
A Model-Based Design Approach
for Wireless Sensor-Actuator Networks

Anthony Rowe Gaurav Bhatia Raj Rajkumar
Dept. of Electrical & Computer Engineering

Carnegie Mellon University, U.S.A.
agr@ece.cmu.edu,gnb@ece.cmu.edu,raj@ece.cmu.edu

Abstract— In this paper, we propose a model-based design
approach for developing wireless sensor-actuator networks that
can map multiple sets of application-level interactions onto
a single networking substrate while still enforcing individual
requirements. We use a top-down design approach where the
functional requirements for each application are graphically
modeled using a tool called SysWeaver. Sensor networking
applications add unique challenges for model-based design
frameworks because the system deployment view is tightly
coupled to an installation-specific network topology and link
characteristics. Wireless devices can also be mobile and hence
may not easily map to standard deployment views. We introduce
a SysWeaver plugin calledSenseWeaver that is able to capture
live toplogy data from an instrumentation deployment and
feed the topology and link characteristic information to the
system model. A developer can then use SenseWeaver specify
the functional requirements of multiple applications, analyze
communication and task scheduling requirements based on
actual topology data, and automatically generate customized
code for each sensor network node.

I. I NTRODUCTION

Wireless sensor networks provide a versatile and simple
deployment platform for sensing and interacting with the
physical environment. These devices can support multi-
hop communication forming mesh networks capable of
self-configuration, self-healing and automatic management.
These properties make sensor networks suitable for various
cyber-physical system applications like industrial control,
critical infrastructure monitoring and building heating and
cooling systems. Much work has been done in addressing
a variety of challenging sensor networking topics including:
network stacks, energy management, simulation, application
task design etc. All of these components at each layer in the
stack need to work tightly together for a deployed system to
operate correctly and efficiently. Systems are now emerging
where multiple sets of application requirements are sharing
the same underlying infrastructure. For example, many home
automation systems have transducers that should be shared
with heating and cooling systems in order to optimize
building energy consumption. In this paper, we present a
plugin calledSenseWeaverfor the SysWeaver model-based
design tool that helps model, synthesize, analyze and auto-
matically generate code for complex wireless sensor-actuator
applications.

One of the main advantages for using wireless mesh
networking is the ability to rapidly deploy devices and have
them automatically setup communication paths. For control

applications, this makes it difficult to estimate communica-
tion latencies without having information about the underly-
ing deployment topology which may be difficult to anticipate
at design time. For example, an HVAC system might have
a control loop designed around reading temperature and
CO2 values in multiple rooms that need to be processed
in order to actuate heaters, coolers or blowers in different
parts of the building. Without predictable system components
and runtime information, it is hard to estimate reliability
and to tune control loop update rates based on timing
parameters. Model-based design of distributed applications
provides the ability to use analysis frameworks that can
ensure correct system operation while satisfying these types
of para-functional requirements.

In general, model-based design holds the promise of
(a) capturing rich behavioral descriptions along multiple
concerns (or aspects), (b) offering an interoperable toolset
to analyze and verify both functional and para-functional
requirements of a system, and (c) supporting the ability to
generate executable code directly from these models. While
measurements from run-time environments may need to be
fed back to calibrate the models (with parameters such as
execution times, network topologies and system overheads),
model-based design can in principle be independent from
the specific hardware, operating systems or programming
languages.

SenseWeaver uses a top-down approach where functional
requirements of applications are graphically modeled using
a tool called SysWeaver. SysWeaver enables the capturing
of para-functional behaviors (e.g. timing, fault-tolerance,
security, etc.) of an embedded real-time system and their
interactions with the functional behavior of the system [1].
SysWeaver also has the ability to (a) analyze the para-
functional properties of the system (e.g. timing properties)
either internally or by exporting an appropriate subset of
the model to external analysis tools, (b) automate design
choices (e.g. mapping of software to hardware entities) [2],
and (c) generate code for distributed embedded platforms [3].
This paper addresses the unique considerations required for
applying this design cycle to sensor-actuator networks.

Modeling wireless networks has unique challenges as
compared to existing systems that utilize component-based
design. The physical environment and specific placement of
devices heavily influences timing and reliability of commu-
nication links in sensor networks. In systems like automotive



body electronics, the network topology and placement of
hardware is well under the designers control. This is not
always the case when deploying a reconfigurable control
system using wireless components. Sensor networks tend
to have highly redundant segments in the network layer.
Instead of modeling this and other similar characteristicson
an individual node-by-node basis, primitives are needed that
capture aspects of the network as a whole. Finally, wireless
networking models need to capture properties like mobility,
self-healing and self-configuration.

To meet the unique challenges of sensor networks,
SenseWeaver provides a WSN physical view, a set of sensor
networking primitives, an analysis framework and deploy-
ment plug-ins for SysWeaver. We use an instrumentation
phase to collect information about the environment from a
deployed network. We introduce a primitive that represents
the sensor network as a clustered component that allows
deployment across multiple nodes with a single connection.
We also provide the semantics to represent mobile nodes and
how they can interface with the networking cluster.

II. RELATED WORK

In the following section we will discuss various current
approaches and related tools that aid in the design and
deployment of wireless sensor networking applications. We
will discuss existing programming language approaches,
simulation tools and component based design modeling tools.

One approach to deploying sensor networking systems
relies on using a high-level programming language with
a single system-wide view of the application. TinyDB [4]
takes a database-centric approach by accessing the network
using SQL-type commands. A cross-layer design with an
integrated tree routing MAC protocol facilitates communi-
cation optimized for database access patterns. This allows
for energy-efficient network-wide querying of sensors with
data aggregation. Though extremely efficient at accessing
whole sensor networks, TinyDB does not support custom
application-specific logic. The built-in routing protocoldoes
not easily support arbitrary node-to-node communications.
In many applications like control and automation, nodes
need to communicate autonomously without explicit gateway
control.

The Regiment Macro-programming System [5] is an
example of a high-level programming language that de-
scribes an application as a set of spatially distributed data
streams. Regiment contains primitives that facilitate pro-
cessing data, manipulating regions and aggregating informa-
tion across regions. The high-level program goes through
a de-globalization process where code is compiled from a
network-wide application into a set of node-specific executa-
bles. Regiment is compiled down to an intermediate token
machine language that passes information over spanning
trees constructed across the network. This approach provides
great flexibility when it comes to application-specific logic;
however, it is less efficient at providing short-lived queries
like TinyDB. The token-machine-based approach does not
easily lend itself to highly dynamic behavior with multiple

modes of operation and changing data paths. The tight
coupling between language and network protocol makes any-
to-any communication as well as low-level adjustment of
MAC protocols difficult.

Multiple research groups have developed wireless sensor
networking simulators that tend to specialize in a particular
layer of the system. ns-2 is an open-source discrete event
simulator widely used in networking research. Primarily
designed for simulation of IP networks, various projects
like UCB Daedalus and CMU Monarch have extended the
framework to support wireless communication and mobility.
SensorSim [6] extends ns-2 by adding sensor network-
specific models, supporting hybrid simulation and providing
a graphical user interface. The OPNET Modeler wireless
suite is a commercial tool designed for modeling various dif-
ferent wireless networking technologies ranging from 802.11
to mobile ad-hoc networks. The software focuses on the
protocol stack with the ability to model RF propagation,
interference, transmitter/receiver characteristics, node mobil-
ity and the interconnection with wired transport networks.
OMNET++ [7] is an open-source discrete event simulator
that shares many of the same features as OPNET. Tossim [8]
is a discrete event simulator that emulates the lowest layer
of TinyOS primitives. Tossim allows source to be compiled
either for simulation or for real deployment on nodes. Em*
[9] is a Linux-based framework that can run applications
on embedded X-Scale or mote class devices. Em* software
can operate in simulation or on real hardware. Simulators
like ATEMU [10] and Avrora [11] attempt to simulate the
network at the cycle accurate machine code level. Machine-
code simulation allows any operating system to be simulated
and is not limited to homogeneous source files. Most of
these simulators are designed to aid users in developing and
evaluating network protocols rather than looking at end-to-
end application development. Our work is complementary
in that it tries to generate the system using a top-down
approach that would utilize an underlying network layer that
can be fine-tuned using one of the many existing network
simulators.

Various modeling tools have emerged in order to address
the challenges associated with end-to-end application design
for sensor networks. GRATIS [12] is a graphical framework
built on top of the General Modeling Environment (GME
3) [13] that allows designers to connect different TinyOS
components together. GME provides a meta-modeling frame-
work where domain-specific models can be integrated with
analysis and synthesis algorithms. It supports multiple views
and supports most, if not all, phases of the development
process. GME does not provide an automatic multi-view
synchronization that reinterprets changes in one view in the
semantics of the other as SysWeaver does. GME is based on
meta-models that have offline interpreters, while SysWeaver
provides modeling blocks (couplers) that validates the model
as it is being built. GRATIS and its predecessor GRATIS II
are able to statically analyze, validate and translate the mod-
els of TinyOS programs into NesC executables. It does not
provide a way of modeling interactions between applications,



Target Instrumentation

Physical ViewPhysical View

SynthesisSynthesis

DeploymentDeployment

AnalysisAnalysis

MODELMODEL

Target Hardware Simulation

Fig. 1. The Components of SenseWeaver and their interactions.

or the ability to analyze or simulate network interactions.
VisualSense is a modeling and simulation framework that

builds upon Ptolemy II [14] for wireless sensor networks.
Ptolemy provides models of computation with which the
user can construct a system. Most of these models of
computation support actor-oriented design. Actors are soft-
ware modules that communicate with other actors through
events. Actors have ports, and the port connections specify
the communication parties. The execution of a model in a
system is defined by a director. Each model has a director
which specifies the semantics of the actor graph. A model
can, in turn, be encapsulated in an actor by defining an
interface. The execution of this model is then controlled
by the director of the model into which it is inserted.
VisualSense provides a means for defining the channels for
sensor node communication as well as sensor node attributes.
The framework permits the integration of additional node and
channel models written in Java. Though useful for modeling
sensor systems, VisualSense does not have a direct path
towards code generation that can run on a real hardware
platform.

Viptos [15] connects VisualSense with TinyOS and Tossim
allowing graphical models of sensor networking applications
to be automatically generated and deployed on real hardware.
Viptos maintains the ability to connect Ptolomey II compo-
nents with the TinyOS network which allows the introduction
of non-TinyOS nodes. Viptos focuses on design and simula-
tion of a single application system while SenseWeaver allows
the modeling and composition of multiple applications that
share a common network. SenseWeaver also introduces the
notion of target instrumentation in order to provide its model
with information from the real network.

III. W ORKFLOW

In this section, we introduce the steps in our proposed
workflow for the design and implementation of a WSN sys-
tem. Figure 1 shows the various components of SenseWeaver
and their interactions. The workflow iterates between the

Topology 

Collection
SysWeaver

Functional Model

Synthesis

Analysis

Communication Schedule

Feasibility Check

Battery Life Check

Timing Check

Deployment

C Code 

Generation

Code

Dissemination

SysWeaver

Deployment Model

Fig. 2. Workflow that includes an instrumentation phase to collect live
data from a network to enhance model parameters.

model and various actions that iteratively add detail to the
model. For example, a developer might capture toplogy infor-
mation and then test to see if application timing parameters
are met. If they fail, the designer can either re-visit the
timing parameter, or try adjusting the topology by adding
more nodes and then re-run the analysis tools.

At a high level, the SenseWeaver workflow consists of the
following steps:

1) Model functional requirements of applications,
2) Introduce initial network topology data from the sys-

tem into model,
3) Model physical attributes of network,
4) Synthesize system parameters which achieve or satisfy

requirements,
5) Analyze the system based on user-input and synthesis

output,
6) Repeat steps if necessary to satisfy specified functional

requirements and system constraints, and
7) Generate Code and Deploy the application.
This design cycle is shown in Figure 2 with the main

steps shown in rectangular boxes. The ovals show the sup-
porting functionality that the SenseWeaver plug-in adds to
SysWeaver.

A. Modeling

Model-based software design for wireless sensor networks
aims to target those key areas of embedded systems which
apply to a large-scale networks. Specifically, we look to
achieve 1) composability and scalability, 2) multiple behavior
encapsulation, 3) usability, 4) communication infrastructure
and 5) correctness by construction. A model which can
satisfy the requirements for these areas results in an efficient
system design workflow and serves as the central component
which interacts with other components in SenseWeaver.
Visualization of the model is extremely useful for helping
the designer navigate and interact with the model. In our
workflow, we use the SysWeaver tool [16] to help us satisfy
the above mentioned model-based design objectives.



SysWeaver provides abstractions to model both functional
and para-functional behaviors into separate views whose
interactions are automatically handled. Each of these views
emphasizes a single concern enabling different domain ex-
perts (e.g. signal processing experts, control experts, real-
time experts, fault tolerance experts) to focus on the concern
of their expertise leaving the interactions with the other views
to be automatically handled by the tool. The interactions
among views are managed by maintaining a single inter-
nally consistent model, and treating each view as a partial
projection of that model using a view-specific filter designed
to only show elements and abstractions relevant to that view.

We now look at the requirements of the different modeling
aspects as pertaining to Wireless Sensor Network design and
how the primitives in SysWeaver enable us to model these
requirements.

1) Functional Modeling: The functional model consists
of the different applications in the system along with their
interactions. This includes representations for periodicand
aperiodic tasks, as well as a description of interfacing be-
tween the various tasks. We require a representation for the
tasks, which can be defined asblocks, and the interfacing
between them, which we calllinks. A system would consist
of instantiations of blocks along with links ”wiring” them to-
gether. For wireless sensor networks, we would need to make
sure that blocks can model periodic tasks, event-triggered
tasks, as well as data-flow tasks. A block should have input
and output interfaces and should be able to support multiple
threads of execution. Links should contain information about
what they communicate (eg. message sizes). Blocks should
be composable and reusable so that multiple instances of the
same type of block can be made.

SysWeaver uses the notion of aComponent to represent
software modules. The main pieces of eachComponent

are Ports, ApplicationAgents and Couplers which are
used to model the system and its interactions. A Port is
the interface through which components communicate with
each other. There are input ports which receive data and
output ports which transmit data. A data transmission is
represented as anevent. Events are entities which are com-
municated across components and they can represent any
data structure. The application code is represented insidean
ApplicationAgent. An ApplicationAgent is a set of func-
tions which process and generate events. ThePorts contain
entities calledProtocolAgents which are responsible for
communicating the data between components and contain the
mechanisms to do so. For example, if components are on a
single processor using shared memory, theProtocolAgent

uses function invocation as communication. Conversely, if
components are on different processors, theProtocolAgent

uses inter-processor communication based on the network
protocol property.ProtocolAgents can contain multiple
threads of execution as deemed necessary by the designer.
ApplicationAgents are reusable and can be hierarchically
structured to satisfy the composability requirement.

2) Physical Modeling:Wireless sensor networks have the
property where changes in the physical environment greatly

impact the system. Therefore, the system model needs to
be aware of these physical properties and constraints and
needs to capture these attributes. For example, node location,
physical obstacles and infrastructure information play an
integral role in how routes and communication schedules
should be designed.

The Physical View in SysWeaver is used to capture the
physical properties of the system. It can be used to model
the sensor nodes and their location within the infrastructure
as well as information about the infrastructure itself. An
editor is used to create the infrastructure layout and nodes
can then be positioned within the layout. This information is
communicated to the underlying semantic layer. Any changes
in the layout are automatically conveyed to the semantic layer
to analyze the impact on the system. For example changes
in how devices interact with the networking structure on
the physical view would also be reflected as changes in the
deployment view. The data in the Deployment View or the
Physical View can also be populated by interfacing with
external tools. Figure 3 shows a screenshot of SysWeaver
with the different views and components of a model. Here
we see the physical view on the top, an event-flow view on
the bottom left and the deployment view on the bottom right.

3) Deployment Modeling:The Deployment Model de-
scribes the hardware used in the system and needs to have all
of the important details associated with the target hardware
and interconnections. The communication mechanism used
in the network (eg. MAC Protocol, Link Layer Protocol)
should be modeled and should support easy replacement.
This applies to the underlying target platform which consists
of hardware information as well as OS information, if any.
The model enables architecture exploration for deployment
purposes. The Deployment Model should also be able to
communicate with the Functional model so that the appropri-
ate communication and processing information as pertaining
to the functional blocks is captured. This requires a mapping
between functional blocks and the deployment blocks.

One unique property of WSNs is the notion of mobile
devices that interact with the system and are also part of
the system. These need to be part of the network, so they
cannot simply be treated as system inputs, but do not have
fixed locations. Many nodes have the property that the same
application and networking code should run on multiple
nodes within a network. The model should be able to easily
support both of these properties.

Hardware information is easily captured by the Deploy-
ment model in SysWeaver using the notion ofCouplers.
Couplers are primitives that express relationships between
entities. For example, aNetwork Coupler represents the
network relationship between all theNode Couplers con-
nected to it.Couplers also have properties associated with
them. A Network Coupler can contain information about
the underlying MAC Protocol and any changes to this are
propagated to all otherCouplers. The Deployment Model
also contains aSensorNetwork Coupler which contains a
graph and list of all the nodes on the network along with
link information and topology information. This enables the



Fig. 3. Screenshot from SysWeaver showing the different views of the same system.

designer to deploy a group of tasks onto the SensorNetwork
Coupler. This connection denotes that the group of tasks
should run on all nodes in the network in addition to other
tasks assigned to individual nodes. SysWeaver also has a
MobileNode Coupler which it uses to represent nodes in
the network that do not have fixed locations. Depending on
the designer and the underlying target platform relationship,
this Coupler can be used to represent unique nodes and
the properties can be used for code generation and analysis
purposes.

B. Instrumentation

This part of the framework is critical for maintaining a
tight coupling between the system model and the actual
runtime network properties. By being able to integrate real
network data into the model, the system can be optimized to
accurately reflect the desired functionality and requirements.
Getting hold of this data is a difficult task and requires
support from the underlying target platform. The Instrumen-
tation Phase can occur on multiple occasions. It primarily
happens at the initial step in the workflow, where we collect
the initial network topology. After that, instrumentationcan
be done after deployment to collect data while the system
is actually running. It is important that the instrumentation
code be very concise and non-interfering since it may execute
during normal system operation.

Information required for instrumentation in SysWeaver is
collected either through help from the target platform, or
through custom instrumentation code which can be generated
from within SysWeaver. The data can consist of network
connectivity graphs as well as link strengths between nodes.
The data can be used to update corresponding components
that exist in the Physical View and add components which
might not have existed in the view. This closed in-the-loop
design results in a tightly coupled system modeling and
deployment. The instrumentation features in SysWeaver are
extensible so that new data can be easily added.

C. Synthesis and Analysis

The power of model-based design is increased by the
ability to do an efficient analysis of the system model. To
support analysis, the model needs to encapsulate all the
relevant information while effectively visualizing results. The
kinds of analysis that a designer would be looking for are
1) node lifetimes, 2) end-to-end flow latencies, 3) network
load hot-spots, 4) communication schedulability and 5) flow
reliability.

The semantic model within SysWeaver gives us a way
to store most of the information required for analysis. All
Application Agents have timing and schedulability informa-
tion such as deadlines and sampling periods. Based on the
underlying platform, they can also be assigned priorities.



Each Application Agent has a Transition Table which defines
the state machine within the component. Each entry in the
Transition Table has aTrigger, anAction, and a Worst Case
Execution Time(WCET) value for the entry. TheTrigger

indicates what causes the transition to occur, which in most
cases is a result of an event arriving through an input port.
A special type of trigger called aPeriodicTrigger indi-
cates a periodic transition. TheAction describes the event
produced from theTrigger. The Action normally results
in an event which is sent through an output port. The final
event resulting from the Completion of a flow is designated
as aCompletionEvent. Each Application Agent can have
multiple entries in its Transition Table. The table entrieshave
a many-to-many relationship to support all combinations of
triggers and actions. Having this kind of structure within
a component gives an indication of execution times within
a flow as a result of interaction between components. To
capture network latency, the Couplers which connect ports
to each other have message sizes associated with them. This
coupled with information about transmit and receive delays
associated with the Node Coupler or the Network Coupler
can be used to give network latencies and flow analysis.
The timing information within each Application Agent along
with the approximate size of receive and transmits done
by each Application Agent gives us the resource usage of
each Application Agent. By capturing this information in the
Functional View, the Deployment View can then calculate
node lifetimes since it has the mapping of the Application
Agents deployed on each node. SysWeaver can export and
import information from other tools which it can aggregate
and provide to specific analysis engines.

Another property of the semantic model is that it can
provide synthesis internally as well as by interfacing with
external tools. Synthesis can be used to provide suggestions
or estimate properties that the designer is trying to optimize.
Coupled with the analysis engine, the synthesis engine can
be a very powerful feature. It can provide insight into
communication routes, node schedules, sampling periods for
tasks and optimal locations for nodes. Being able to provide
suggestions for system aspects can go a long way in helping
the designer who may not be a WSN expert. The engine takes
the model as an input along with the requirements which the
designer is trying to meet and outputs the parameters that it
can tweak to try and satisfy the requirements. Synthesis can
invoke the analysis plug-in to verify if any of the constraints
are being violated.

Figure 4 shows an example input and output file associated
with a typical network toplogy that describes both the links
and application-level communication requirements. ”∗” is a
symbol reserved to represent the body of nodes in the system.
A flow generated from ”∗” to a node, or from a node to ”∗”
is an upstream or downstream communication specifically
from all nodes to one or from one node to all. In this
example configuration, the mobile node RSSI data could be
generated from any node and must be aggregated at a single
point. The details of the actual communication scheduling
are beyond the scope of this paper, but in general we

assume an underlying TDMA MAC protocol. The analysis
engine then relies on greedy graph searching heuristics that
attempt to order flows while satisfying a two-hop interference
constraints. Since each task in our model was given a priority
and worst-case execution time, we can use well known real-
time scheduling theory to ensure feasible schedulability of
tasks on each node. With TDMA-based communication, we
know all communication patterns ahead of time allowing us
to determine the worst-case latencies in the absence of packet
loss and pre-compute blocking times. Finally, by combining
the worst-case execution times of tasks along with scheduled
communication, we can accurately predict the worst-case
energy consumption and hence the battery life of a node. The
analysis engine can check these computed values against the
parameters specified as properties in the design to alert the
designer of inconsistencies. Even on a small system shown
in our example, the scheduling complexity becomes difficult
to manage by hand, making automated synthesis essential.

D. Deployment

The Deployment phase of the workflow involves gathering
the implementation of the system as modeled. Different
kinds of deployments can result from a single consistent
model. Code for simulation as well as for the target hardware
can be generated by adjusting deployment preferences. The
implementation of the deployment phase involves building
library blocks for the different kinds of deployment and
for different simulators as well as different target hardware.
Using the SysWeaver approach, each Coupler becomes a
library block, wherein the Protocol Agent is the code that
handles communication between components, the Applica-
tion Agent code is the interface with the user application
code, and there areStateChangeEvent handlers which
handle the relaying of events between the Protocol Agent
and the Application Agent. SysWeaver is used to generate
the ”sys-code” which glues together the coupler libraries with
the generated communication code, and user-specific code.
Having a library built for each type of deployment enables
code generation for different platforms in the same system.
Simulation is represented as a Deployment target which uses
the coupler libraries built for the different simulators.

The SenseWeaver plug-in generates code that can be com-
piled to run on thenano − RK real-time operating system
(RTOS) described in [17]. Nano-RK is a fully preemptive
RTOS with multi-hop networking support that runs on a
variety of platforms. It supports fixed-priority preemptive
scheduling for ensuring that task deadlines are met, along
with support for and enforcement of CPU and network
bandwidth reservations. Tasks can specify their resource de-
mands and the operating system provides timely, guaranteed
and controlled access to CPU cycles and network packets
in resource-constrained embedded sensor environments. It
also supports the concept of virtual energy reservations that
allows the OS to enforce energy budgets associated with
a sensing task by controlling resource accesses. Nano-RK
provides various MAC and networking protocols including
a low-power-listen CSMA protocol called B-MAC [18], an



Fig. 4. Example input and output from the SenseWeaver analysis engine. (a) shows sample input to the analysis engine that captures topology information
as well as flows with their associated properties. (b) shows an example schedule output with theroom sensor 1 2 flow in bold. TheRX and TX

followed by numbers denote slot numbers for an underlying TDMAcommunication protocol. (c) shows a visual representation ofthe topology with the
various communication flows. The bold arrows correspond to thebold schedule entries in (b).

implicit tree routing protocol and a TDMA based protocol
called RT-Link [19].

Due to the energy constraints and the desire for analyzable
timing properties, we opted to use the TDMA network
protocol, where all packet exchanges occur in well-defined
time slots. Each node in the system must be given a time
slot schedule that coordinates with its neighbors. Given a
network link topology, using distance two graph coloring,
it is possible to generate a schedule that is collision-free
and avoids the hidden terminal problem. Given information
about flows in the system, it is possible to further optimize
schedules such that nodes are able to sequentially forward
data within a single TDMA cycle.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced SenseWeaver, a SysWeaver
plug-in that supports model-based design of wireless control
applications. We showed how a top-down model-based de-
sign approach for building wireless sensor-actuator networks
can manage complexity as well as enable the automatic
integration of multiple applications. As component libraries
become increasingly mature, system development will be
able to cleanly reuse code. This will not only reduce the
amount of hand written code required for an application, but
also reduce development time and increase system reliability.
Having a plug-in framework with a well-defined interface
gives system designers more choices in composing, analyz-
ing and deploying systems which will make future systems
more structured and easily amenable to change.

In the future, we plan to incorporate existing simulation
tools as well as develop more sophisticated synthesis and
analysis engines. We also hope to expand upon the heteroge-

neous nature of SenseWeaver by supporting more platforms
and networking protocols. For SysWeaver, we are developing
an expert system which is a rule-based design engine that
provides the designer with verification and analysis capa-
bilities to compose systems. This involves the definition of
a rules interface as well as support to encapsulate possible
sets for rules which can be composed together. The interface
of the Component Designer is being updated to add more
custom properties as required by applications. This should
help to increase the number of reusable components.

REFERENCES

[1] D. de Niz and R. Rajkumar. Time Weaver. A Software-Through-
Models Framework for Embedded Real-Time Systems.ACM Lan-
guage, Compilers, and Tools for Embeddded Systems (LCTES’03),
2003.

[2] D. de Niz and R. Rajkumar. Partitioning Bin-Packing Algorithms
for Distributed Real-Time Systems.Special Issue on Design and
Verification of Real-Time Embedded Software, 2005.

[3] D. de Niz and R. Rajkumar. Glue Code Generation:Closing the
Loophole in Model-based Development.Workshop on Model-Driven
Embedded Systems (MDES 2004), 2004.

[4] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong. TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor Networks.Operating
Systems Design and Implementation (OSDI’02), 2002.

[5] R. Newton, G. Morrisett and M. Welsh. The Regiment Macroprogram-
ming System.International Conference on Information Processing in
Sensor Networks (IPSN’07), 2007.

[6] S. Park, A. Savvides and M. B. Srivastava. SensorSim: a simulation
framework for sensor networks.Proceedings of the 3rd ACM Inter-
national Workshop on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, 2000.

[7] A. Varga. The OMNeT++ discrete event simulation syste.European
Simulation Multiconference (ESM’01), 2001.

[8] P. Levis, N. Lee, M. Welsh and D. Culler. TOSSIM: accurate
and scalable simulation of entire tinyos applications.International
Conference on Embedded Networked Sensor Systems(SenSys ’03),
2003.



[9] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan and D.
Estrin. EmStar: A software environment for developing and deploying
wireless sensor networks.USENIX Annual Technical Conference,
2004.

[10] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras andM. Karir.
Atemu: A fine-grained sensor network simulator.IEEE Communica-
tion Society Conference on Sensor and Ad Hoc Communicationsand
Networks (SECON’04), 2004.

[11] B. Titzer, D. Lee and J. Palsberg. Avrora: Scalable sensor network
simulation with precise timing.International Conference on Informa-
tion Processing in Sensor Networks (IPSN’05), 2005.

[12] P. Volgyesi and A. Ledeczi. Component-Based Developmentof
Networked Embedded Applications.28th EUROMICRO Conference
(EUROMICRO’02), 2002.

[13] G. Karsai, J. Sztipanovits, A. Ledeczi and T. Bapty. Model-Integrated
Development of Embedded Software.Proceedings of the IEEE,
January.

[14] J. Eker, J. W. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs and Y. Xiong. Taming heterogeneity - the Ptolemy
approach.IEEE Special Issue on Modeling and Design of Embedded
Software, 2003.

[15] E. Cheong, E. A. Lee and Y. Zhao. Joint Modeling and Design of
Wireless Networks and Sensor Node Software.EECS Department,
University of California, Berkeley, Technical Report No. UCB/EECS-
2006-150, 2006.

[16] D. de Niz, G. Bhatia and R. Rajkumar. Model-Based Development
of Embedded Systems: The SysWeaver Approach.IEEE Real-Time
Applications Symposium (RTAS’06), 2006.

[17] A. Eswaran, A. Rowe and R. Rajkumar. Nano-RK: an Energy-aware
Resource-centric RTOS for Sensor Networks.IEEE Real-Time Systems
Symposium, 2005.

[18] J. Polastre, J. Hill and D. Culler. Versatile low power media access
for wireless sensor networks.SenSys, November 2005.

[19] A. Rowe, R. Mangharam and R. Rajkumar. RT-Link: A Time-
Synchronized Link Protocol for Energy-Constrained Multi-hop Wire-
less Networks.SECON, 2006.


	Introduction
	Related Work
	Workflow
	Modeling
	Functional Modeling
	Physical Modeling
	Deployment Modeling

	Instrumentation
	Synthesis and Analysis
	Deployment

	Conclusion and Future Work
	References

