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Abstract
The proliferation of Bluetooth Low-Energy (BLE)

chipsets on mobile devices has lead to a wide variety of user-
installable tags and beacons designed for location-aware ap-
plications. In this paper, we present the Acoustic Location
Processing System (ALPS), a platform that augments BLE
transmitters with ultrasound in a manner that improves rang-
ing accuracy and can help users configure indoor localization
systems with minimal effort. A user places three or more
beacons in an environment and then walks through a calibra-
tion sequence with their mobile device where they touch key
points in the environment like the floor and the corners of the
room. This process automatically computes the room geom-
etry as well as the precise beacon locations without needing
auxiliary measurements. Once configured, the system can
track a user’s location referenced to a map.

The platform consists of time-synchronized ultrasonic
transmitters that utilize the bandwidth just above the human
hearing limit, where mobile devices are still sensitive and can
detect ranging signals. To aid in the mapping process, the
beacons perform inter-beacon ranging during setup. Each
beacon includes a BLE radio that can identify and trigger
the ultrasonic signals. By using differences in propagation
characteristics between ultrasound and radio, the system can
classify if beacons are within Line-Of-Sight (LOS) to the
mobile phone. In cases where beacons are blocked, we show
how the phone’s inertial measurement sensors can be used
to supplement localization data. We experimentally evaluate
that our system can estimate three-dimensional beacon loca-
tion with a Euclidean distance error of 16.1cm, and can gen-
erate maps with room measurements with a two-dimensional
Euclidean distance error of 19.8cm. When tested in six dif-
ferent environments, we saw that the system can identify
Non-Line-Of-Sight (NLOS) signals with over 80% accuracy
and track a user’s location to within less than 100cm.
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1 Introduction
In order to improve indoor localization, low-cost beacon-

ing systems like Gimbal [1] and iBeacon [2] allow users to
instrument their environment. These devices typically per-
form approximate ranging using Received-Signal-Strength-
Indicator (RSSI) values measured from short-range commu-
nication like Bluetooth Low Energy (BLE). BLE has gained
traction in localization applications because unlike previ-
ous generations of Bluetooth, mobile devices can scan and
rapidly detect tags without needing to be paired. The phone’s
operating systems can scan for tags in the background and
selectively push notifications to an application when certain
conditions are met. This ability of BLE to operate trans-
parently while the phone is sleeping has enabled a number
of location-aware services. For example, there are multiple
BLE door locks available that periodically transmit proxim-
ity beacons to grant access if an authorized user is nearby.
Unfortunately, BLE’s ability to estimate distance (proxim-
ity) is based on radio signal strength that is affected by an-
tenna type, orientation, environment specific path-loss and
obstructions. This makes it difficult for BLE to act as a
fine-grained localization source. Even if the ranging data
is accurate, as demonstrated in [3], there are still significant
barriers involved in setup and configuration of localization
systems. It is extremely difficult for non-experts to create
accurate maps of the environment and precisely survey bea-
con locations.

In this paper we present ALPS, a platform that augments
BLE proximity beacons with ultrasonic transmitters in a
manner that can help non-expert users quickly install and
configure a precise and robust indoor localization system. A
user simply installs three or more ALPS beacons in a space
and then launches an app on their phone that interactively
guides them through a configuration process. Once the space
is configured, users can enter the space and the app will de-
termine their location and can directly plot it relatively to
a map of the area. As part of this training process, ALPS
also characterizes the environment in terms of Line-Of-Sight
(LOS) and Non-Line-of-Sight signal features such that it can
filter out NLOS signals at run time.

The system consists of time synchronized beacons that
transmit ultrasonic chirps similar to those described in [4]
and [5]. These chirps are inaudible to humans, but are still
detectable by most modern smartphones. The phone can use
the Time-Difference-Of-Arrival (TDOA) of chirps to mea-



sure distances. As described in [5], if enough beacons are
visible, a mobile phone can use TDOA to back compute the
beacon transmit time in order to synchronize its clock with
the infrastructure. Once synchronized it is possible to di-
rectly measure the Time-Of-Flight (TOF) for any new sig-
nals until the clocks drift apart. In contrast to previous work,
ALPS uses BLE on each node to send relevant timing infor-
mation. This both simplifies the design and allows for the
entire ultrasonic bandwidth to be used exclusively for rang-
ing. The approach from [4] was demonstrated to perform
with an accuracy better than 2m at the IPSN 2014 localiza-
tion competition [3]. These errors were significantly larger
then what would be expected by TOF and likely a result of
multi-path as well as incorrect beacon locations. Both of
these sources of error are the key motivations for this work.
Our updated approach of using BLE for data and the entire
ultrasonic bandwidth for ranging improved performance to
better than 30cm accuracy in the 2015 version of the com-
petition. However, in both of these tests the receiver had
sufficient beacons within LOS to perform TDOA ranging.

One major benefit of the evolving BLE ecosystems is that
any user can rapidly deploy and annotate tags in a region of
interest to build location-aware services. In some cases, the
user can even define a location on a crowd-sourced map if an
interior floor plan exists. ALPS takes this concept one step
further and allows users to place three or more beacons in an
area and then walk through a configuration process that gen-
erates a 3D map of the space with the precise location of each
of the beacons. The approach is similar in nature to range-
only Simultaneous Localization and Mapping (SLAM). An
app on the smartphone guides the user through a process that
allows the system to determine the dimensions of the room
by placing the phone in key locations where it performs rang-
ing measurements. Each beacon not only transmits BLE and
ultrasound, but can also receive ultrasonic messages in or-
der to perform inter-beacon ranging. The inter-node range
information is required to solve the beacon mapping prob-
lem. Once the mapping process is complete, the system
can leverage inertial measurements from new mobile users
to precisely localize them in the space even if a subset of
transmitters are obscured.

If the exact geometry of the beacons is known, a system
needs three beacons in order to compute a two-dimensional
location. If the geometry is not known, for example during
installation, the system needs at least four beacons in order
to perform the mapping operation. After profiling the ability
to timestamp BLE packets, it was apparent that there is too
much jitter in timing to use BLE as a precise starting point
for the ultrasonic transmission (it is good enough to iden-
tify Time-Division-Multiple-Access (TDMA) slots). During
the configuration phase we ask the user to hold their phone
directly next to one of the beacons. We then use this bea-
con at zero-distance to synchronize with the infrastructure
instead of requiring another beacon. The audio time syn-
chronization during setup allows the user to use TOF ranging
in order to localize the beacons and room anchor points in 3-
dimensions. Time synchronization experiments on phones in
[5] show that a smartphone can stay synchronized for tens of
minutes before drift causes significant ranging error. Once
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Figure 1. System overview

the geometry is determined, users that enter the space can
simply use TDOA (or TOF once synchronized to the infras-
tructure) and tracking to compute their locations.

One of the major limitations of ultrasonic ranging sys-
tems is error due to interpreting NLOS or multi-path signals
as LOS signals. As part of the configuration process, the
system captures the signal strength of both BLE and ultra-
sonic transmissions along with the ultrasonic TOF data of
each ultrasonic transmission. The user is asked to capture
instances where the phone is in clear LOS of all beacons,
as well as a few NLOS cases where beacons are obstructed.
Using this data and the difference in multi-path attenuation
properties of RF and ultrasound, the system is able to clas-
sify if a received signal is LOS or NLOS. When given direct
LOS, ultrasonic ranging systems are highly accurate and can
measure distances to less than 10cm of error. ALPS is able
to ignore NLOS data and interpolate the true position us-
ing inertial measurement assisted tracking when beacons are
blocked.

In summary, the contributions of this paper are (1) a hard-
ware and software platform that augments BLE with ultra-
sonic transmissions for fine-grained localization, (2) a pro-
cedure that leverages this platform to help users automati-
cally generate maps of the environment without any manual
measuring and (3) an enhanced location tracking approach
that uses machine learning to filter out NLOS signals when
localizing users after the installation phase.

2 Related Work
Research on the topic of localization can be broadly clas-

sified into two main categories of range-based approaches [6,
7, 8, 9] and range-free approaches [10, 11, 12, 13]. Range-
free approaches typically attempt to match either synthetic
or naturally occurring signatures to a particular location or
use tracking techniques like on-board inertial measurement
data [14, 15, 16]. Range-based approaches use measured
distances or angular estimates to known anchor points to
compute a position. In this paper, we focus primarily on
range-based technologies including Time-of-Arrival (TOA),
TDOA, TOF and tracking approaches that use inertial data.
For a more detailed general overview, we refer to [17]. Our
approach uses TOF for setup and then uses TDOA with iner-
tial tracking for run-time localization.



There is a large body of work in the mobile computing
domain on TOF [18] systems that compute distances based
on how long it takes for a signal to propagate from a sender
to a receiver. For example, [19] and [20] both compute dis-
tances by measuring the Round-Trip-Time-of-Flight (RTOF)
by recording a signal’s departure and the return time divided
by the propagation speed. This assumes that the receiver
will retransmit a return signal within a fixed amount of time.
BeepBeep [20] uses this approach on cellular phones to com-
pute inter-device ranges. Even though smartphones are typi-
cally sensitive to ultrasonic sound, their speakers are highly
directional in those frequencies, which lead [20] to use au-
dible frequencies. The authors also focused on peer-to-peer
ranging rather than infrastructure to device ranging.

TDOA systems can remove the requirement of know-
ing exactly when a signal was transmitted by using what
is known as pseudo-ranging. Pseudo-ranging computes dis-
tances by looking at the relative differences between the ar-
rival of several signals, assuming they were all transmitted
simultaneously or at known offsets. As compared to TOA
and TOF approaches, this requires one additional transmit-
ter to allow the common distance from all broadcasting de-
vices to be estimated. GPS [7] is the most popular ex-
ample of this ranging approach. Similar approaches have
been applied towards ultrasonic communication [21, 22, 4].
The Dolphin [21, 22] system adopts a pseudo-ranging ap-
proach using a 50kHz carrier with Direct-Sequence-Spread-
Spectrum (DSSS) modulation. While extremely accurate,
this approach requires custom hardware and is not applicable
to standard smartphones. In [23], the authors expand upon
Dolphin (while still requiring custom hardware) by adding a
self-training deployment approach based on filtered motion
within the space. This work in part inspired our inter-beacon
ranging capability. In [24] the authors identify the location
of a cellular phone in a car using ultrasonic pseudo-ranging
from the car’s audio speakers. This approach used fixed fre-
quency tones in an extremely controlled environment where
data transfer was not required.

In [4], we introduced an ultrasonic TDOA ranging ap-
proach that is able to perform ranging between speakers dis-
tributed in the environment and mobile devices. The sys-
tem utilizes commercial tweeters and is evaluated on pre-
vious generations of smartphones with a wider frequency
range above 20kHz than the current generation (iPhone 4 as
opposed to 5-6). The approach also only supports pseudo-
ranging and not TOF. Followup work [5] extended the ap-
proach with clock synchronization to enable TOF ranging
and simplify the modulation scheme to accommodate newer
phones with less available bandwidth above 20kHz. We fur-
ther extend upon this work by completely replacing the data
communication component of the system with BLE such that
the ultrasound is only used for ranging. We also focus on the
configuration elements of the system by providing a mecha-
nism to rapidly set up and map spaces. In the previous work,
NLOS signals were a significant source of error. In this work,
we show an approach to both detect NLOS signals as well
as improve tracking in their presence by fusing inertial data
from the phone’s on-board sensors.

The radio and communications community has studied
differentiating LOS and NLOS signals in depth. A survey
of this work can be found in [25]. The most common ap-
proaches either use the coherence of the signal [26] or they
look at the distribution of multiple consecutive signals for
classification [27]. A recent approach that utilized features
directly derived from RSS to identify and mitigate NLOS
signals can also be found in [28]. As described in Section 4,
we saw that the coherence of the ultrasound signal was more
significantly influenced by the environment rather than the
expected multi-path component of a NLOS signal. As sug-
gested by [27], the distribution of LOS data has much less
variance as compared to NLOS data, but in our case the data
rate is so low that it would take tens of seconds to arrive at
a reliable confidence interval. In contrast, we utilize envi-
ronment specific training along with the fact that we have
two significantly different transmission media to help clas-
sify LOS and NLOS from a single transmission.

The robotics community has developed multiple ap-
proaches for SLAM in indoor environments. Early work
in SLAM required range and bearing measurements from
the landmarks. Our system provides range information as
well as inter-node ranges which can aid in mapping. [29]
proposes techniques to localize connected nodes with noisy
range measurements. [30] proposes utilizing a mobile node
to map beacons that are sparsely connected. In this paper, we
present a technique for mapping three transmitters with inter-
node ranging in a single area. In case of larger spaces with
connected rooms, varied number of nodes in each space, and
sparse connectivity between the beacons, we can draw upon
techniques from [30] and [29]. Finally, Google’s project
Tango and sensors like Occipital’s Structure use depth sen-
sors to scan and map 3D environments. We believe that our
approach can help augment these techniques during the map-
ping process (improving both techniques) and then can be
used for localization once the mapping is complete.

3 Architecture
A typical ALPS setup consists of three or more transmit-

ters deployed in the target area as seen in Figure 1. Place-
ment of the transmitters is flexible, however in our current
implementation each beacon should be within LOS of each
other and placed such that LOS coverage is maximized. In
most deployments, this typically means mounting them to
the ceiling. The transmitters are time synchronized using
802.15.4 radios that listen to periodic transmissions from a
master node. The timing master node can be one of the
installed beacons. Current closed-source BLE implemen-
tations limit access to the lower levels of the stack which
makes it difficult to use BLE for tight timing.

3.1 Hardware
We developed an embedded hardware platform for our

transmission infrastructure shown in Figure 2, which con-
sists of the following main components: (1) An ultrasound
transceiver board with an 802.15.4 radio shown in Fig-
ure 3(a), (2) a BLE daughter board shown in Figure 3(b), (3)
a piezo bullet tweeter with attached omni-directional horn
and (4) a battery pack for optional battery powered opera-
tion.
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Figure 2. ALPS beacon

The ultrasound transceiver uses an Atmel At-
mega256RFR2 SoC with an on-chip 802.15.4 radio.
The CPU drives a Texas Instruments TLV320AIC3120
24-bit 192kHz audio codec via an I2S interface, which we
emulate using an SPI port and a timer output. The codec is
connected to an Akustica AKU340 MEMS microphone for
receiving ultrasound and includes an on-chip 1.6W (into 8
Ohms) class-D amplifier for driving the piezo tweeter. The
system is able to achieve an audio sampling rate of 125kHz
for playback and recording, which is limited by the clock
speed of the microcontroller. This tightly coupled design
allows for negligible end-to-end jitter from reception of an
802.15.4 packet to playback through the speaker of less than
20µs.

The BLE daughter board shown in Figure 3(b) contains a
TI CC2640 SoC with on-chip BLE radio and an ARM M3
core which attaches to the ultrasound transceiver board via
two on-board connectors that supply it with power and con-
nect I2C and GPIO interfaces. BLE advertising transmis-
sions can be triggered by the ultrasound transceiver through
a GPIO interrupt to synchronize BLE and ultrasound packet
transmission. The audio is produced by a low-cost (< $2.50)
Goldwood GT-400CD bullet piezo tweeter capable of pro-
ducing sound well above our required frequency range of
20−21.5kHz.

Current Power Time Energy
(mA) (mW) (ms) (mJ)

100% Vol, Chirp 58.04 174.12 50 8.71
100% Vol, Tone 56.04 168.12 50 8.40
50% Vol, Chirp 33.31 99.30 50 4.97
50% Vol, Tone 32.77 98.31 50 4.97
BLE Idle 2.48 7.44 n/a n/a
BLE Adv. 20ms 3.08 9.24 n/a n/a

Table 1. Beacon power consumption

The power consumption of our prototype beacon is sum-
marized in Table 1. The values for playback show the aver-
age power consumption of only the ultrasound transceiver
board while continuously transmitting and the BLE num-

TLV320'Audio'Codec' Atmega256RFR2'SoC' RF'Amplifier'Microphone'

(a) MCU board

BLE Antenna802.15.4 Antenna CC2460 SoC

(b) MCU and BLE board

Figure 3. Ultrasonic beacon PCBs

bers include the isolated BLE average power consumption.
All currents were measured at a supply voltage of 3V . Both
boards draw a negligible amount of current (< 800nA com-
bined) when put into a deep-sleep mode. At 100% vol-
ume the beacon is capable of transmitting ultrasound sig-
nals to an off-the-shelf smartphone over a range of roughly
40m. With ultrasound operating for 12h per day in a 7 slot
TDMA schedule at half volume and BLE advertising contin-
uously during these 12 hours, each beacon can operate from
a 20AH lithium (Tadiran D-cell) battery for approximately
212.6 days. We believe that this can be optimized by a fac-
tor of 3-5x with more aggressive duty-cycling and improved
BLE management. The audio efficiency could also be im-
proved with a more efficient custom driver that resonates at
our target frequencies.

3.2 Horn Design
In a typical loudspeaker, as the audio frequency increases,

the spatial spread of the signal decreases, eventually forming
a narrow beam. In our system, we ideally want an omni-
directional speaker that has a flat frequency response across
the 18− 24kHz frequency band that can uniformly deliver
data without distortion. Since no such speaker was commer-
cially available, we designed a custom transducer based on
a multi-sector omni-directional horn design shown in Fig-
ure 2. This turned out to be a non-trivial effort that required
significant experimentation.

We initially evaluated multiple commercial speakers in
order to determine suitable driver components and geome-
tries. In terms of frequency response, we found that ribbon
tweeters had an excellent frequency response and horizontal
dispersion pattern. Unfortunately, they require large mag-
nets that are both heavy and expensive ($50+). They also
have a narrow vertical beam pattern. In certain scenarios,
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Figure 4. Low-cost piezo horn design evaluation
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Figure 5. Ultrasonic beam patterns

they could be an ideal transducer but are too expensive for
general purpose indoor localization applications. We also
evaluated piezo electric tweeter elements since they are low-
cost (< $2.50) and have a reasonably linear frequency re-
sponse. Unfortunately, without a horn to guide the signal,
they are quite directional. The top two rows in Figure 5 show
a comparison of the vertical and horizontal beam patterns of
a ribbon tweeter and piezo driver.

The acoustic literature has many models that describe a
wide variety of speaker designs [31]. Most of the common
designs tend to be for audible frequencies and exhibit con-
fined beam patterns. In order to design a custom horn, we
initially modeled a cone based on standard horn equations.
These models specify the width of the horn’s mouth to be
4.76mm in diameter to support frequencies above 20kHz.
The resonant chamber needs to be at least 1 wavelength,
or 1.6cm in length. The horn throat then needs to be sized

in order to reduce distortion while having sufficient ampli-
fication. A point source (pin-hole speaker) would be ideal,
except that the volume would be insufficient. Figure 4(e)
shows the basic geometry of our omni-directional horn. In
order to evaluate performance, we varied the horn angle, the
height of the top of the horn and experimented with different
numbers of internal sectors. Each horn variant was printed
on an SLA 3D printer and then tested using a pan-tilt mech-
anism that allowed automatic frequency response measure-
ments to be taken at different angles. We tested 12 different
horn designs generating a vertical and horizontal frequency
response plot measured using a swept sine deconvolution ap-
proach recorded on a measurement microphone.

We define two metrics to compare different speaker con-
figurations. These metrics are computed from the gain val-
ues at different frequencies and directions, as seen in Fig-
ure 5. To measure the flatness of frequency response, we
compute the frequency distortion. The frequency distortion
of a speaker in a particular direction is the difference between
the maximum and minimum gain in the frequency band of
interest. We average this metric across all directions to
compute the frequency distortion (lower plots in Figure 4(a-
d)). To measure the deviation from omni-directionality for
a speaker, we first find the gain in a particular direction by
averaging the gain across the frequency band. We then com-
pute the average deviation from the mean gain across all di-
rections to arrive at the directional distortion (upper plots in
Figure 4(a-d)). Both these metrics are averaged across the
horizontal and vertical orientations for each speaker.

Frequency distortion as well as directional distortion both
directly impact the SNR at the receiver. Frequency distor-
tion will create a mismatch between the recorded signal and
the template used during matched filtering, while directional
distortion will vary the signal level with respect to the an-
gle between the beacon and the receiver. A decrease in SNR
increases timing jitter when determining the TOA of the re-
ceived ultrasound transmissions, which in turn negatively
impacts ranging and localization performance.

Since frequency response and amplitude can be compen-
sated for through equalization and amplification (within rea-
son), the most important factor is the directionality of the
horn. Since the horn without sectors and the six sectored ver-
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Figure 6. Ultrasound and iBeacon ranging error in free space and corridor environments

sion with a 30◦ angle and a height of 10mm (compression ra-
tio (throat area/mouth area) of 70) performed almost exactly
the same in this respect, we selected the sectored version for
increased mechanical stability. Figure 5(e) and Figure 5(f)
show the beam pattern and frequency response across 140◦
of our final design.
3.3 Data and Ranging

In our previous work [4] and [5], we present two methods
using ultrasonic chirps for modulating data and ranging in-
formation onto an ultrasound carrier. Similar to the system
described in [5], we use TDMA to multiplex the transmission
of our ultrasound transmitters over time and transmit ultra-
sonic chirps for precise ranging. Instead of encoding data
using chirps, ALPS relies on BLE advertisement packets in
an iBeacon compatible format to signal the current TDMA
time slot. This eliminates the need for a complicated and
more processing intensive demodulation step on the phone
and makes the ultrasound signals shorter and more likely to
be detected correctly. Receivers are also able to obtain BLE
RSSI and iBeacon range measurements from these packets
for detecting when a beacon is not within LOS.

Our ultrasound ranging signals consist of a 50ms up-chirp
between 20kHz and 21.5kHz followed by a 50ms period of
silence to wait for any reverberations to decay significantly.
The silence duration as well as the volume is adjustable
based on the room size and is determined during the config-
uration process. In the following time slot we broadcast an
orthogonal 50ms down-chirp between 21.5kHz and 20kHz
to further minimize possible interference from reverberation
from the previous time slot and to allow the periods of si-
lence between transmission to be kept to a minimum.

The primary requirements for a smartphone to be able to
function as an ALPS receiver are that it is able to receive au-
dio signals between at least 20−21.5kHz and delivers BLE
advertisement packets to the application layer with low la-
tency. In [32], the authors profile the frequency response
of the microphones of 10 iOS and Android smart devices,
and show that all of them provide adequate response in the
20−21.5kHz range.

In order to better understand the impact of the environ-
ment, we evaluated the ultrasound TOF and iBeacon ranging
performance of our beacons in six different spaces. Figure 6
shows the ranging error in a free space and in a confined
corridor setting. The data was collected by time synchroniz-
ing an iPhone 5S to the beacon by holding it directly at the
speaker while it was playing evenly spaced 50ms chirp sig-
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τtx1

Slot 0 Slot 1

a)

b)

τtx2 . . . 

c)

τtx3 τtx4

τrx0

Figure 7. BLE timing data

nals and then placing it at a known distance away from the
beacon. The beacon would then transmit 500 additional pe-
riodic chirp signals per sampled distance after a known time
delay, for which we calculated the measured distance based
on the propagation time of the signal. We collected samples
at 10 different beacon to receiver distances in every envi-
ronment. 100 iBeacon distance samples were collected at
the same time from the distance being reported in iOS. The
iBeacon power level was calibrated by measuring its average
RSSI at a 1m distance as recommended by Apple. For the
free space case using ultrasound TOF a mean absolute rang-
ing error of 8.9cm with 95% of the distance samples below
33.5cm in error was observed. The mean absolute ranging er-
ror for using iBeacon in this environment was 403.4cm with
95% of the distance samples below 845.6cm in error. For the
corridor case a mean absolute ranging error of 17.9cm with
95% of the distance samples below 34.2cm in error was ob-
served. The iBeacon distance measurements showed a mean
absolute ranging error of 1209.9cm with 95% of the distance
samples below 1861.3cm in error in this environment. We
see that both BLE and ultrasound are negatively impacted by
multi-path. This indicates that it is important to use the room
geometry information to set transmit power.

In order to map received ultrasound transmissions to their
respective transmitters, our beacons transmit periodic BLE
advertisement packets that contain a counter value τtx indi-
cating the time offset from the broadcast of the BLE adver-
tisement packet to the beginning of the TDMA cycle shown
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Figure 8. BLE advertisement packet reception latency

in Figure 7 (a), (b). Mobile receivers can synchronize to
the TDMA cycle by timestamping the BLE packet reception
τrx (Figure 7 (c)) and subtracting the received counter value
from τrx. While BLE advertisement intervals can be as low
as 20ms, there is an indeterministic latency associated with
receiving them in an application running on a smartphone.
Typical smartphones such as the iPhone 5S do not allow low-
level access to their BLE stack for accurate timestamping
and also time-multiplex hardware resources between their
WiFi, Bluetooth classic and BLE receivers, allowing them
to only listen for BLE advertisements intermittently. On the
iPhone 5S, received BLE advertisements are passed to the
application roughly once a second, but it is unclear how of-
ten the phone receives BLE packets and how long it takes
before they signal applications.

In order to evaluate the feasibility of time-synchronizing
the phone to the TDMA cycle of the broadcasting infras-
tructure, we measured the latency between BLE advertise-
ment packets and the audio input of an iPhone 5S. We set
up a beacon to toggle a GPIO pin that was connected to the
phone’s microphone input when a new TDMA cycle started
and simultaneously started broadcasting BLE advertisement
packets containing τtx. The phone timestamped the recep-
tion of each BLE packet in the application and subtracted τtx
to determine when the GPIO pin was toggled in its frame
of reference. Simultaneously the phone was recording the
GPIO trigger in an audio waveform, which was precisely
timestamped to within 1ms using the technique detailed in
[5]. Figure 8 shows the BLE advertisement packet reception
latency for 20,50 and 100ms advertisement intervals across
1000 packets. When set to a 20ms interval, we measured an
average latency of 25.1ms with a maximum of 72.4ms, which
is well below our 100ms long TDMA slot length, hence al-
lowing slot-accurate time synchronization via BLE. The less
frequent intervals provided unacceptable worst-case latency
of 169.3ms and 275.1ms (50 and 100ms intervals respec-
tively).
3.4 Inter-beacon Ranging

In order to assist in determining the locations of the bea-
cons, we require accurate direct inter-beacon measurements.
Each beacon is equipped with a MEMS microphone con-
nected to its audio codec which can stream audio to the net-
work master node via 802.15.4. We implemented an inter-
beacon TOF ranging procedure, where two beacons at a time
listen for a trigger from the network master via 802.15.4, af-

ter which one of them transmits an ultrasonic ranging signal
while the other records and streams the recording back to
the network master for processing. The propagation time of
the ultrasound signal can then simply be calculated from the
received recording. Due to the higher sampling rate of the
audio-codec (running at 125kHz) and the direct RF time syn-
chronization, this procedure provides range measurements
with errors below 5cm. We discuss how these measurements
are used in Section 5.

4 Non-Line-of-Sight Filtering
A major source of error in TOF ranging systems is incor-

rect measurements due to NLOS signals. Failing to identify
the NLOS signals can introduce estimation errors in ranging
and thus seriously affect the localization performance. The
identification of LOS/NLOS signals not only facilitates the
process of selecting the right measurements, but also helps
to further mitigate the ranging bias. Most of the identifica-
tion techniques deal with the problem based on the range
estimates or channel pulse response (CPR), but are often in-
feasible in real world since large amount of training data is
required for characterization. The Cricket system [6] was
one of the first efforts that noticed that the difference be-
tween two transmission media could be used to possibly in-
fer NLOS transmissions. In Cricket, the frequency was quite
high and the transmitters where highly directional, which
likely made the correlation between RSSI distance and ultra-
sonic TOF more obvious. At lower frequencies, with chirp
encoding and omni-directional transmitters, the ultrasound
diffracts significantly more, making the distinction between
LOS and NLOS more difficult.

In this section, we discuss the creation of a binary clas-
sifier for NLOS detection that is able to learn the charac-
teristics of a space with relatively little training data. During
our experiments, we collected 3600 samples of LOS data and
1200 samples of NLOS data from arbitrary locations in more
then 6 environments. The unbalanced amount of LOS data
and NLOS data are designed to model the real world sce-
nario where LOS data is much easier to collect during the
installation process. Since the rate of position updates is rel-
atively low, we ideally want to find a set of features that can
be extracted from a single measurement. The key insight to
our approach is that we are able to detect ultrasonic TOF, ul-
trasonic RSSI and iBeacon RSSI, which are different in LOS
and NLOS cases. In Table 2 we show classification accuracy



Features Set Accuracy
{Fus} 0.644
{FiB} 0.925
{Fwave} 0.767
{Fdelay} 0.753
{FiB,Fwave} 0.779
{Fus,FiB} 0.965
{Fdelay,Fwave} 0.787
{Fus,FiB,Fdelay} 0.959

{Fus,FiB,Fdelay,Fwave} 0.779
Table 2. Identification accuracy with multiple features

NLOS Accuracy FP FN Prec. Recall
1% 0.805 0 0.195 1.00 0.805
4% 0.826 0 0.175 1.00 0.826
7% 0.837 0.007 0.156 0.992 0.843

10% 0.841 0.016 0.143 0.982 0.855
Table 3. Impact of training samples on FiB and Fus per-
formance

with different combinations of features, where Fus is the ra-
tio of RSSIus to DiB, FiB is the ratio of RSSIiB to DiB, Fwav is
the normalized waveform of the received ultrasonic signal,
and Fdelay is the root mean square (RMS) delay spread of the
ultrasonic signal. DiB is the distance estimate returned by
iBeacon, RSSIus and RSSIiB are RSSI values from ultrasonic
and iBeacon respectively.

Based on the results in Table 2, we selected Fus and FiB
because they perform best with the least amount of training
data. A Support Vector Machine (SVM) classifier is trained
with 10-fold cross validation and grid search on selecting
the best parameters in order to prevent over-fitting. Other
features like the shape of the ultrasonic waveform performed
poorly in our experiments.

In Table 3 we summarize the identification performance
on our dataset while using 10% of the LOS data for train-
ing and varying the amount of NLOS data. We see that even
with 1% of the NLOS data used for training, we are able
to achieve 80% classification accuracy. In any one mapping
collection cycle, this corresponds to about 300 LOS sam-
ples (which are easily captured while holding the phone in
the open during the mapping phase) and 12 NLOS samples
which the user is instructed to collect. However, we should
note that most of classification error results from false nega-
tive (FN) instead of false positive (FP) due to the unbalanced
data set, which can seriously decrease the performance of our
localization algorithm. With an increased number of NLOS
data samples in the training phase, we observe a slight in-
crease in overall accuracy while FN probability greatly de-
creased as a trade-off with more data collection time.

As shown in Section 6, the ability to filter out NLOS mea-
surements significantly increases overall localization perfor-
mance.

5 User-Assisted Mapping
Any beacon-based localization system requires the loca-

tion of the beacons with respect to the floor plan to pro-
vide meaningful location estimates. Most systems assume
these beacon positions can be easily determined, but in prac-
tice this can be quite difficult. Errors in the position of

the beacons can cause significant end-to-end localization er-
rors. Generating beacon positions is a labor-intensive time-
consuming process which involves either taking extensive
range measurements to walls using laser rangers or employ-
ing other equipment like a robotic system with accurate mo-
tion control equipped with the ability to sense the signal from
the beacons. What makes this process difficult is that the
floor plan information itself may not be provided to the in-
staller. We propose a semi-automatic mapping process where
the installer deploys the beacons and walks around the room
taking a few measurements to aid the mapping process.

The goal of the proposed mapping process is to (a) map
the beacons with respect to the floor plan, and (b) generate
the floor plan using landmarks such as the corners if it is not
already available. This process can be performed by a non-
expert user in a few minutes for a single area.

5.1 Procedure
The process for mapping three beacons in a single area is

given below. The approach can be extended to more beacons
in a single area and conceptually also multiple areas. Though
not currently implemented, the app could potentially take ex-
isting floor plan images and determine anchor points within
them. Our mobile app guides the user through these steps:

1. Deploy the three beacons such that they provide good
coverage of the area and are in LOS of each other.

2. Hold the phone close to one of the beacons and select
the Sync option in the app and wait for 10 seconds while
the phone synchronizes to the beacons.

3. Identify three points on the floor such that all three bea-
cons are visible from each point. Place the phone at
each location, and select the Floor reference point op-
tion.

4. If the floor plan is not provided, walk around the room
and go to each corner and select the Corner reference
point option. This will compute line segments between
the corner points.

5. Specify an origin and the orientation of the x− y coor-
dinate space. One way to do this is to select one of the
corners as the origin and an adjacent corner to be on the
x or y axis.

5.2 Algorithm
The basic principle of the 3-D mapping process is that

we make use of the following three types of information to
uniquely solve for the beacon positions (a) ultrasonic-based
inter-node ranging (b) estimation of z− plane using the three
ground measurement points (c) user specified x−y plane ori-
gin and orientation. The algorithm for mapping three bea-
cons is as follows:

1. Given inter-node ranges r12, r23, r13 between the three
beacons B1, B2, B3, define a 3-D coordinate system
R3

a such that the three beacons are on the z = 0 plane,
B1 is the the origin [0,0,0], and B2 is along the x
axis [r12,0,0]. Coordinates of B3 can be obtained as

[r13 cos(α),r13 sin(α),0], where α= arccos( r2
12+r2

13−r2
23

2r12r13
)
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Figure 9. Panorama of automatically configured kitchen area using three beacons

2. Estimate the coordinates of the three ground measure-
ment points with respect to the beacons in R3

a.

3. Define a new coordinate system R3
b such that the plane

that contains the three ground points is the new z = 0
plane in R3

b.

4. The x− y plane of R3
b can be defined by its origin and

one of the axes. This can be chosen arbitrarily since we
would re-assign the x−y plane after generating the floor
plan. In our implementation, we did the following: The
projection of B1 on the x− y plane is assigned as the
origin (0,0,0) of R3

b. The projection of B2 on this plane
is assigned to lie on the y-axis of the new plane. The
x-axis of R3

b is found to be normal to the y and z axes.

5. Estimate the location of all the corner points in R3
b using

trilateration.

6. The x− y coordinates of the required 2-D coordinate
system are specified by the user during the calibration
process. Either apply an affine transformation on R3

b
to get the final coordinate system, or for better accu-
racy, apply non-linear transformations to minimize er-
ror across all reference points if more than two refer-
ence points are available.

5.3 Evaluation
We evaluated our mapping process in half a dozen areas:

a kitchen and lounge space, a lab, and in four office areas.
The largest space in terms of area and number of corners
was a lounge and kitchen space, as shown in Figure 9, with a
total area of around 775 sq ft. and 10 corners. The generated
map is shown in Figure 10. Note that this process requires
all the corners to be in LOS of the three beacons. Some of
the boundaries in Figure 10 were not physical walls but were
either 1.5m tall partitions or were chosen to ensure all cor-
ners are in LOS. The results of the mapping process for the
kitchen setup and averaged across all six experimental se-
tups are shown in Table 4. Our system can determine three-
dimensional beacon location with a Euclidean distance error
of 16.1cm averaged over the three beacons, and can gener-
ate maps with room measurements with a two-dimensional
Euclidean distance error of 19.8cm averaged over all the cor-
ners. We observe that while mapping the beacons, the overall
error in the height is around 13.5cm, while the error in the x
or y coordinate is less than 4cm. This is because the height

Beacon Error (cm) Corner Error (cm)
Setup Avg. x y z Avg. Max

Kitchen 13.9 2.2 1.4 13.4 26.8 43.6
Lab 18.2 5.4 3.6 13.6 13.0 25.2

Office 1 17.5 4.6 3.5 15.0 10.7 13.9
Office 2 17.2 5.0 1.6 15.1 22.8 34.0
Office 3 15.5 2.3 1.7 11.1 18.9 40.9
Office 4 14.1 3.4 3.1 12.9 26.5 31.4
Overall 16.1 3.8 2.5 13.5 19.8 43.6

Table 4. Mapping error

of the beacons were within 1m of each other whereas they
were well separated in the x− y plane. Hence the height is
more sensitive to errors.

6 Localization and Tracking
Once the beacons are mapped, they are capable of lo-

calizing a user in the region. During the mapping phase,
as explained in Section 5.1, the user first places the mobile
phone close to one of the beacons in order to synchronize
with the infrastructure. However, we cannot expect this syn-
chronization when the system is used for localization. In a
3D space with the beacons synchronized to each other, but
not to the mobile phone, we must instead perform TDOA-
based pseudo-ranging. In the presence of 3 beacons we can-
not uniquely use trilateration to estimate the locations of the
measurement points. We assume the height of the phone is
between 0.9 and 1.2m and perform the multilateration. If
there are regions where four or more beacons are located, we
can adopt the technique in [5] to synchronize the phone to
the beacons. This is done by first determining the phone’s
position using TDOA ranging and multilateration and then
calculating the distance to at least one beacon. Since the
ultrasound transmissions are periodic, the beginning of the
TDMA cycle can be determined based on the distance to a
beacon, the TOA of the transmission in the phone’s record-
ing buffer and the time slot of the transmission. Since the
phone’s ADC has a free running clock, we can synchronize
it to the transmission cycle of the beacons by determining the
sample in the recording buffer that corresponds to the begin-
ning of the TDMA cycle. This then allows for TOF ranging
to be used instead of TDOA. To solve for the location with
only three beacons, we search through the region and find
the 3D position that gives the minimum mean square error
in TDOA for the obtained measurements. We can determine
the bounds of the region in which we should perform this
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Figure 10. Kitchen area mapping output

search based on the set of beacons where we receive BLE
data. We perform the search in an iterative manner, first on a
1m×1m grid, then 20cm×20cm and finally 2cm×2cm grid.

As can be seen in Figure 11(b), the system provides a lo-
calization accuracy within 30cm 90% of the time. However,
in situations where the user blocks one or more transmitters
while walking, or when a NLOS signal is detected, the sys-
tem cannot update the location estimate. In these situations
we make use of the Inertial Measurement Unit (IMU) sen-
sors on the phone and a motion model to track the user and
provide location updates as explained in the next section.
6.1 Implementation of Extended Kalman Fil-

ter (EKF) for Tracking
We implement an EKF to filter the location estimates of a

mobile user by utilizing the phone’s IMU sensors for track-
ing. For step count and direction we use the step count from
the iPhone’s accelerometer and the direction from the com-
pass which already fuses the magnetometer with the rate
gyros. The details of our process model and measurement
model for the EKF are given below.

Our objective is the estimate the 2-D position (xt ,yt) of
the mobile device at time t. We define the state vector as:

Xt =

[
xt
yt

]
∼N (µt ,Σt)

where µt is the expected value of Xt and Σt is the uncertainty
in the state. The EKF generates estimates of µt and Σt based
on the prediction from the previous state Xt−1 and the process
model, and then updates this estimate based on measurement
Zt and the measurement model. A time step of t = 1 is the
time a person takes for one step while walking.

6.1.1 Process Model
The input ut to this system is given by:

ut =

[
∆Dt
θt

]
with noise vt such that:

vt =

[
vD

t
vθ

t

]
∼N (0,Mt)

Mt =

[
σ2

D 0
0 σ2

θ

]
∆Dt is the step length of mobile device and θt is the heading.
The step length and heading of the mobile device can be esti-
mated from its IMU sensors and are used as input to the filter.
σ2

D and σ2
θ

are the variance in the step length and heading re-
spectively. The focus of our work is not on implementing an
accurate step length and heading estimation method, so for
our model we conservatively assumed that 2σD is 10cm and
2σθ as 45◦ (For a normal distribution 95.45% of the values
lie within 2σ of the mean)

The process model is given by[
xt
yt

]
=

[
xt−1
yt−1

]
+

[
(∆Dt + vD

t )cos(θt + vθ
t )

(∆Dt + vD
t )sin(θt + vθ

t )

]
The process model is linearized and µt and Σt are updated as:

µt = g(µt−1,ut)

Σt = GtΣt−1GT
t +Rt

where

g(µt−1,ut) = Gtµt−1 +

[
∆Dt cos(θt)
∆Dt sin(θt)

]
Gt =

[
1 0
0 1

]
Rt =VtMtV T

t

Vt =
∂g(µt−1,ut)

∂ut

Vt =

[
cos(θt) −∆Dt sin(θt)
sin(θt) ∆Dt cos(θt)

]
6.1.2 Measurement Model

Though the actual measurements from our system are the
TDOA values from the set of visible transmitters, these can
not be directly used with an EKF due to the linear approxi-
mation of the TDOA equations. Instead, we first estimate the
position using the TDOA measurements, and use this esti-
mate as our measurement. Our measurement model is given
by:

Zt =

[
xt
yt

]
+wt

wt ∼N (0,Qt)

where Zt = [x̂t , ŷt ]
T is obtained by multilateration. From Fig-

ure 11, we observe that 90% of the range errors are less than
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Figure 11. Tracking performance in the kitchen with and without obstructions. Note scale of x-axis.

30cm. We assume that the errors in the x̂t and ŷt are uncorre-
lated and assign Qt = σzI where σz = 30cm

In case one or more transmitters are blocked, or if the
phone identifies that one of the signals from the beacons is
a NLOS signal, it does not update its measurement Zt . In
this case, we assign Qt = σnI where σn is a large number,
such that the filtering effectively updates the estimate of the
location based purely on tracking.

6.2 Evaluation
We evaluated the accuracy of our system, and the localiza-

tion and tracking algorithm in the same 6 experimental envi-
ronments where we performed the beacon mapping. We used
the map that was generated by our mapping process. In each
test a user held an iPhone 5S and took approximately 30 steps
in the area. We collected data from the compass and read step
values. Ultrasonic measurements from the beacons were also
collected at every step. We analyzed the data offline using
Matlab. Results from our largest scenario (the kitchen area)
are presented in Figure 11. The Localization line refers to
position estimated based on only the ranges from the bea-
cons, the Pedestrian Dead Reckoning line refers to position
estimates purely based on the IMU sensors and the motion
model, the Localization and Tracking line refers to the out-
put of the EKF explained above. Figure 11(b) shows that
tracking does not improve the accuracy much as compared
to using only localization since the localization is much more
accurate (error less than 30cm 90% of the time) than the esti-
mates from the motion model. We then simulated situations
when the user blocks one transmitter by removing some of
the range measurements from a beacon in the data-set. The
Localization line in Figure 11(a) shows the localization es-
timates under this case. The location does not update when
insufficient measurements are received. We observe that in
such cases the system benefits from tracking, as seen in Fig-
ure 11(c), and the error is less than 50cm 90% of the time.
7 Limitations

While promising, there are still a number of open chal-
lenges with respect to ALPS. Users are required to install
three beacons per LOS location. If the beacons share the
same height then z-axis resolution will be limited. The
NLOS detection system is still environment dependent and
it can be difficult to capture a comprehensive data set. All
beacons require LOS in order to accurately determine their

distances as part of the setup process. The proposed mapping
process works for a single space covered by three beacons.
In the future, we intend to look at using tracking of the mo-
bile device as part of the mapping process to link multiple re-
gions, possibly connected by corridors or separated by walls
or doors. The power requirement of the ultrasonic transmit-
ters is still relatively high compared to BLE-only solutions,
which require larger packaging or more frequent battery re-
placement. This approach also requires two radios in order
to synchronize and communicate with mobile phones. We
believe that BLE alone could provide synchronization be-
tween beacons in the future. Another consideration is that
the system transmits in a frequency range that is audible to
animals. We believe that the duration, duty-cycle and vol-
ume of the system can be set low enough that the impact on
animals would be minimal. Some motion detectors already
operate at this frequency.

8 Conclusions
In order for indoor localization systems to gain traction,

they need to be precise and simple to install. This paper
presents a platform called ALPS that uses a combination of
ultrasound and BLE to rapidly bootstrap precise localization
in small and medium sized areas. After placing three or more
beacons on the ceiling of an area, the devices communicate
with each other and a phone app walks the user through a
calibration and mapping process. In our experiments, users
were able to map room corners and the beacon positions with
an average error of 19.8cm and 16.1cm respectively, with-
out having to manually measure any distances. They would
simply capture key locations by placing their phone as in-
structed by an app. Once the map has been generated, the
system can perform precise localization using TDOA data
from ultrasonic transmitters that utilize bandwidth just above
the human hearing range, but can still be detected by modern
smartphones. When beacons are blocked, the system is able
to continue estimating positions based on inertial data from
the phone as well as filter out NLOS signals using an SVM
classifier that looks at the ratios between BLE RSSI, ultra-
sonic RSSI and ultrasonic TOF. We designed and evaluated a
stand-alone hardware platform that is able to broadcast time
synchronized ultrasonic signals along with BLE packets.
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