 KiB of RAM is reserved for stack space #&HiB of RAM
is used by the core software libraries (includiifie buffers). A 176<144 (QCIF)
gray-scale image requires 25 KiB of RAM, while a 20000 RGB image requires
30 KiB of memory. All processing on larger sized images muwespbrformed on a
section by section basis, or using a sliding window scae-$ipproach. For example,
JPEG requires only eight full rows (8 KiB) of the image in adifi to the storage
required for the compressed image (less than 12 KiB). The epace consumed by
most CMUcam3 applications is quite small. The full CMUcam®#ation with JPEG
compression and the FAT file system requires 96 KiB of ROM.mA@e program that
loads images and links in the standard library functionsireg 52 KiB of ROM. The
FAT filesystem and MMC driver require an additional 12 KiB dDM.

4 Conclusions and Future Works

The goal of this work was to design and publicly release a lost,mpen source, em-
bedded color computer vision platform. The system can gesimple vision capabil-
ities to small embedded systems in the form of an intelligensor that is supported by
an open source community. Custom C code can be developeglarsoptimized GNU
toolchain and flashed onto the board using the serial ponbuttexternal downloading
hardware. The development platform includes a virtual canerget and numerous
open source example applications and libraries.

The main drawback of the CMUcam3 hardware platform is thi #(RAM and
computation speed required for many complex computer wialgorithms. We cur-
rently have a prototype system using a 600 MHz Blackfin mexiagssor from Analog
Devices. Ideally, we would like to provide a software enmimtent for this new plat-
form that is compatible with our existing environment tofhetduce the learning curve
typically associated with high-end DSP systems. Eventuafiplications can be pro-
totyped on a PC using our virtual-cam with various hardwasel@yment options to
support that particular application’s needs. Staying touthe spirit of the CMUcam
project, we are also developing a simpler and cheaper haedvi@tform using a lower
cost ARM7 processor without the frame buffer. This devic# bé compatible with

XV

the current software environment except that it will beniet#d to pure scan-line style
processing.

Acknowledgements

The authors would like to thank Charles Rosenberg for hisigoimg contributions to
this project.

References

[1] J. Bruce, T. Balch, and M. Veloso, “Fast and Inexpensig®CSegmentation for
Interactive Robots"The Proceedings of IRQ3000.

[2] G.D. Hager and K. Toyama, “The XVision System: A genenalgnse substrate
for real-time vision applications,Computer Vision and Image Understanding
vol. 69, no. 1, pp. 23-27, January 1998.

[3] I. Horswill, “Polly: A vision-based artificial agent”The Proceedings of the
Eleventh Nataional Conference on Artificial Intelligen&893.

[4] R. Sargent, B. Bailey, C. Witty and A. Wright, “Dynamic §&lst Capture Using
Fast Vision Tracking”Al Magazinevol 18, no.1 1997.

[5] I. Ulrich and I. Nourbakhsh, “Appearance-Based Ob&&mttection with Monoc-
ular Color Vision”,AAAI Conferencep. 866-871, 2000.

[6] S. Hengstler and H. Aghajan, “A Smart Camera Mote Ardttitee for Distributed
Intelligent Surveillance’ACM SenSys Workshop on Distributed Smart Cameras
Oct. 2006.

[7] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, Difig M. Srivastava, “Cy-
clops: In Situ Image Sensing and Interpretation in Wire®sasor Networks”,
ACM SenSysNov. 2005.

[8] "Intel Stargate Platform”http://www.Xbow.com/Products , Viewed on
March 27, 2007

[9] "Bluetechnix Blackfin DSP” http://www.tinyboards.com , Viewed on
March 27, 2007

[10] R. Sargent and A. Wright "The Cognachrome Color Visiorystem?”,

http://www.newtoniabs.com/cognachrome , Viewed on March 27,
2007

[11] K. Konolige, “The SRl Small Vision System Website”,
http://www.ail.sri.com/ Konolige/svs/ , Viewed on March
23, 2006.

XV

http://www.xbow.com/Products
http://www.tinyboards.com
http://www.newtonlabs.com/cognachrome
http://www.ai.sri.com/~konolige/svs/

[12] “CMUcam Website”, http://www.cmucam.org , Viewed on March 25,
2007

[13] “MATLAB", http://www.mathworks.com/products/matiab/ |
Viewed on March 25, 2007

[14] “Omnivision”, http://www.ovt.com , Viewed on March 25, 2007

[15] J. Polastre, R. Szewczyk and D. Culler, "Telos: Enaplifitra-Low Power Wire-
less Research3pots 2005.

[16] P. Viola and M. Jones, "Robust Real-Time Face Dete¢tiGomputer Visionvol.
2, pp. 747-752, 2001.

[17] “Open Source Computer Vision Library”,
http://www.intel.com/technology/computing/opencv/ |
Viewed on March 25, 2007.

[18] “Doxygen”,nttp://www.doxygen.org/ , Viewed on March 27, 2007.
[19] “LTI-Lib”, |nttp:/1tilib.sourcetorge.net/ , Viewed on March 25,
2007.

[20] A. Rowe, C. Rosenberg, I. Nourbakhsh, “A Second Geimratow Cost Embed-
ded Color Vision System’Embedded Computer Vision Workshop, C\ZRR5.

XVI

http://www.cmucam.org
http://www.mathworks.com/products/matlab/
http://www.ovt.com
http://www.intel.com/technology/computing/opencv/
http://www.doxygen.org/
http://ltilib.sourceforge.net/

	Introduction
	Embedded Vision Challenges
	Related Work

	CMUcam3
	Hardware Architecture
	Software Architecture
	The cc3 Software Vision System
	virtual-cam
	CMUcam2 Emulation
	Color Tracking
	Frame Differencing
	Convolutions
	Compression
	Face Detection
	Polly
	SpoonBot

	Performance
	Conclusions and Future Works

