
Real-Time Fine Grained Occupancy Estimation
using Depth Sensors on ARM Embedded Platforms
Sirajum Munir1, Ripudaman Singh Arora2, Craig Hesling3, Juncheng Li 4,, Jonathan Francis5, Charles Shelton6,

Christopher Martin7, Anthony Rowe8, and Mario Berges9
Bosch Research and Technology Center, Pittsburgh, PA 1,4,5,6,7

University of Michigan, Ann Arbor, MI2

Carnegie Mellon University, Pittsburgh, PA3,4,8,9

Email: {sirajum.munir1, billy.li4, jon.francis5, charles.shelton6, christopher.martin7}@us.bosch.com,
asripu@umich.edu2, craig@hesling.com3, agr@andrew.cmu.edu8, marioberges@cmu.edu9

Abstract—Occupancy estimation is an important primitive for
a wide range of applications including building energy efficiency,
safety, and security. In this paper, we explore the potential
of using depth sensors to detect, estimate, identify, and track
occupants in buildings. While depth sensors have been widely
used for human detection and gesture recognition, computer
vision algorithms are typically run on a powerful computer like
XBOX or Intel R© CoreTM i7 processor. In this work, we develop
a prototype system called FORK using off-the-shelf components
that performs the entire depth data processing on a cheaper
and low power ARM processor in real-time. As ARM processors
are extremely weak in running computer vision algorithms,
FORK is designed to detect humans and track them in a very
efficient way by leveraging a novel lightweight model based
approach instead of traditional approaches based on histogram of
oriented gradients (HOG) features. Unlike other camera based
approaches, FORK is much less privacy invasive (even if the
sensor is compromised). Based on a complete implementation,
real-world deployment, and extensive evaluation at realistic
scenarios, we observe that FORK achieves over 99% accuracy
in real-time (4-9 FPS) in occupancy estimation.

Index Terms—Occupancy Estimation, People Counting

I. INTRODUCTION

Occupancy estimation is an important primitive for a wide
range of applications including building energy efficiency,
safety, and security. Heating, ventilation, and air conditioning
(HVAC) is a major source of energy consumption in the US
as approximately 35% of the total energy in the US was
used for HVAC in 2006 [2]. Most HVAC systems operate by
assuming maximum occupancy in each room, which leads to
a significant waste of energy, e.g., an HVAC system providing
ventilation for 30 people when there are only 10 people in
a room [15]. Feeding occupancy count to HVAC systems
enables reducing such energy waste and enables zone based
heating and cooling control. When it comes to lighting control,
PIR motion sensor based solutions often turn off lights when
people are inside but not moving, and keep the lights on for
a timeout interval even after everyone leaves a room, thus
wasting energy. Estimating the number of occupants in real-
time enables addressing both issues. In emergency situations,
e.g., in a fire, an accurate occupancy estimation solution is
very useful for rescue operations. Also, in banks, museums,

kindergartens, and high schools, occupancy estimation helps
to determine whether everyone has left at the end of the day
to improve safety and security.

Several occupancy estimation solutions are available in the
market and in the literature that use break-beam sensors,
ultrasonic sensors, cameras, and thermal imagers. Break-beam
sensor based solutions do not work when multiple people
enter or leave through a door simultaneously. Ultrasonic sensor
based solutions [25] require significant training and they are
usually not pet friendly. RGB cameras are too privacy invasive
to be deployed in many settings, e.g., in office rooms, and
they do not work in the dark. Low resolution (e.g., an 8x8
pixel Panasonic GridEYE) thermal imagers do not have good
enough resolution to detect multiple people entering/exiting
simultaneously and high resolution thermal imagers are very
expensive, e.g., a 32x32 thermopile array sensor costs over
$200 (Heimann sensor[3]). Our exploratory study shows that
a depth sensing based solution can overcome these limitations
a great extent as our system can detect multiple people
entering/leaving a room simultaneously, requires almost no
training, is not as privacy invasive as RGB cameras, is pet
friendly (IR signals don’t bother pets), and works in a com-
pletely dark environment (because of the underlying properties
of the IR structured light being used in the depth sensor).
We also show how depth data has the promise for being a
lightweight biometric primitive to identify room occupants
for personalizing room environment and to track the flow of
people through a building.

To explore these ideas, we build a prototype system using
off-the-shelf components. The system is based on a Time of
Flight (TOF) sensor, more specifically a Kinect depth sensor.
We call the system FORK (Fine grained Occupancy estimatoR
using Kinect). Although Kinect has been extensively used for
human detection, skeletal tracking, and even gesture recog-
nition, our solution is different from others for two reasons.
First, most of the previous works assume that the Kinect is
placed in front of people, which is not practical in a number
of settings, e.g, in office rooms and classrooms. Our solution
places the Kinect at the ceiling (Figure 1(a)) near to a door,
which resolves this issue. This placement also helps us to
deal with occlusion. Second, instead of using a powerful978-1-5090-5269-1/17/$31.00 c©2017 IEEE

computer like XBOX, we tailor the solution to be able to run
in a low power ARM processor-based embedded computer,
e.g., ODROID-XU4 [6] (Figure 1(c)). ARM processors are
extremely weak in running computer vision algorithms. As
a micro benchmark, an occupancy estimation solution that
typically runs at 25 FPS on an Intel R© CoreTM i5 machine runs
at 2 FPS when directly ported to an ARM processor machine.
Low frame processing rate violates assumptions of existing
tracking algorithms (described in Section II-E) and requires a
novel solution with minimal computational complexity.

FORK uses a model based approach for occupancy estima-
tion with several steps. First, after preprocessing, it performs
multilevel scanning and extracts contours of potential heads.
Using the contours, it finds the minimum enclosing circles of
the contours, which provides approximate centers and radii of
the heads. Second, for each identified circles, it uses the 3D
depth data to verify whether it is an individual or not. To do so,
it uses a novel orientation invariant 3D human model that relies
on anthropometric properties of human heads and shoulders, as
these are the most prominent body parts seen from the ceiling.
Finally, FORK detects door locations and tracks individuals
to determine whether they are entering or leaving a room for
estimating number of occupants in a room. Note that FORK
doesn’t use the Kinect SDK and hence can generalize to any
depth camera with similar hardware functionality.

This work has four major research contributions. First, we
perform a comprehensive exploratory analysis to understand
the potential of depth sensors for detecting, estimating, and
tracking building occupants using low cost embedded proces-
sors. It includes the design and implementation of a novel
lightweight solution for occupancy estimation, which is the
first solution that runs on an ARM processor and does the
processing in real-time. We also investigate how different
factors affect the real-time performance of FORK. Second,
we explore how the system can be used to identify and
track occupants by extracting biometric features and using
machine learning algorithms. Third, we design the system in a
way that requires almost no training as FORK can determine
door locations automatically from the depth data. Fourth, we
have deployed nine instances of FORK at a Bosch office
and several CMU classrooms. Based on evaluation at realistic
scenarios (e.g., door opening and closing, people moving with
bicycles, cleaning lady moving with a large drum of cleaning
equipment, food caterers moving with boxes of food in hands,
people carrying laptops, people wearing caps), we see that
FORK achieves over 99% accuracy in real-time (4-9 FPS) in
occupancy estimation.

II. EXPLORATORY ANALYSIS OF DEPTH SENSING BASED
APPROACHES

In this section, we explore the potential of modern depth
sensors to detect occupancy patterns in buildings on ARM
embedded platforms. In particular, we focus on solutions for
human detection, counting, tracking, and identification as well
as the detection of other non-human objects of interest (e.g.,

(a)

(b)

(c)
Fig. 1. (a) Placement of a Kinect sensor on a ceiling. (b) Kinect sensor for
XBOX One. (c) Embedded computer Odroid-XU4.

doors). Our experiments were carried out using our prototype
system, FORK. We begin the section by describing FORK.

00:00 12:00
Mon 11

00:00 12:00
Tue 12

00:00 12:00
Wed 13

00:00 12:00
Thu 14

00:00 12:00
Fri 15

00:00 12:00
Sat 16

00:00 12:00
Sun 17

April 11-17, 2016

0

1

2

3

4

5

6

7

8

P
e
o
p
le
 C
o
u
n
t

Fig. 2. Occupancy estimation for one week

A. FORK Overview

We use the depth sensor in Kinect for XBOX One (Figure
1(b)) in this work. We choose Odroid-XU4 (Figure 1(c))
for processing as it is one of the few embedded platforms
that supports USB 3.0 that is required by this Kinect. We
upload the occupancy count over WiFi to the Sensor Andrew
[22] infrastructure, which allows monitoring of occupancy
patterns in real-time using a browser by authorized users. As
an example, Figure 2 shows how the occupancy pattern of a
conference room (Warhol) of a Bosch office changes over a
typical workweek. FORK does not store or upload any images
for privacy concerns.

An overview of FORK occupancy estimation approach is
shown in Figure 3. After doing minimal preprocessing, FORK
performs multilevel scanning, where it scans at a few potential
depth levels to detect humans. For each level, FORK extracts
contours of potential heads by ignoring the depth data below
that level. Then it verifies whether each contour represents a
real person by verifying the presence of a head and a shoulder
using anthropometric properties of a human body. FORK
tracks individuals going through a door to count number of
people inside. It also determines the location of the door.

FORK is implemented in C++. It uses OpenCV library
and runs on Ubuntu 15.04 as an application on Odroid
XU4. To access the depth frames from a Kinect, FORK uses
libfreenect2 library of the OpenKinect project. Libfreenect2
library leverages libusb library to access the USB interface.
FORK runs several modules to perform several tasks to report

Fig. 3. An overview of the FORK approach

Fig. 4. FORK software architecture

occupancy estimation information at real-time. These modules
and FORK software architecture are shown in Figure 4.
The Image Preprocessor module preprocesses depth frames.
The Background Detector module captures an approximate
background. The Door Detector module detects the location of
the door. Multilevel Scanner module is crucial for detecting
and locating humans. It has a few sub-modules for contour
detection and verifying the presence of heads and shoulders.
Once the presence of someone is verified, the People Tracker
module tracks whether he is entering or exiting through the
door and Occupancy Estimator module updates the people
count. The Update Publisher module publishes the updated
count to Sensor Andrew server [22] using XMPP communi-
cation protocol. The detailed approach is described below.

B. Preprocessing

Kinect for XBOX One produces 512x424 resolution depth
images at 30 FPS. Each pixel of a depth frame provides the
distance from the Kinect to the nearest objects in millimeters.
However, in the presence of noise, the corresponding pixel
has a value of 0. State of the art approaches [28] use median
filtering to smooth the depth image. However, we find that a
5x5 window median filtering takes 3x more computation time
than that of our entire occupancy estimation algorithm. Also,
as most noise is at the perimeter of the frame, FORK doesn’t
use median filtering by default. However, it can be configured
to do so. We evaluate FORK with and without median filtering
(Section IV-C2 and IV-C1). At the preprocessing step, we reset
noise pixels and outliers (depth too high) to floor depth. The
floor depth is computed by computing a histogram of the depth
values of a frame, where the bin with the maximum number
of depth data points is considered the floor. A preprocessed
image is shown in Figure 5(a), which shows that a portion of
a head (left person) is missing due to noise.

C. Human Detection

FORK detects humans in three steps: multilevel scanning,
head verification, and shoulder verification. These steps are

(a) (b)
Fig. 5. Preprocessed image (a). Canny edge followed by a Hough circle
transformation (b).

described below in detail.
Multilevel Scanning: The goal of this step is to determine

the centers and radii of minimum enclosing circles of all
the potential heads. Typical computer vision solution for this
purpose is to detect Canny edges followed by a Hough circle
transformation as shown in Figure 5(b). However, the Hough
circle transformation suffers significantly due to noise and
cluttered background. As shown in Figure 5(b), it detects
many false heads. Also, both processes are computationally
expensive. So, instead, we introduce a novel approach called
multilevel scanning, and determine the centers and radii of the
heads by detecting contours at different height levels (Figure
6(d)).

The average height of an adult male is about 5’7" to 5’11"
and a female is about 5’2" to 5’7". As we estimate the floor
depth (Section II-B), we start scanning depth data from 6’
(from the floor) to 2’ at 6-inch intervals. We choose these
parameters in a conservative way so that we do not miss
humans. When we scan depth data a height level, we discard
all the depth data below that level. Figure 6(a), 6(b), and
6(c) show the depth data after scanning at levels 5’, 4’6",
and 4’, respectively (discarded pixels are shown black). As an
example, when we scan at 6’, if PersonA and PersonB have
heights 6’6" and 6’1" respectively, we only see the top 6" and
1" of their heads, respectively. We find all the contours at that
depth level. For each contour, we find the minimum enclosing
circle using an iterative algorithm. The center and radius of the
minimum enclosing circle is considered the center and radius
of the head. For each detected center and radius, we verify
whether it is a person by verifying the presence of a head
and a shoulder (described next). Note that a single person can
be detected at different levels. In order to avoid this, we scan
from the top and when we verify a person at a higher depth
level, we discard all the nearby centers at lower levels.

We leverage two strategies to speed up processing. First,
when we perform multilevel scanning, it is performed out of
order. Instead of scanning from top (6’) to bottom (2’) in

(a) (b) (c) (d)
Fig. 6. Multilevel scanning at 5’(a), 4’6"(b), and 4’(c). Determining centers
and radii of heads (d).

a serial order, we scan at the top most level first and then
at the most bottom level, and then at the remaining levels.
The intuition is that if there is someone there, FORK should
capture a body at the bottom level scanning. If the bottom
level scanning returns that there is nothing there compared
to the approximate background (described next), we move on
to process the next frame. Otherwise, we scan the remaining
levels in a serial order (top to bottom) to determine the
precise location of the head. Second, we do not scan at the
levels that do not have enough depth data compared to the
background. We do not determine the exact background as
background detection often requires training and even if we
take two snapshots of the same background, they tend to vary
in depth data. We determine an approximate background
by building a histogram of depth data points at different
scanning levels (6-inch bin sizes). Each time we see a new
frame, we update the histogram by assuming that the minimum
number of depth data points seen so far at a level is from
the background, which reasonably captures the wall, door,
tables etc. in the environment. This approximate background
detection technique enables us to move on to the next frame
quickly when there is no one in the scene.

Head Verification: Given a center (cx, cy) and
a radius r of a head, the goal of this step is
to verify if there is a human head at this position.

Fig. 7. Modeling a head
using a hemi-ellipsoid.

There are two challenges to this. First,
there is a mismatch of units in (X, Y)
(measured in pixels) and Z coordinates
(measured in depth in millimeters) in
using the depth data. To deal with this,
either we transform one co-ordinate
system to another, or we build a head
model with two different types of units.
Second, the look of a head depends on
the orientation of the person. To deal
with this, either we build different models for different head
orientations and check them all, or we build an orientation
invariant head model. In order to reduce computational com-
plexity, we use a hemi-ellipsoid (top half of an ellipsoid) to
model a human head (Figure 7), which is orientation invariant.
Also, it can have two different units in the axes. An ellipsoid
in Cartesian coordinates is represented by equation (1), where
a, b, and c are the lengths of the semi axes and (cx, cy , cz) is
the center of the ellipsoid.

(x− cx)
2

a2
+

(y − cy)
2

b2
+

(z − cz)
2

c2
= 1 (1)

Since we need two different units in the axes, we set a =
b = r (in pixel co-ordinate), and we set c = 0.5 ∗D (in depth
co-ordinate), where D is the depth of a human head. Based on

the average length of a human head [5] [4], we set D = 220
mm. We set cx = cx, cy = cy, and cz = T + 0.5∗D, where T is
smallest distance between the Kinect and the head. We iterate
over the x, y values of the detected contours and use equation
(1) to compute a z value for each (x,y) and compare it with
the corresponding z value in the depth frame. If the average
difference is less than a threshold Thead, we report that a head
is detected. If Thead is too small, a small variation in a head
(e.g., a pony tail) will cause us to miss it. If Thead is too big,
something that is not a head (e.g., a box) will be reported as
a head. We analyze hundreds of GBs of data and set Thead to
40 by performing extensive empirical studies by considering
kids, people wearing turbans and caps, women with pony tails,
and movement of empty chairs, boxes and a table lamp.

Shoulder Verification: Given a center (cx, cy) and a radius
r of a head, the goal of this step is to verify if there is a
human shoulder close to this position. It is tricky to verify,
as we not only have to deal with orientation, but also with
occlusion. Because, a part of the shoulder may be occluded
due to the head (Figure 8(e)). In order to verify a shoulder, we
go through four steps. First, we consider a region of interest
(ROI) surrounding the head and the shoulder. The end-to-end
distance between the two shoulders of a person is around three
times his head’s diameter [5] and hence we choose a slightly
bigger square ROI around the head. Figure 8(a) shows one
such ROI. Second, we extract the head from it by discarding
all the depth data higher than T + D (computed in the head
verification step), as shown in Figure 8(b). Third, we subtract
the latter (Figure 8(b)) from the earlier one (Figure 8(a)) to
obtain the shoulder depth data (Figure 8(c)). Note that from
the first step, we discard all the depth data higher than T + D
+ S by setting these values to 0, where S is the depth of the
shoulder. We set S to 250 mm, as ∼10 inch depth is reasonable
enough to capture a shoulder. At step 4, we determine whether
the depth data obtained from step 3 conforms to a shoulder
by trying several techniques. For example, we detect contours
and measure a goodness of fit to an ellipse. However, this
approach suffers from occlusion (Figure 8(e), 8(f), 8(g), and
8(h)) and the surrounding environment, e.g., doors, walls, and
nearby people (Figure 8(i), 8(j), 8(k), and 8(l)). Hence, at
step 4, instead, we compute a histogram of depth data at
different height levels and check if there is at least one bin at
the shoulder depth level around the head’s position that has
enough depth data points to represent a shoulder. If there is no
shoulder, e.g., for a ball, the depth data at that position will
be close to the floor level and the bin at the shoulder level
will not have enough depth data points. The purpose of the
shoulder verification is to avoid spherical objects, e.g., balls,
balloons, and spherical lamps. For counting people, the head
verification usually suffices. However, shoulder size is a useful
feature for identifying and tracking occupants.

D. Door Detection

Many existing computer vision based occupancy estimation
solutions [30] [19] [21] [18] require training, where the door
location or the region of interest needs to be entered manually.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 8. Shoulder detection in a clear environment ((a), (b), (c) (d)), when a
head occludes a shoulder ((e), (f), (g), (h)), and when a subject is close to a
door and a nearby person ((i), (j), (k), (l)).

Our solution suggests orienting the X axis of the depth sensor
parallel to the door (shown in Figure 1(a)). We use this
constraint to determine the location of the door automatically,
in six steps. First, starting with the preprocessed image, we
do median filtering with kernel size 5 (Figure 9(a)). Second,
we discard the depth data that are very close to the ground
(within 1 foot) and 2 feet above it by replacing these with the
maximum floor depth (Figure 9(b)). It helps us by getting an
edge near the floor (marked as Special Edge, SE in Figure
9(c)) that we leverage in the subsequent steps. Third, we
detect Canny edges to increase contrast and reduce noise
(Figure 9(c)). Fourth, we perform Hough line transformation
on the Canny edges to detect straight lines (Figure 9(d)). Even
though Canny edge detection and Hough line transformations
are not computationally cheap, it doesn’t degrade the real-
time performance as door detection is performed only at the
beginning. Fifth, from the candidate Hough lines, we choose
the line having the highest accumulator vote that is most
parallel to the X axis of the depth frame. This line is shown as
grey and all other candidate lines are shown as white in Figure
9(d). We call it Door1. It is shown as line AB in Figure 9(e).
Note that someone can enter into the room from the left/right
side without crossing AB. To address this case, we add another
door called Door2, which is shown as lines CD, DE, and EF
in Figure 9(e) at the sixth step. The locations of CD, DE, and
EF are fixed for now, based on our empirical study on nine
doors. We push CD and FE as far as possible and make sure
we can see a partial head at least once at the outside. If the
door is too wide to detect AB, we set AB to be the middle
line of the frame. A trainer can update the door locations, if
needed.

E. Tracking

FORK performs two types of tracking: (i) basic tracking
to determine whether people went inside or outside through a
door to count them accurately, and (ii) biometric tracking to
identify and track individuals as follows.

Basic Tracking: When using RGB images, tracking is
usually performed by using colors and assuming that the color
of a person remains the same as he moves. When using
depth images, tracking is usually performed by assuming the
speed of an object changes smoothly in neighboring frames,
e.g., there is no big jumps in the speed or a person stays
closer to his position in the previous frame than others [28].
While these assumptions hold at a high frame rate (∼30
FPS), performance degrades when the frame rate is low.
There are other complex solutions that use a Kalman filter
and Hungarian algorithm that are not computationally cheap.
We design and implement a lightweight greedy bipartite
matching algorithm by leveraging the position, height, and
head radius of people.

Assume that we detect N and M people in the previous
and current frames, respectively. For each pair of people
(i,j), where i ∈ {1, 2, 3, ..., N} and j ∈ {1, 2, 3, ...,M}, we
normalize the distance between head centers, the difference
of head radii and heights of each pair. Then we compute a
weighted distance by using these three distances (weight: 1,
1, and 0.5, respectively). The reason for a smaller weight for
height difference is that we observe that the height of a person
varies up to 40 millimeters when he walks from one side to
the other. Then we sort the distances in ascending order and
pair them in that order. If someone j ∈ {1, 2, 3, ...,M} is not
paired, we add him in the current frame. However, if someone i
∈ {1, 2, 3, ..., N} is not paired, we do not immediately discard
him, because, it is possible that we may miss someone in a
frame and detect him in the next frame. For the missing person,
we predict the person’s current position based on his average
walking speed and direction, and update the location of the
center of his head accordingly. To do so, every time we pair,
we update average walking speed and direction of the person.

At low frame rates, someone can move a considerable
distance between consecutive frames, which impacts tracking
negatively, e.g., when someone (P1) leaves through a door and
someone else (P2) enters from the other side of the door in
the next frame. It may look like P1 has moved towards his
opposite direction and may increase/decrease the occupancy
count erroneously. As the head of P1 is missing at the current
frame, the greedy bipartite matching tries to match the earlier
frame’s P1 with the current frame’s P2. To avoid this, we
consider the walking direction and if the matching requires
a reversal of direction, we check if there is a presence of a
depth shadow of P1 in the current and previous frames at his
respective predicted positions. By depth shadow, we mean a
head is missing, but a partial body contour is seen near to
that location. If a depth shadow is present, we assume that P1

is/was there while P2 enters and we do not allow the matching.

Biometric Tracking: Every time when someone enters/ex-
its, FORK extracts 38 simple features regarding height, head
radius, shoulder size, going in/coming out, and walking speed
of the subject. More specifically, for height, FORK extracts
12 features including the minimum, maximum, average, and
exact height from the depth data when s/he is crossing Door1,

(a) (b) (c) (d) (e)

Fig. 9. Door detection. After preprocessing and median filtering (a), depth data between 1 and 2 feet from the ground (b), Canny edge detection (c), Hough
line transformation (d), and door detection (e).

Door2, and overall minimum, maximum, average, and median
height during the entrance/exit event. Similar features are
extracted regarding the head radius and shoulder size. Several
machine learning algorithms are trained using these features
to identify individuals (c.f. Section IV-D).

F. Counting

For each frame, for each person within that frame, we
determine Di, which is 1 if he is at the left side of Doori
and 0 otherwise, where i ∈ {1, 2}. To be at the left side,
someone’s head center has to be to the left of the line segment
AB for Door1, and to the left of all the three line segments
CD, DE, and EF for Door2. We increase the occupancy count
if someone’s Di is changed from 1 (at the previous frame) to
0 (at the current frame). We note the direction of the person
and if his Dj (j 6= i) is changed from 1 to 0 later, we do
not increase the count again. However, if either Di or Dj is
changed from 0 to 1 later, we decrease the occupancy count
and ignore a similar change (0 to 1) subsequently.

III. DEPLOYMENT & DATA COLLECTION

We deployed five instances of FORK at a Bosch office and
four instances of FORK at Scaife Hall on the CMU campus.
At the Bosch office, we deployed the units to cover the
main office area (requires monitoring at two entrances: main
entrance [Figure 1(a)] and a remote entrance), two conference
rooms (Warhol and Clemente), and a lab. At Scaife Hall, we
deployed the units in two classrooms (room 212 and 220)
and an auditorium (room 125), which had a double door and
required two FORK units. The size of the doors varied from
3 feet to 6 feet. The office had a 9.33 feet drop ceiling. CMU
deployments had similar heights (9.43 feet to 9.48 feet). The
units were deployed on August 24th 2015 (four instances at
Bosch), December 15th 2015 (four instances at CMU), and
January 27th 2016 (one instance at Bosch). All nine instances
were running and we kept collecting data (people count) till
June 7th 2016, when we took down the Bosch units for office
relocation. The four instances at the CMU are still running. We
have collected over nine months of occupancy data from these
deployments. We plan to analyze this long term occupancy
data to determine how we can use it for energy efficient HVAC
control in commercial spaces and academic buildings in the
future. We also collected over 750 GB of depth data from
Scaife auditorium 125 for over a week and obtained over 3.65
million depth frames containing thousands of human heads,
which was used to determine FORK model parameters. We

also collected over 250000 depth frames from the Bosch office
for this purpose.

IV. EVALUATION

We evaluate the performance of FORK in terms of its
ability of human detection, occupancy estimation at realistic
scenarios, occupant identification, and door detection. We also
compare its performance with break-beam sensors.

A. Experimental Setup

We evaluate FORK in all the nine deployment settings in
order to determine its performance in door detection. In order
to evaluate its performance in occupancy estimation, we need
the ground truth of occupancy information. We consider traffic
and door size, and choose three doors for this purpose. We
choose Bosch office main entrance (Figure 1(a)) and CMU
Scaife Hall 220 for high traffic. Both are three feet wide doors.
We choose Bosch lab door since it is a six feet wide door and
use it to evaluate how performance degrades at wider doors
(c.f. Section IV-I) and how FORK performs when multiple
people enter and exit simultaneously (c.f. Section IV-C1). Note
that ground truth is obtained by a human observer standing
around 10 feet distance from the door, who compares FORK’s
reported count with actual count in real-time without using a
video camera. We keep two human observers to make sure at
least one is present during the entire time of evaluation even
if there is no traffic and the room being monitored is empty.

B. Human Detection Performance

In this section, we evaluate the performance of FORK in
terms of its ability to detect heads, shoulders, and humans.
Even though we collected over 3 million depth frames (c.f.
Section III), since human verification requires ground truth of
the location of heads and shoulders, we use 4100 frames for
this evaluation. These frames contain a total of 2505 humans.
The ground truth of the centers and radii of their heads is
labeled by a human labeler. Assume that FORK verifies a
head at center (x1, y1). If there is a center of a human head
at a position (x2, y2) with radius r in the ground truth at that
frame and if

√
(x1 − x2)2 + (y1 − y2)2) <

r
2 , we consider it

a true positive (TP). If there are no human heads in the ground
truth with that proximity, we consider it a false positive (FP).
If FORK verifies that it is not a head and there are no heads
nearby in the ground truth, we consider it a true negative (TN).
If there is a head within that proximity in the ground truth, we
consider it a false negative (FN). Then we compute precision =

Detection Precision(%) Recall(%) F-score(%)
Head 98.10 96.51 97.30

Shoulder 88.77 99.21 93.70
Human 98.12 95.80 96.95

TABLE I
HEAD AND SHOULDER DETECTION PERFORMANCE

TP
TP+FP , recall = TP

TP+FN , and F-score =2 · precision·recall
precision+recall of

head detection. Similarly, for shoulders, when FORK verifies
a shoulder, we compare with the ground truth to see if there
is a shoulder there and compute precision, recall, and F-score
accordingly. If both the head and shoulder verification pass,
FORK reports it as a human.

We show the precision, recall, and F-score of detecting
heads, shoulders, and humans (when both head and shoulder
verification pass) in Table I. The results show high precision,
recall, and F-score of human detection. The head detection
precision and recall are very high. Sometimes the head detec-
tion fails when the heads lie near the edges of the frames. The
precision of shoulder detection is a bit low since the shoulder
verification passes sometimes when there is a door or a wall
nearby. However, in these cases, head verification reports that
there is no head, which enables us to have high precision for
human detection.

C. Real-Time Occupancy Estimation Performance

1) Comparison with state of the art: We evaluate the
performance of FORK in terms of its ability to estimate
occupancy in real-time and compare with that of state of the
art break beam sensors (All-Tag Bi-directional people counter
with display [1], costs $285 per unit). We do the evaluation
at Scaife 220 from 9:00 AM to 5:15 PM. It is a real test
for FORK as no depth data containing the occupants of this
classroom has been collected before. The way ground truth is
collected is described in Section IV-A. There are 146 entrance
events and 146 exit events. There are many realistic scenarios
that both solutions need to address, e.g., door opening and
closing, students coming with backpacks, gym bags, papers,
laptops, bike helmets hanging around the shoulders, carrying
jackets in hands, carrying paper scrapbooks, wearing head-
phones over their heads, wearing sunglasses over their heads,
wearing caps, and wearing hoodies. The performance results
are shown in Table II. FORK processes data at 9 FPS on
average (without median filtering) and detects all 146 entrance
events accurately, achieving 100% accuracy. Among 146 exit
events, it detects all the exit events accurately, except it reports
twice for one exit event, achieving 99.32% accuracy. We can
not explain why FORK makes that error as we have not saved
the images and have not changed FORK’s code to keep a
log of its analysis, which would hurt FORK’s processing rate
and its performance. If it were a post-facto analysis, we could
have identified the reason of error more easily. But then the
result would not show FORK’s real-time performance. Break-
beam sensor makes 2 errors in detecting entrance events and
makes 6 errors in detecting exit events, achieving 98.63% and
95.89% accuracy, respectively. The causes of these errors are
students peeking into classes quickly without going in, a few
students having conversation at the doorway, students playing

Events Ground
Truth
(# of
events)

FORK
(# of
events)

FORK
Accu-
racy(%)

BB (# of
events)

BB Ac-
curacy
(%)

Entrance 146 146 100 144 98.63
Exit 146 145 99.32 140 95.89

TABLE II
ACCURACY OF OCCUPANCY ESTIMATION

with the break-beam sensor out of curiosity, multiple people
leaving simultaneously counted as one, and a single person
leaving counted twice. The reason for more errors at the exit
events is that students’ arrivals are sparse when a class starts,
but a large portion of the students leave very shortly after a
class is over. Note that we mount the break-beam sensors 4.2
feet above from the ground in order to detect adults according
to the manual. Deploying it at a higher level will cause it to
miss shorter people and deploying at a lower level may cause
it to count just legs. We notice that deploying it at such a
level may not be robust, as people carrying backpacks can hit
the sensors inadvertently, especially in a narrow door. For a
wider door, break-beam sensors can not detect multiple people
entering/leaving simultaneously, as shown below.

In order to see how FORK and break-beam sensors perform
when multiple people enter/exit simultaneously, we perform a
controlled experiment. We ask 2, 3, 4, and 5 people to enter,
exit, and cross each other 10 times each through a 6-foot wide
door (Bosch lab door). The subjects are asked to stay as close
as possible. The heights of the people are 5’6", 5’7", 5’7",
5’8", and 6’ (in order of their appearance in the scenario).
FORK runs without median filtering at ∼9 FPS. The way
ground truth is collected is described in Section IV-A. The
Break-beam sensor is mounted at the same height as before.
The percentage of times when FORK and the break-beam
sensor accurately count all the people entering and exiting
are shown in Table III. It shows that FORK performs much
better than the break-beam sensor if the door is wider and
several people enter and exit simultaneously. FORK achieves
100% accuracy when multiple people enter/exit simultane-
ously. However, the performance degrades when people cross
each other. This is because when people cross, they reach the
edge of the door during crossing, which contains noise and
that makes it hard to see heads. Also, the tracking algorithm
makes mistakes when multiple people bump into each other
simultaneously. The break-beam sensor only counts accurately
when people enter/exit one-by-one. Multiple people aligned
across the door are counted as one during entering and exiting.
When people cross each other, it becomes non-deterministic.
This particular break-beam sensor has a bidirectional count
and in 62.5% of cases when people cross each other, neither
the entering nor the exiting counter is increased. In other cases
when people cross, it either counts the entering or the exiting
people, but not both and even then multiple people aligned
across the door are counted as one.

2) Performance at a low frame rate: We perform median
filtering, which throttles FORK’s processing rate to 4 FPS
and evaluate its performance in occupancy estimation in real-
time. We evaluate it at the Bosch main entrance (Figure
1(a)) from 12:00 PM to 6:15 PM on a work day. Note

of People Event FORK Accuracy
(%)

BB Accuracy (%)

2 Entrance 100 0
2 Exit 100 10
2 Crossing 100 10
3 Entrance 100 0
3 Exit 100 0
3 Crossing 90 0
4 Entrance 100 10
4 Exit 100 10
4 Crossing 80 0
5 Entrance 100 0
5 Exit 100 0
5 Crossing 90 0

TABLE III
PERFORMANCE AT MULTIPLE PEOPLE WALKING SIMULTANEOUSLY

Events Ground Truth
(# of events)

FORK (# of
events)

FORK
Accuracy(%)

Entrance 207 207 100
Exit 235 232 98.72

TABLE IV
OCCUPANCY ESTIMATION AT A LOW FRAME RATE

that median filtering is not needed here as the depth data
is not so noisy and we see a similar performance without
median filtering. The way ground truth is collected is described
in Section IV-A. FORK deals with many realistic scenarios
during the evaluation including door opening and closing,
arrival of visitors, arrival of food caterers with boxes of food
in hands, multiple people walking together, people moving
with bicycles, people carrying laptops in their hands, people
walking while drinking water from a bottle, people walking
while talking on a phone, people waving hands over their
heads, people wearing regular caps, and the arrival of a
cleaning lady with a large drum of cleaning equipment. The
result of occupancy estimation is shown in Table IV. FORK
detects all 207 entrance events accurately and achieves 100%
accuracy. Among 235 exit events, FORK detects 232 of them
and achieves 98.72% accuracy. The three cases that FORK
misses are when two interns try to fail the system by jumping
together to exit (counted as one), when someone walks out
extremely fast, and when someone covers his head by waving
hands to defeat the system. The average accuracy is 99.36%.

D. Occupant Identification Performance

In order to determine if FORK can identify room occupants
(who entered/left), we ask 11 subjects to go through a door and
come back 10 times each. This provides us 11 · 2 · 10 = 220
data points with ground truth that are used in this post-facto
analysis. Every time when someone enters/exits, we extract 38
simple features as described in Section II-E. We perform a 10
fold cross validation using these features of 220 entrance/exit
events and obtain 97.27% accuracy in occupant identification
using the Naive Bayes classifier. The accuracy is 95%, 96.36%,
and 98.18% for multilayer perceptron, random forest, and K*
classifiers, respectively. In order to see how much training is
needed, we vary the number of training instances from 1 to
18 and show occupant identification accuracy of the rest of
the data in Figure 10 for all these four approaches. It shows
that with only 6 samples, the accuracy is over 80% for all of
the approaches with K* classifier reaching 91.56% accuracy.
With 10 samples, all the classifiers reach over 90% accuracy.

Fig. 10. Accuracy of occupant identification.

K* reaches 100% accuracy with 17 training samples. It shows
a great potential for personalizing room environment, e.g.,
room temperature, light intensity by identifying individuals in
a medium sized office. Coupled with building floorplan and
multiple hypothesis testing, these features can also be used for
tracking individuals throughout a building in real-time, which
we leave to future work.
E. Door Detection Performance

In this section, we evaluate the performance of FORK in
detecting doors. We collect data from all nine deployments
and use 40000 frames for this evaluation. We consider door
sizes from 3 feet to 6 feet, door opening and closing, keeping
the door open and closed, doors with both (left, right) sides
seen as well as one side unseen by FORK (12 feet double door
in Scaife 125). We do not require keeping the space empty for
door detection. In fact, people keep walking in these frames
while we detect doors. As discussed in Section II-D, lines CD,
DE, and EF are fixed for now. In this evaluation, we try to
determine how accurate we are in detecting line AB.

The results are shown in Table V. It shows that FORK can
detect doors with 100% accuracy in most instances. FORK is
usually not affected by people walking through the doorway
as it only considers data points between 1 and 2 feet from the
ground. However, if they stand in a way that obstructs a nearby
wall/door so that Canny edge detection doesn’t produce special
edge SE, FORK can’t find the exact line AB. Also, people’s
movement may cause the line AB to angle a bit especially if
FORK can’t see the other side of the door (if the door is too
wide or the edge produced by the wall is too short). Usually
it is not inaccurate enough to affect occupancy estimation.
However, we can overcome this limitation by detecting doors
in several frames followed by a voting. Sometimes objects
in the scene can affect door detection performance. In Scaife
classrooms 212 and 220, there was a chair placed in a way that
blocked SE and in 220 there was a half pad chair placed on
the other side of the door that produced a stronger edge than
the wall and caused inaccuracies. Even if someone verifies the
door detection and updates if needed, the effort is minimal.
F. Impact of Different Factors on Execution Time

In this section, we demonstrate the impact of processors,
OpenKinect driver, and number of people on FORK’s execu-
tion time. We show the performance in terms of frame rate
(number of frames processed per second) instead of execution
time, as frame rate captures the real-time processing ability.

Door #of Frames Accuracy(%)
Lab 5000 100
Warhol 5000 100
Clemente 5000 100
Main Entrance 5000 100
Remote Entrance 5000 100
Scaife 212 2000 94.45
Scaife 220 3000 93.57
Scaife 125 (left) 5000 100
Scaife 125 (right) 5000 100

TABLE V
ACCURACY OF DOOR DETECTION

Fig. 11. Frame rate on different processors.

Impact of different processors: In order to show how fast
FORK processes, we also benchmark performance on Intel R©

CoreTM i5 and CoreTM i7 processors. We use the collected data
from Scaife auditorium 125 (c.f. Section III) in this analysis.
We choose 2000 frames containing a dense scenario, where
over 40 students came out from the auditorium in only 2.75
minutes. Figure 11 shows the processing rate (Frames Per
Second) when the same solution is run on ARM v7 (in Odroid
XU4), Intel R© CoreTM i5, and Intel R© CoreTM i7 processors.
We run the same program 10 times in each machine and show
the average result. Note that hardware configurations (eMMC
card in ARM v7 vs. SSDs in the others) and operating systems
(Ubuntu 15.04 on ARM v7 vs. Ubuntu 14.04 on CoreTM i7 vs.
Mac OSX 10.10.1 on CoreTM i5) are not exactly same in all
three. Still it shows the fact that FORK is extremely fast as it
processes at 144.05 FPS, 131.62 FPS, and 53.2 FPS on CoreTM

i7, CoreTM i5, and ARM v7 processors, respectively, when
no one is in the scene. When there are people, it processes
at 102.88 FPS, 96.93 PFS, and 34.08 FPS on average on
CoreTM i7, CoreTM i5, and ARM v7 processors, respectively.
It shows that FORK is extremely fast (102.88 FPS) compared
to existing computer vision based people counting solutions
that can process about 30 FPS on CoreTM i7 processors.

Impact of the driver and of feeding sensor data in
real-time: We use the OpenKinect driver to access the depth
frames with no change in the driver code. We see a significant
impact of the driver in the FORK’s processing rate due to
processing and filtering pixels at different stages, buffering,
and I/O by OpenKinect. In order to see the impact of the
driver, we feed real-time depth data using the Kinect and skip
all the processing after getting a depth frame. In that case, an
ARM v7 processor can process only at 13.36 FPS, which is
much lower than 30 FPS in the Kinect specification. It is 98.4
FPS for an Intel R© CoreTM i5 processor. In another test, when
we do all the subsequent processing, FORK runs ∼5x slower
in an ARM v7 processor when depth data is fed from the
sensor in real-time compared to when (previously collected)

Fig. 12. Frame rate with different people count.

stored depth frames are fed from an eMMC card (9.7 FPS vs
50.2 FPS). In several works [28] [10] [30] [26], frame rate
is computed by analyzing stored images. It shows that frame
rate computed in such a way is not the same as that of feeding
depth data from the sensor in real-time.

Impact of number of people: When there are more people
in the field of view, FORK’s frame rate degrades as they
require more head and shoulder verification. Figure 12 shows
how frame rate varies when the number of people are changed
from 0 to 13. When median filtering is not used, FORK
processes at 8.9 FPS when no one is in the field of view.
When there are 13 people, the frame rate drops to 4.3 FPS,
which is still good enough to detect and track people. However,
when median filtering is used, FORK can only process at 4
FPS when no one is there. With 6 or more people in the field
of view, the frame rate drops below 3 FPS, which degrades
its real-time ability of occupancy estimation as shown in an
experiment below.

G. Impact of Frame Rate on Occupancy Estimation

We evaluate the performance of FORK at different frame
rates. We collect data at 20 FPS from the Bosch lab door
deployment and use 9000 frames in this evaluation. We ask
the participants to go wild as they cover their heads while
walking, wave their hands, shake their heads back and forth,
run fast, move table lamps and empty chairs, and stand still
for a while near the door. There are 75 entrance and 75 exit
events. We vary the frame rate from 20 to 0.5 FPS and show
how that affects precision, recall, and F-score of occupancy
estimation in Figure 13. At 4 FPS, the precision and recall
are 94.23% and 98%, respectively. At 3 FPS, the precision
and recall are 96.64% and 96%, respectively. It shows that we
can estimate occupancy with high precision and recall with a
cheaper depth sensor having a lower frame rate.

H. QoS Parameters and Real-time Analysis

FORK is a soft real-time system. Its performance depends
on application requirement, e.g., occupancy estimation accu-
racy, selection of hardware within the cost budget. Frames
are processed as fast as possible, where the achieved frame
processing rate depends on several parameters, including
the number of individuals being tracked. Formally, the time
needed per frame consists of:

• Data acquisition and transfer time: It depends on image
size and it is constant.

Fig. 13. Performance at different frame rates.

• Preprocessing time: It depends on image size and it is
constant.

• Time for multilevel scanning: If there is no one in the
scene, it is constant. Otherwise, it depends on number of
people in the scene.

• Time for verification of head/shoulder: It depends linearly
on the number of individuals detected.

• Time for tracking individuals: It depends linearly on all
pair combinations of number of individuals of this frame
and of the previous frames.

So, the time for processing a frame (T) consists of a
constant part (T0) and a part that is roughly proportional
to the number of individuals (N) and can be estimated as
T ≈ T0 + p · N seconds. The frame rate (FPS) is 1/T ≈
1/(T0 + p · N). Figure 12 suggests that T0 is 1/8.9 second
without median filtering and 1/4 second with median filtering.
Also, it shows that p is (1/4.3 - 1/8.9)/13 = 0.00925 second
per person without median filtering and (1/2.58 - 1/4)/13 =
0.0105 second per person with median filtering. p is slightly
smaller without median filtering as depth values of some pixels
are reported zeroes due to noise and hence ignored during
the head-verification process, which saves a little computation
time.

In addition to detecting individuals, FORK requires an
individual to be seen on sufficient number of frames to enable
reliable counting. As long as only a single person is in the field
of view, a minimum of two frames showing the individual on
each side of the door is sufficient. However, with more people
entering or leaving simultaneously and more than one door,
more frames are needed for the bipartite matching algorithm
to track individuals reliably. Also, it depends on location of the
doors, location of individuals, and the number of consecutive
frames FORK misses detecting them. Based on the log of a
FORK unit deployed at Scaife Hall classroom 220, we see that
FORK tracks an individual around 17 frames (median value)
during the entire path of the individual. It processes depth
data around 9 FPS. Hence, it sees a person for 1.89 seconds
to enter/exit. If a FORK unit processes frames at K FPS, it
will see him/her for K· 1.89 frames to enter/exit.

When FORK takes too long to process frames, this man-
ifests as a loss of its performance (i.e. counting accuracy).
Increasing the number of individuals lowers the frame pro-
cessing rate (c.f. Figure 12) and at the same time requires
processing at a higher frame rate. We can therefore expect
FORK’s performance to drop abruptly when the frame rate

Fig. 14. Performance at different door sizes

falls below a certain threshold. From Figure 13, this threshold
can be estimated to be around 3 FPS. We suggest future depth
sensing based people counting systems to process frames at 5
FPS or higher for having good performance consistently.

I. Impact of Door Size

In this section, we describe how door size affects the
performance of FORK. Kinect v2 has a 70.6 degrees of
horizontal field of view (FOV). If it is mounted 9 feet high,
it can see a 2 · 9 · tan(70.6/2) = 12.74 feet wide door at
the floor level. However, since the FOV is angular and FORK
requires the head to be seen, for a six feet tall person, in
order to keep his head within the angular FOV, the door size
becomes limited to 2 · (9-6) · tan(70.6/2) = 4.25 feet. Actually
FORK can cover a bit wider door since it can detect partial
heads and when people enter/exit through the edges of a door,
they cross door lines CD or EF that are within this range.
To determine how performance degrades for a wider door, we
consider a six-foot wide door (Bosch lab door). It has a 9.3-
foot drop ceiling and the Kinect is mounted at 8.9 feet from the
ground. We consider 10 individuals of varying heights from
5’3" to 6’1" asking each to walk in and walk out 10 times
each along straight lines that are 6 inches apart across the
door. There are 13 lines and each individual generates 20 · 13
= 260 data points. Overall 208075 depth frames are collected
for analysis. The box plot of the accuracy of entrance and
exit events of all the individuals at different distances from
the center of the Kinect co-ordinate system (marked as 0) is
shown in Figure 14. This analysis reveals several interesting
findings. First, we see that the accuracy is 100% at the middle
and it starts to degrade at 2.5 feet from the center of the Kinect,
which suggests that the performance of FORK will degrade
for a door wider than 5 feet (for this mount height). There
are two reasons for this: noise and missing heads. There is a
significant amount of noise at the edges and sometimes even
though the head is in the frame, it can’t be seen due to noise
(there is a big hole in the head). The noise can be asymmetric
as we see more noise at the left side. Second, we see that
FORK can detect shorter (height < 5’5”) and slender people
with 100% accuracy even at the edges of the door. Short and
slender people generate less noise. It suggests mounting the
Kinect at a higher altitude, if possible. Taller people (height
>5’9") not only produce more noise, but their heads are unseen
near the edges of the door. Third, we suggest two ways to deal
with noise: using median filtering at the edges of the frame

(doing such in the entire frame is computationally expensive)
and relaxing the error threshold Thead at the door edges. We
use median filtering in this analysis. Relaxing Thead too much
(> 55) causes false positives and hence is not suggested.

V. DISCUSSIONS AND FUTURE WORKS

Currently, each FORK unit costs around $260 ($99 for a
Kinect, $49 for a Kinect adapter, $74 for an Odroid, $24 for
an 8GB eMMC card, and $10 for a WiFi dongle). A major
portion of the cost is due to the high price of Kinect and its
adapter. However, depth sensors have been rapidly decreasing
in price as new ones become available on the market, e.g.,
Intel R©’s RealSense and Texas Instrument’s OPT8241 TOF
sensor (costs <$60). They will be cheaper if we build one
with a lower frame rate and lower resolution. FORK is more
appropriate for estimating occupancy in commercial spaces,
academic buildings, restaurants, and shopping centers for its
cost. Hence, we evaluated FORK in one Bosch office and
in one CMU campus building. Also, with this cost and high
accuracy, FORK is useful for collecting "almost" ground truth
for developing other solutions of occupancy estimation.

Even though FORK does not store or upload any depth
image for privacy issues, biometric tracking can lead to privacy
concerns. However, biometric tracking can be disabled, if
needed. Note that FORK is not privacy invasive in a large
space, e.g., in a shopping center, as there are many people
with similar body shape there.

We could not analyze the huge amount of data we collected
due to lack of resources. We plan to use the data for future
projects. The FORK system has not been tested with infants
and pets, which are important to detect for emergency re-
sponse. We consider it future work. FORK requires almost no
training for counting people as it can configure itself automati-
cally by detecting door positions. However, for identifying and
tracking individuals, it requires a little training. In the future,
we will explore unsupervised machine learning algorithms to
identify and track individuals. Also, in the future, we plan to
use the depth sensor to determine objects that people carry
while entering/exiting rooms, e.g., backpacks, laptops, boxes,
and even guns, which will improve safety, security, and energy
efficiency (e.g., someone leaving his office with a backpack
around 5 PM may mean he is leaving for the day, whereas
if he is leaving with a laptop it may mean he is going out
for a meeting, and leaving empty handed may mean that he is
leaving for a restroom break) using deep learning techniques.
If a carefully designed model is built using a powerful machine
in prior and ported to an embedded platform, the classifier can
be run on the embedded platform to detect objects at real-time.

VI. RELATED WORK

In this section, we review some of the most relevant
techniques for occupancy estimation.

Break-Beam sensors: When using break-beam sensors,
a pair of IR transmitters and receivers is placed across a
door. The transmitters continuously transmit IR beams and
if someone passes through the door, the receivers notice that

the beams are broken. Based on which receiver observed
the broken beam first, it can determine whether someone
is entering or leaving. However, if multiple people move
simultaneously (in the same direction or opposite direction),
the occupancy estimation becomes inaccurate. Also, break-
beam sensors can not be used for biometrics.

Ultrasonic sensors: Doorjamb [16] uses ultrasonic range
finders mounted above a doorway to detect people. It can
differentiate people by measuring their heights. However, it
can not detect when two or more people simultaneously
cross a door. [25] uses a wide-band transmitter to generate
ultrasonic chirps and uses a microphone to detect changes in
the reverberation to estimate the number of occupants in a
room. In order to build a regression model for reverberation
specific to a room, the system needs to be trained with the
room empty as well as with several occupancy levels. Note
that ultrasonic solutions are usually not pet friendly.

IR Array sensors: Conventional PIR motion detectors can
detect human presence, but can not count the number of
people. [20] places two sets of four PIR sensors to build a PIR
sensor tower and use the analog signals from the PIR sensors
to localize and classify a moving object. However, it can not
deal with the case when multiple people move together.

Depth cameras: Depth cameras, especially the Kinect,
have been used to detect, track, and count people by horizontal
placement [28] [17] [10] and vertical placement [30] [26]. [26]
uses a feature based approach, where it uses depth data to
extract HOG features of the head and shoulder, and uses a
SVM classifier for detecting pedestrians. [28] uses a model
based approach to detect humans. To determine the possible
positions of the heads, it uses Canny edge detectors to find all
edges in the depth array and uses that to do a 2D chamfer
distance matching with a binary head template. We avoid
Canny edge detection in our solution because of its high
computational complexity. [30] mounts Kinect vertically and
finds local minimum regions in the depth image to detect
humans as heads are closer to the camera than other parts
of the body in this setting. However, it is not clear how it
will behave if other objects (e.g., a box, a chair, or a ball) are
moved under the Kinect since there is no specific checking
for verifying a human head. Also, a number of these solutions
[17] [10] [26] use powerful machines (e.g., Intel R© CoreTM i7
processor) and/or high frame rate (around 30 FPS) for counting
people whereas we tailor our solution for a low power ARM
processor-based machine using depth data at a low frame rate,
even at 4 FPS.

RGB cameras: A number of solutions [23] [19] [31] [29]
[21] [18] [7] [12] use RGB video cameras for counting people.
Several of these solutions [21] [18] [7] [12] assume that all
the moving objects are people. To address that limitation, [31]
counts people by detecting their faces, which is very privacy
invasive compared to our solution. To detect individuals,
[9] uses a flexible shape model [8] to track the silhouette
of a walking pedestrian. However, [8] assumes that objects
do not overlap and a reasonable proportion of the objects
are not occluded. To deal with overlapping and occlusion,

multiple cameras are used [11], cameras are mounted ver-
tically looking downwards [21] [18] [7] [12]. Model based
approaches [23] [19] use models to detect individuals, e.g.,
in [19], pedestrians are modeled as rectangular patches with
an assumption that each patch is moving with a constant
velocity. Feature based approaches use training based on local
features, e.g., histograms of oriented gradient (HOG) [13],
oriented histograms of differential optical flow [14] to detect
humans. Although the reported accuracies of human detection
are high for these approaches, RGB image-based approaches
encounter difficulties when the background is cluttered, low
illumination, or human subjects have articulated poses. In
these cases, either the accuracy drops or the computation cost
increases. Depth camera based approaches do not have such
problems since a human body has to occupy a space regardless
of the background or illumination state.

There are a few works [24] [27], where ARM processor
computers are used to process RGB images. FORK is the
first system that processes depth data in an ARM processor.
RGB cameras/webcams are relatively inexpensive than a depth
sensor. However, RGB cameras expose privacy risks if they are
compromised when connected to the Internet. FORK is not as
privacy invasive even if compromised as a depth sensor does
not reveal the color of the clothes, skin, and hair. Also, it is
hard to determine the type of clothes occupants are wearing
using a depth sensor mounted in a ceiling as in FORK.

VII. CONCLUSIONS

In this work, we perform an exploratory study to under-
stand the potential of depth sensors for detecting, estimating,
and tracking building occupants. We specifically address the
computational complexity issue so that the entire solution
can be run on a cheaper and low power ARM processor in
real-time. We evaluate and test the exploratory ideas using
our prototype system FORK, which achieves over 99% ac-
curacy in occupancy estimation at realistic scenarios. We also
demonstrate the potential of identifying and tracking occupants
with depth sensors using biometric features. Our extensive
evaluation reveals the impact of processors, OpenKinect driver,
and number of people in the field of view in the real-time
performance of FORK. Our analysis demonstrates that a low
frame rate depth sensor is sufficient for this application, which
motivates manufacturers to build such and thus helps lower
the cost of depth sensors. If depth sensors become cheaper in
the future, this work serves an exploratory study to develop
depth sensing based real-time systems on ARM embedded
processors.

VIII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and shep-
herd for the insightful suggestions. This work was supported,
in part, by DOE grant DE-EE0007682. The opinions expressed
here are those of the authors and do not necessarily reflect the
views of the DOE.

REFERENCES

[1] Break beam sensors from all-tag. http://all-tag.com/product-items/
display-counter-bi-directional/.

[2] EIA. http://www.eia.doe.gov/.
[3] http://www.heimannsensor.com/products_imaging.php.
[4] Human engineering design data digest. http://www.acq.osd.mil/rd/hptb/

hfetag/products/documents/HE_Design_Data_Digest.pdf.
[5] Human figure average measurements. http://www.fas.harvard.edu/

~loebinfo/loebinfo/Proportions/humanfigure.html.
[6] Odroid XU4. http://www.hardkernel.com/main/products/prdt_info.

php?g_code=G143452239825.
[7] J. Barandiaran, B. Murguia, and F. Boto. Real-time people counting

using multiple lines. In WIAMIS, 2008.
[8] A. Baumberg and D. Hogg. Learning flexible models from image

sequences. In ECCV, 1993.
[9] A. Baumberg and D. Hogg. An efficient method for contour tracking

using active shape models. In IEEE Workshop on Motion of Non-Rigid
and Articulated Objects, 1994.

[10] E. Bondi, L. Seidenari, A. Bagdanov, and A. Del Bimbo. Real-time
people counting from depth imagery of crowded environments. In AVSS,
2014.

[11] Q. Cai and J. Aggarwal. Tracking human motion using multiple cameras.
In ICPR, 1996.

[12] T.-H. Chen and C.-W. Hso. An automatic bi-directional passing-people
counting method based on color image processing. In ICCST, 2003.

[13] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005.

[14] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented
histograms of flow and appearance. In ECCV, 2006.

[15] V. L. Erickson, M. Á. Carreira-Perpiñán, and A. Cerpa. Observe:
Occupancy-based system for efficient reduction of HVAC energy. In
IPSN, 2011.

[16] T. W. Hnat, E. Griffiths, R. Dawson, and K. Whitehouse. Doorjamb:
Unobtrusive room-level tracking of people in homes using doorway
sensors. In ACM SenSys, 2012.

[17] C.-T. Hsieh, H.-C. Wang, Y.-K. Wu, L.-C. Chang, and T.-K. Kuo. A
kinect-based people-flow counting system. In ISPACS, 2012.

[18] J. W. Kim, K. S. Choi, B. D. Choi, and S. J. Ko. Real-time vision-based
people counting system for security door. In International Technical
Conference on Circuits/Systems Computers and Communications, pages
1416–1419, 2002.

[19] O. Masoud and N. Papanikolopoulos. A novel method for tracking and
counting pedestrians in real-time using a single camera. IEEE TVT,
50(5):1267–1278, Sep 2001.

[20] S. Narayana, R. V. Prasad, V. S. Rao, T. V. Prabhakar, S. S. Kowshik,
and M. S. Iyer. PIR sensors: Characterization and novel localization
technique. In IPSN, 2015.

[21] M. Rossi and A. Bozzoli. Tracking and counting moving people. In
ICIP, volume 3, pages 212–216, Nov 1994.

[22] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. Garrett,
J. Moura, and L. Soibelman. Sensor andrew: Large-scale campus-wide
sensing and actuation. IBM Journal of Research and Development,
55(1.2):6:1–6:14, Jan 2011.

[23] J. Segen and S. Pingali. A camera-based system for tracking people in
real time. In ICPR, 1996.

[24] S. Shah. Real-time image processing on low cost embedded computers.
Technical Report UCB/EECS-2014-117, EECS, UC Berkeley, 2014.

[25] O. Shih and A. Rowe. Occupancy estimation using ultrasonic chirps. In
ICCPS, 2015.

[26] Q. Tian, B. Zhou, W. hua Zhao, Y. Wei, and W. wei Fei. Human
detection using HOG features of head and shoulder based on depth
map. JSW, 8(9):2223–2230, 2013.

[27] W. Wolf, B. Ozer, and T. Lv. Smart cameras as embedded systems.
Computer, 35(9):48–53, 2002.

[28] L. Xia, C.-C. Chen, and J. Aggarwal. Human detection using depth
information by kinect. In CVPRW, 2011.

[29] D. Yang, H. Gonzalez-Banos, and L. Guibas. Counting people in crowds
with a real-time network of simple image sensors. In ICCV, 2003.

[30] X. Zhang, J. Yan, S. Feng, Z. Lei, D. Yi, and S. Li. Water filling:
Unsupervised people counting via vertical kinect sensor. In AVSS, 2012.

[31] X. Zhao, E. Delleandrea, and L. Chen. A people counting system based
on face detection and tracking in a video. In AVSS, 2009.

