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Abstract

Simulation is an invaluable tool for radio-frequency
system designers that enables rapid prototyping of vari-
ous algorithms for imaging, target detection, classifica-
tion, and tracking. However, simulating realistic radar
scans is a challenging task that requires an accurate model
of the scene, radio frequency material properties, and
a corresponding radar synthesis function. Rather than
specifying these models explicitly, we propose DART —
Doppler Aided Radar Tomography, a Neural Radiance
Field-inspired method which uses radar-specific physics
to create a reflectance and transmittance-based rendering
pipeline for range-Doppler images. We then evaluate DART
by constructing a custom data collection platform and col-
lecting a novel radar dataset together with accurate posi-
tion and instantaneous velocity measurements from lidar-
based localization. In comparison to state-of-the-art base-
lines, DART synthesizes superior radar range-Doppler im-
ages from novel views across all datasets and additionally
can be used to generate high quality tomographic images.1

1. Introduction
Driven by advances in the automotive industry, miniatur-
ized millimeter wave (mmWave) radar chips are becoming
cheaper and more ubiquitous. Boasting a high range reso-
lution and the ability to penetrate light materials, mmWave
radars have proven effective in many application domains
including collision avoidance and driver assistance in au-
tomobiles [14, 36, 57, 64, 65], through-occlusion imaging
in airport scanners [30, 68], and vision-denied tracking and
mapping [2, 9, 22, 37, 43].

Because designing, testing, and deploying new radar sys-
tems in the real world can be costly, many rapid prototyping
pipelines heavily rely on simulation. Modern radar simula-

*Equal Contribution.
1Our implementation, data collection platform, and collected datasets

can be found via our project site: https://wiselabcmu.github.
io/dart/.

Figure 1. DART uses scans from a handheld radar to learn an
implicit tomography of a scene in order to accurately render scans
from novel viewpoints (left). DART’s implicit tomography can
also be sampled to map the radar properties of a scene (right).

tion tools normally require the user to manually specify the
geometry and characteristics of the scene, including all ma-
terial properties [3]. While other sensors (e.g. lidar) can be
used to scan an environment and produce a mesh or voxel
map, they cannot capture radar-specific material properties
that are crucial for generating realistic radar scans. Thus, in
practice, this results in greatly simplified environment mod-
els due to the difficulty of meticulously surveying a scene
and generating (or annotating) a model by hand.

We envision a more intelligent, data-driven approach to
scene modeling for radar simulation where a user can carry
a handheld radar sensor through a static environment and
automatically generate a model suitable for accurate simu-
lation of that environment. To this end, we frame the radar
simulation problem as one of novel view synthesis: using
several radar measurements of a scene to simulate what a
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radar would see from a new pose. Such a system would
not only accelerate the development and testing of new al-
gorithms across a variety of environmental conditions, but
also open the door to a myriad of new inference techniques
in radar sensing such as localization, mapping, imaging, and
recognition which rely on accurate forward rendering mod-
els and could greatly benefit from realistic radar models.

Novel View Synthesis Neural Radiance Fields (NeRFs)
[48] have revolutionized novel view synthesis, leading to an
explosion in interest in graphics and beyond. By leverag-
ing a (neural) implicit scene representation instead of ex-
plicitly modeling scene geometry, textures, and materials,
NeRFs are able to capture and reproduce visual intricacies
such as specularity, translucency, reflections, and complex
occlusions. This results in a 3D scene capture and rendering
system that boasts an unprecedented level of photorealism.

Drawing inspiration from the success of NeRFs, we for-
mulate an analogous problem for mmWave radar imaging.
Our method, Doppler-Aided Radar Tomography (DART),
takes a similar approach by implicitly capturing material
properties from input scans which are reproduced when the
model is sampled from a novel viewpoint. Though our
model is implicit, we can also generate an explicit tomo-
graphic image by sampling along a voxel grid, which we
use to show that DART is not simply memorizing the in-
put data, but is in fact learning the geometry and material
properties of the scene (Fig. 1).

Key Challenges Applying NeRF’s implicit scene model-
ing paradigm to the radar domain presents substantial chal-
lenges. We derive a rendering model from the ground up
that appropriately reflects the unique nature of radar wave
propagation. In NeRF, rendering each pixel involves inte-
grating samples along a 1D ray, following a pinhole cam-
era model [48]. However, radar waves propagate radially
from the antenna. Even after range-azimuth-elevation pro-
cessing, each radar pixel corresponds to a coarse 2D re-
gion of space, as the elevation-azimuth resolution of com-
pact mmWave radars tends to be relatively poor2. One key
insight is to choose a radar representation space — range-
Doppler — which greatly reduces angular ambiguity in one
dimension under the assumption that the scene is static
and the radar is moving with a known velocity [26]. This
presents additional systems challenges, as the sensor plat-
form needs to be moving and its velocity must be measured
accurately alongside its position and orientation.

Even with the dimensionality reduction afforded by
range-Doppler processing, rendering a single radar pixel in-
volves integrating samples along a circle, rather than a ray

2For context, these radars have angular resolutions on the order of 15◦,
orders of magnitude worse than cameras (≈0.01◦) [58, 76]

Figure 2. NeRF’s pinhole camera model renders a pixel (left)
by integrating along a ray (right, green), while DART’s range-
Doppler model renders a pixel (middle) by integrating along a
velocity-dependent (right, blue) circle (right, red).

(Fig. 2). However, appropriately capturing occlusion ef-
fects requires that the nearest ranges are processed first due
to occlusion caused by objects closer to the radar. Addi-
tionally, the size of the integration arc grows as the distance
from the radar increases, resulting in an effective decrease
in sampling density for points further from the radar that
needs to be accounted for. Through careful modeling of
these effects and a clever sampling scheme prioritizing sam-
ple re-use, we derive a computationally efficient forward
rendering function that produces realistic novel radar scans.

Contributions We propose DART: Doppler-Aided Radar
Tomography, which implicitly learns a tomographic repre-
sentation of the world in order to accurately synthesize radar
range-Doppler images. To summarize our contributions:
1. We formulate the problem of radar novel view synthesis

from implicit reflectance and transmittance maps using
range-Doppler images.

2. Using a NeRF-inspired technique, we explicitly formu-
late the forward rendering of range-Doppler radar im-
ages and implicitly invert it using gradient descent to
learn a neural-implicit representation.

3. We construct a data collection rig and collect novel radar
imaging datasets with accurate position and instanta-
neous velocity along with reference lidar point clouds.

4. We evaluate DART across a range of scenarios and show
that it out-performs the state-of-the-art, quantitatively
and qualitatively, in both its synthetic radar renderings
and its implicit imaging of scenes.

Limitations Since we rely on Doppler, our method is lim-
ited to static scenes, and requires accurate velocity estimates
and a constantly moving radar. While motion is intrinsic to
our method, we believe that it is reasonable to require move-
ment during scanning. Poor velocity estimates or non-static
scenes can cause DART to perform poorly; we hope to relax
these limitations in the future.

2. Related Work
2.1. Radar Simulation

Model-Based Approaches Model-based methods use a
physics and environment models to simulate the propaga-
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Figure 3. DART tackles radar novel view synthesis by learning a neural implicit map of the world from a trajectory of radar measurements.
We make key radar-specific decisions in choosing (1) a high quality radar representation space — Range-Doppler, (2) a world model
that captures radar interactions — σ and α with spherical harmonics coefficients, (3) a network architecture to model our desired
representation — Instant NGP, and (4) an optimized radar rendering and training methodology — Range-Doppler specific rendering.

tion of radar signals through the environment using some
combination of ray tracing [3, 11, 25, 66, 67], finite el-
ement modeling (FEM) [13, 45], or finite-difference time
domain (FDTD) simulation [16, 19, 75]. While simulators
can replicate complex scene dynamics (e.g. occlusion, path
loss, multipath, non-Lambertian effects), they make no at-
tempt to infer the environment structure from sensor data,
and their accuracy is limited by the user’s ability to create a
radar-realistic model of the environment.

Data-Driven Approaches Data-driven methods use real
sensor scans to build an environment model. Sparse meth-
ods use constant false alarm rate detection (CFAR) to detect
discrete reflectors in the environment [15, 49, 63]. On the
other hand, dense methods divide the environment into an
explicit voxel grid and infer the radar properties of each cell.

Dense methods can be further divided into coherent and
incoherent aggregation. If a fixed (e.g. linear or circu-
lar) trajectory or sub-wavelength-accurate pose estimates
are available, Synthetic Aperture Radar (SAR) can be used
[46, 50, 52, 56, 81, 82]; however, this is impractical for a
mobile platform over large areas. Instead, sensor readings
(with high angular resolution via many antennas or SAR
on smaller pieces of a trajectory) can also be aggregated in
an incoherent manner, which has been referred to as multi-
view 3D reconstruction [33–35] and radargrammetry [12].

2.2. Machine Learning Methods in Radar

Many classical radar problems such as radar super-
resolution [10, 17, 20, 21, 23, 53, 54, 72], odometry [2, 43],
mapping [42], activity recognition [39, 70, 77, 80], and ob-
ject classification [32, 69, 85] have been applied to cheaper,
lighter, and more compact radar systems using machine
learning. We now seek to solve the novel view synthesis
problem from compact, low resolution radars while implic-
itly creating a higher resolution map.

2.3. Neural Radiance Fields

Instead of defining an explicit inverse imaging algorithm
that recovers a representation of the scene from sensor
readings, Neural Radiance Fields [48] implicitly invert a
forward rendering function through stochastic gradient de-
scent. This requires the following components:

1. World model: NeRF defines the world as an RGB color
and transparency for each position and viewing angle;
subsequent works have generalized this to handle anti-
aliasing [5], different cameras, and lighting [47, 73].

2. World representation: Beyond neural networks [48] or
voxel grids [40], more recent works have explored spa-
tial hash tables [51] as well as function decompositions
for view angle dependence [18, 83].

3. Rendering function and Model Inversion: NeRFs
model each pixel as a ray and ray-trace the radiance field.
The invertibility of this rendering function is crucial: by
assuming that each pixel is a ray, the NeRF is “super-
vised” by one RGB image pixel per ray, allowing NeRF
to “solve” for the few opaque points along the ray.

We innovate on these key enablers of NeRFs in order to
apply this approach to mmWave radars. By applying NeRF
techniques to radar, we hope to leverage the extensive body
of neural radiance field literature, while also unlocking the
potential of neural-implicit representations.

Beyond Visual Fields The success of NeRFs has inspired
numerous other efforts to apply the same general princi-
ple to other sensors, including spatial audio [44], imaging
sonar [55, 59], LIDAR simulations [27], and RSSI (Re-
ceived Signal Strength Indicator) mapping [84]. NeRFs
have also been applied to radar [29, 71] for camera-like
high-resolution Synthetic Aperture Radar instead of the
compact and inexpensive radars we explore in this paper.

3



3. DART: Doppler-Aided Radar Tomography
While our overall approach is inspired by Neural Radiance
Fields, the physics of radar presents several new challenges.
We make the following key design decisions (Fig. 3):
1. We first choose a radar measurement representation

space — range-Doppler — that overcomes the poor spa-
tial resolution of compact radars (Sec. 3.1, 3.2).

2. We then choose a model to account for radar-specific ef-
fects of electromagnetic wave interaction which are im-
portant for realistic view synthesis such as specularity,
ghost reflections and partial occlusions (Sec. 3.3).

3. Finally, to effectively train and learn neural implicit
maps for radars, we choose a network architecture for
an adaptive grid world representation, design a range-
Doppler rendering method, and propose key rendering
optimizations (Sec. 3.3 — 3.4).

3.1. Range-Doppler Representation

Unlike cameras, radars are active sensors which illuminate
a scene by transmitting a radio frequency waveform. Upon
processing reflections received from objects in the scene,
radars can perceive the world in 3 dimensions — range, az-
imuth, and elevation — as a heatmap indicating the reflec-
tivity of objects at that 3D coordinate [60, 61].

However, while bulky mechanical radars or large solid-
state radar arrays can provide azimuth and elevation resolu-
tion close to typical cameras, modern inexpensive and com-
pact solid-state radars feature small antenna arrays which
make them far inferior in the azimuth and elevation axes
[28]. As a result, these compact radars can only generate
coarse heatmaps (>15◦ resolution) in the azimuth and el-
evation axes, causing each range-azimuth-elevation bin to
point to a coarse region of 3D space which is far less sharp
than a ray from a camera pixel [38, 41, 76].

To achieve better angular resolution, radars can instead
leverage the Doppler effect: objects moving at different
relative velocities to the radar have different Doppler ve-
locities, which can be measured by examining the residual
phase of the range-azimuth-elevation heatmap [79]. Cru-
cially, in a static scene, these relative velocities depend on
not just the relative speed between the radar and the world,
but also the relative azimuth and elevation angle between
objects and the radar, with each Doppler corresponding to a
cone in space [60]. Because of the fine range and Doppler
resolutions, Doppler greatly reduces the ambiguity of each
bin in 3D space down to a thin ring (Fig. 4), which we fur-
ther reduce by making a thinness argument across the range
and Doppler axis in order to simplify integration down to a
circle for radar rendering (Sec. 3.4).

3.2. Radar Pre-Processing

mmWave radars use a waveform called Frequency Modu-
lated Continuous Wave (FMCW), and measure a continu-

Figure 4. Doppler arises due to differences in relative veloc-
ities between points with different relative angles to the radar
(left). Each range value (red) corresponds to a sphere, while each
Doppler value corresponds to a cone (green). The intersection
forms the range-Doppler pixel (see Fig. 2).

ous time signal; we then convert these signals into range-
Doppler-antenna heatmaps. To summarize key points of our
radar processing pipeline (Appendix A.1):
• Undesirable Range-Doppler Side Lobes: A single re-

flective object can create sidelobes that bleed into several
range-Doppler bins and mask off weaker objects [61, 86].
Rather than forcing DART to model this, we use a Hann
weighting window along both range and Doppler axis to
mitigate this effect (Appendix A.1).

• Multiple Antennas: We perform range-Doppler process-
ing on each of the eight transmit-receive (TX/RX) pairs
in our radar. During our rendering process (Sec. 3.4), we
apply the antenna gain and array factor for each TX/RX
pair (Fig. 3), emphasizing 8 sections of the field of view.
While our sense of high-quality azimuth-elevation infor-
mation still stems from leveraging Doppler, this provides
some coarse directional information.

3.3. DART’s World Model

If we had an accurate model of the world and the electro-
magnetic wave interaction for all objects in the world, we
could just apply this model to the region defined by each
range-Doppler pixel to calculate its value. However, due to
the complex nature of real-world scenes and interactions,
both tasks are highly difficult and typically impractical. In-
stead, we model these properties in a data-driven way, rep-
resenting the reflectance and transmittance using a view-
dependent neural network-based approach.

Modeling RF Reflectivity Modeling mmWave material
interactions is one of the most challenging factors of radar
view synthesis. From the perspective of radar, points in
space have two key properties: reflectance (the proportion
of energy that reflects back), and transmittance (the propor-
tion of energy that continues past) [60]. However, millime-
ter waves also interact with objects differently depending
on incidence angles [4]; for example, metal surfaces can be
specular and may be invisible from certain view points. As
such, we model each physical point with a reflectance and
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transmittance value, each of which depend on the incident
angle. We formalize this as

σ : R6 −→ R, α : R6 −→ [0, 1], (1)

which model the reflectance σ and transmittance α as a
function of the position (R3) and incident angle (R3) of an
incoming radar wave, and allows DART to model a wide
range of radar phenomena such as partial occlusions, spec-
ularity, and ghost reflections (Appendix A.2).

World Representation While voxel-based approaches
are highly effective for learning visual radiance fields [18,
83], radar images have a much poorer elevation and azimuth
resolution compared to cameras even after exploiting the
Doppler axis. This magnifies the difference in spatial reso-
lution that σ and α can be resolved for between close and far
ranges. Moreover, unlike cameras, our angular resolution is
variable at all scales — be it at a trajectory level, frame-to-
frame level or even within a frame (Sec. 3.1). Similar to
NeRFs [48], we turn to neural implicit representations as a
means of creating an “adaptive” grid, and base our model
on the Instant Neural Graphics Primitive3 [51].

Unlike most visual NeRFs, we do not provide the inci-
dent angle as an input to the neural network [74]. Instead,
our architecture (visualized in the center block of Fig. 3)
outputs a “base” reflectance σ̄ and transmittance ᾱ, as well
as shared spherical harmonics coefficients [83] which are
applied to the incident angle as an inner product. In addition
to computational advantages, this allows us to directly inter-
pret (σ̄, ᾱ) as spherical integrals of our learned reflectance
and transmittance functions (Appendix A.3).

We also find that the output activation function on σ and
α is critical for numerical stability and performance. Since
σ is unbounded4, we apply a linear activation to σ. Then, to
constrain α ∈ [0, 1], we apply the activation function

f(α) = exp(max(0, α)), (2)

which we pair with a custom gradient estimator to handle
initialization instability (Appendix A.4).

3.4. Radar Rendering and Model Training

We train σ and α using a differentiable mapping which gen-
erates a multi-antenna range-Doppler heatmap from a given
(σ, α) network; we refer to this as radar rendering. Unlike
visual NeRFs, DART must account for a range of physical
effects in addition to occlusion including path attenuation,
antenna gain patterns, and the radar-specific Doppler axis.

3[51] implicitly creates an adaptive world grid by using many spatial
hash tables with geometrically increasing resolutions, and resolves the out-
put with a small neural network; we use the same general architecture.

4σ can be negative; however, since the observed range-Doppler-
antenna heatmaps cannot be negative, σ < 0 will always increase both
train and validation loss, so allowing this does not cause overfitting.

Ray Tracing Consider a single “ray” emitted from a radar
at position x and orientation (rotation matrix) A at an inci-
dence angle w. As the ray travels through space up to the
maximum range of the processed (range, Doppler, antenna)
image, each point x + riw at range ri receives a signal of
amplitude ui, which is attenuated by a factor of ri due to
free space path loss. Each point then reflects a signal of am-
plitude uiσ(ti) back towards the radar, and propagates an
amplitude of uiα(ti) onwards. As reflected signals return to
the radar, the signal loses an additional attenuation factor of
ri, while also suffering from occlusion from ∀j < i : α(tj).

Sampling r1 . . . rNr discretely along the range bins of
the processed heatmap across antennas, the radar return am-
plitude C(i, k,w) for ray w at range bin i and antenna k is

C(i, k,w) = gk(A
−1w)

σ(x+ riw)

r2i

i−1∏
i′=1

α(ti′)
2, (3)

where gk(A−1w) is the antenna beamforming gain antenna
k at angle w (specified relative to the radar orientation A).

Doppler Integration For a given pose with radar po-
sition x, velocity v, and orientation A, we evaluate the
return Y (ri, dj , k) ∈ R at each range-Doppler-antenna
bin (ri, dj , k), synthesizing a view-specific, multi-antenna
range-Doppler heatmap. Since the doppler velocity is mea-
sured as dj = ⟨w,v⟩, we integrate the return C along the
thin ring corresponding to each bin as:

Y (ri, dj , k) ∝
ri

||v||2

∫
⟨w,v⟩=dj , ||w||2=1

C(i, k,w) dw (4)

Note that we need to correct for the varying width of the dis-
crete bins as a function of range and radar speed by dividing
by the speed ||v||2 and multiply by ri (Appendix A.5).

Approximating this integral as a sum overM random di-
rections w1 . . .wM such that ⟨w,v⟩ = dj , we multiply by
an additional factor of ri to correct for the circumference of
the range-Doppler intersection as ri increases. This yields

Y (ri, dj , k) ∝
r2i

M ||v||2

M∑
m=1

C(i, k,wm). (5)

Optimized Rendering As the (σ, α) field function must
be evaluated for every sample, efficient sampling is criti-
cal to computational efficiency. Thus, a naive approach of
treating each (range, Doppler, antenna) “pixel” as an inde-
pendent sample as is standard practice in NeRFs would be
computationally prohibitive, requiring the field to be sam-
pled (range, Doppler, antenna, range integration, Doppler
integration) times to render a single image. As such, we ag-
gressively reuse samples of σ and α by rendering all bins
with the same Doppler simultaneously (Appendix A.6).
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Figure 5. Example (validation) range-Doppler frames and descriptive photos of our method and baselines. DART accurately reproduces
the overall radar image, though it lacks the resolution to resolve smaller weak reflectors. Lidar can model weak reflectors, but cannot
accurately scale them due to a lack of radar-specific information, while Nearest produces radar-realistic but inaccurate images since
exhaustively measuring all possible poses is impractical. Finally, CFAR cannot model transmittance or measure the “volume” of a point.

Training We train our (σ, α) field function using stochas-
tic gradient descent with the Adam [31] optimizer and a l1
(i.e. mean-absolute-error) loss. For details about our train-
ing process and other hyperparameters, see Appendix A.7.

4. Experiments
We constructed a handheld data collection rig with a
mmWave radar and a lidar used for localization5 (Fig. 6;
Appendix B.1). We used this to collect 12 traces ranging
from 5 to 15 minutes long in a diverse set of environments
including a lab space, townhouse, high-rise apartment, and
an early 20th century house (Appendix B.2).

4.1. Baselines

We implement three baselines for radar novel view synthe-
sis and mapping, a model-based approach and two data-
driven approaches (see Sec. 2.1).
• Lidar Scan-Based Simulator: We use lidar scans to cre-

ate an occupancy grid, which we then use in a raytrac-
ing radar simulator (assuming occupied grids have a fixed
constant reflectance and no transmittance, similar to [3]
without material annotations). This baseline represents
the standard practice in radar simulation [3, 13, 66, 75].

• Nearest Neighbor: We implement a naive nearest-
neighbor baseline which finds the training point with the
closest (position, velocity) to the novel viewpoint. While
simple, this has the advantage of using radar data to “sim-
ulate” images compared to our lidar-based simulator [7].

• CFAR Point Cloud Aggregation: CFAR is a commonly
used adaptive algorithm in radar systems to detect target
returns against a background of noise, clutter and interfer-
ence [49]. We use the Matlab Phased Array System Tool-

5Note that while we use lidar to obtain pose estimates using Cartogra-
pher [24], any accurate 3D SLAM system can be used.

Figure 6. Handheld data collection system; see Appendix B.1.

box [1] to detect radar-reflective targets, de-project those
targets into 3D points using Bartlett direction-of-arrival
estimation [6], then reproject the points according to the
novel pose. This approach is similar to our lidar baseline
in that it uses point cloud aggregation, but is better able
to capture radar-specific scene properties.

For additional details on our baselines, see Appendix B.3.

4.2. Metrics

We apply our model to a holdout test set consisting of the
last 20% of each trace. We then compute the SSIM [78] of
the test images and the effective sample size-corrected stan-
dard error (SE) for the mean SSIM; see Appendix B.4. We
also compute the SSIM values of 25/30/35dB-equivalent
Gaussian noise to help quantify our SSIM values.

5. Results
DART synthesizes significantly more accurate radar images
than each baseline on all traces collected, while using min-
imal training. We also demonstrate DART’s ability to sam-
ple tomographic images from its implicit map which are
more dense than CFAR point clouds, and more faithfully
reproduce radar characteristics than lidar scans.
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Figure 7. Comparison of DART (top) with CFAR (middle) and a Lidar occupancy grid for reference. While CFAR struggles with cluttered
scenes and creates point clouds which are both noisy and sparse, DART creates relatively clear maps which capture radar-specific properties
on both ourdoors (Garden) and indoors (Apartment) environments. DART can also image objects with relative clarity (Car), including
resolving objects partially occluded by radar-transparent surfaces (Tent — Occupied/Empty).

Training Time We train DART for 3 epochs on each
dataset using a RTX 4090 GPU, taking between 1-2× the
data collection time (≈ 10 minutes) of each dataset6; this
indicates the potential of real-time training with future al-
gorithmic and computing hardware improvements.

Ablations Each part of DART’s design significantly im-
proves its accuracy, including view dependence using
spherical harmonics and our dynamic grid representation
(Tab. 1). For additional ablations, see Appendix C.1.

6Training time is not directly proportional to the dataset length: since
Doppler bins are not observed when the radar speed is less than the Doppler
velocity of that bin, we omit these bins, decreasing the training time. See
Appendix B.2 for the length and training time of each dataset.

5.1. Comparison with Baselines

DART synthesizes far more accurate radar images than each
baseline on all traces in our dataset (Appendix C.2), with the
Lidar-based simulator and Nearest Neighbor baselines per-
forming the worst, and CFAR-based simulation in between.
DART is also significantly better than each baseline when
evaluated as a whole (Tab. 1).

To understand the performance differences between
DART and each baseline, we selected two example range-
Doppler images from our dataset (Fig. 5):
• Lidar-based simulation (Lidar) can accurately identify re-

flector positions, but cannot correctly scale their radar re-
turn due to the lack of radar-specific material properties.

• Nearest-Neighbor (Nearest) approaches can, by defini-

7



Method Mean SSIM SSIM Improvement

DART 0.636 ± 0.012 —
Lidar 0.463 ± 0.005 0.174 ± 0.013
Nearest 0.468 ± 0.006 0.168 ± 0.012
CFAR 0.545 ± 0.007 0.091 ± 0.006
No View Dep. 0.614 ± 0.015 0.022 ± 0.005
20cm Grid 0.591 ± 0.015 0.046 ± 0.004

Table 1. Mean SSIM and SSIM improvement of DART over
each baseline (and select ablations) across our dataset along with
95% confidence intervals; see Appendix C.2 for a breakdown by
dataset.

tion, generate radar-realistic images. However, measur-
ing all possible (position, orientation, velocity) poses is
impractical, leading to “misplaced” images which do not
vary continuously over different poses.

• Constant False Alarm Rate (CFAR) is commonly used
to generate point clouds from radar images. Compared to
lidar point clouds, CFAR point clouds are sparse and low-
resolution, but capture radar specific properties not mea-
sured in lidar. However, CFAR cannot provide any notion
of the size of each point or its transmittance, which re-
quires the point or grid size to be manually tuned, leading
to either excessively sparse or blurry images.

DART therefore achieves its efficacy by using a domain-
appropriate sensor and carefully selecting a representation
which allows it to use all available sensor information.

5.2. Tomography and Mapping

While DART is not designed primarily as an explicit to-
mography or mapping tool, we can sample the implicit rep-
resentation7 to create a (σ, α) reflectance and transmittance
grid. This also allows us to verify that DART truly learns the
mmWave properties of a scene (and does not simply mem-
orize and interpolate the training data).

Material Properties Example We created an evaluation
scene with 5 different boxes. DART is able to learn the
unique reflectance and transmittance properties of each ma-
terials, which we visualize through tomographic reflectance
and transmittance maps (Fig. 8). For additional examples
from our datasets, see Appendix C.3.

Comparison with Baselines In addition to creating more
accurate radar simulations, DART can also produce more
accurate and dense maps than CFAR. Fig. 7 shows sev-
eral examples comparing tomographic maps of reflectance
learned by DART with corresponding slices of the point
cloud generated by CFAR. While not as sharp as lidar scans,

7To address view dependence, we analytically take the spherical inte-
gral of σ and α at each point; see Appendix A.3 for details.

Reflectance

(1) (2)

(5)

(4)

(3)

Transmittance

(1) (2)

(5)

(4)

(3)

Increasing Reflectance  Increasing Transmittance

Figure 8. Tomographic images of 5 boxes made from different
materials: (1) a metal filing cabinet which appears less reflective
(due to specularity), but blocks radar waves; (2) an empty box
which reflects radar waves but does not block them; (3) a stack
of boxes containing electronics equipment which both reflect and
block radar waves; (4) a highly reflective metal mesh with large
holes that allow radar to penetrate it; and (5) a different empty box
which neither reflects nor blocks radar waves.

DART produces reasonably clear maps which capture the
radar-specific properties of each scene.

6. Conclusion
We present DART: Doppler Aided Radar Tomography, a
NeRF-inspired radar novel view synthesis algorithm which
learns an implicit tomographic map from range-Doppler
images, and demonstrate its effectiveness against state-of-
the-art baselines. We derive a physics-based rendering
model for radar from first principles, and construct an end-
to-end system for learning an implicit scene representation
and generate realistic novel radar views. While DART pro-
vides a strong baseline for future work, many opportunities
remain to apply lessons learned from visual NeRFs; given
the rapid pace of innovation in NeRF, these opportunities
will likely multiply in the coming years. We also currently
make a number of assumptions – such as a static scene and
the availability of accurate ground-truth pose – which could
be relaxed as has been done with visual NeRFs, enabling
a single-chip radar solution for localization, mapping, and
imaging. Finally, as we add mmWave radar to the repertoire
of NeRF-enabled sensing technologies, this furthers the po-
tential for multimodal implicit mapping in the future.
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DART: Implicit Doppler Tomography for Radar Novel View Synthesis

Supplementary Material

A. Method Details
DART represents the sum of careful consideration of each
step in the novel view synthesis pipeline from radar pre-
processing to rendering. We provide additional details not
included in our main paper, including our radar process-
ing pipeline (Sec. A.1), spherical harmonics representation
(Sec. A.3), transmittance representation and custom gradi-
ent estimator (Sec. A.4), optimized radar rendering pipeline
(Sec. A.6), and hyperparameters (Sec. A.7).

A.1. Radar Pre-Processing

Our radar processing pipeline (Fig. 9) consists of a range,
Doppler, and azimuth fast Fourier transform (FFT). The
range and Doppler FFT use a Hann window in order to
suppress undesirable side lobes. Finally, we perform range
decimation to take the first 128 valid range bins of each pro-
cessed range-Doppler-azimuth heatmap, and apply calibra-
tion to account for antenna delay.

Note that since we do not have sub-mm pose accuracy
or restrict data collection to fixed trajectories, DART does
not use coherent radar images. As such, while each FFT
produces complex values, we only use the magnitude of the
final output.

Range FFT State-of-the-art solid-state compact radars
operate in the radio frequency regime of millimeter wave
(mmWave) frequencies (60 GHz / 77 GHz). The wide band-
widths (about 4 GHz) available at these frequencies pro-
vide the impressive range resolution of mmWave radars of
around 4cm ( c

2B , where c is speed of light and B is the
bandwidth).

This means that the radar can distinguish objects in the
world separated by 4 cm apart purely based on range pro-
cessing. Since the range of an object manifests in the time
delay of its reflection, mmWave radars send “chirps” in a
waveform called Frequency Modulated Continuous Wave
(FMCW) which converts time delays to frequency shifts
[28]. We perform range processing by simply computing a
1D Fourier transform of the received reflections which con-
verts the frequency shifts back to time delays that is propor-
tional to range (Range R = c∆T

2 , where c is speed of light
and ∆T is the two-way time delay).

The time window that this Fourier transformed is per-
formed over is referred to as fast time, and is equal to the
maximum theoretical number of range bins.

Doppler FFT We next compute the Doppler velocities
by processing a time series of FMCW waveforms. Unlike

slow time

fast time

antenna

doppler

range

antenna

FFT2 + Beamforming 
across antennas

range

radar

antenna

doppler

fig:radar-processing

Figure 9. DART performs range-Doppler pre-processing on each
of the antennas in the mmWave radar using 2D FFTs and antenna
beamforming gains. A key point to note is the reduction in range-
Doppler sidelobes using signal processing windows prior to FFTs
for effective DART training.

range information which is observed as time delay of re-
flections, Doppler velocities manifest as phase change of
the reflected signal when there is relative motion between
radar and the world. As the radar moves, an object changes
phase as the range R changes slightly over a time window

exp

(
j2π2R(t)

λ

)
, (6)

where λ is the wavelength corresponding to the FMCW
waveform’s center frequency. Because of the tiny wave-
lengths (4 mm) of mmWave signals, even tiny shifts in range
show up as significant phase changes. The rate of change of
these phase changes over the time series of FMCW wave-
forms provides the Doppler velocity.

Similar to range processing, we perform another Fourier
Transform, but across a time sequence of range processed
FMCW reflections. The time window (across different
chirps) which this Fourier transform is performed over is
referred to as slow time.

Impact of Doppler Resolution Unlike azimuth or eleva-
tion resolution which is governed by the number of anten-
nas in a radar system, the Doppler resolution depends only

1



(a) Without Hann Filtering (b) With Hann Filtering

Figure 10. Spectral leakage causes inter-bin interference, visi-
ble as streaking in the horizontal and vertical directions (range-
Doppler images are cropped to a small window). Hann low-pass
filtering softens window edges and reduces spectral leakage sig-
nificantly at the cost of reduced sharpness.

on the radar frame integration time. In theory, we can have
arbitrarily fine Doppler resolution with long frame times;
however, this assumes constant radar velocity over the en-
tire integration time window, which is impractical.

Moreover, Doppler resolution can be simplified and
mapped to azimuth resolution (in 2D) as

∆θ =
∆Dλ

2vsinθ
(7)

Therefore, as ∆D becomes lower with longer frame in-
tegration time, the azimuth resolution becomes better. In
our case, the (theoretical) azimuth resolution derived from
Doppler is 0.85° for a head-on point at θ=90°, a radar speed
of 0.5 m/s and a radar frame integration time of 256 ms —
much better than the best case of 15° that compact radars
today are capable of [58, 76].

Hann Filtering Since both the range FFT and Doppler
FFT are taken over a finite-time window, the hard edges of
the time window induce high-frequency effects that result in
a phenomenon known as spectral leakage. This leakage is a
mathematical artifact that can be modeled as a sinc() func-
tion and is clearly visible in radar scans [60, 61]. While it
would be possible to accurately reproduce such artifacts in
DART’s forward rendering model, this would require mod-
eling inter-column effects (breaking DART’s per-column
rendering model) and greatly increase the computational
cost of our algorithm. Instead, we apply a Hann window
weighting to the raw range-Doppler frames before comput-
ing the FFT, which slightly blurs the resulting images but
greatly reduces the inter-bin artifacts (Fig. 10).

Azimuth FFT After applying the range and Doppler FFT,
we also apply an Azimuth FFT across 8 azimuth bins (2
TX × 4 RX antennas). While this also results in a sinc
pattern, we model it explicitly in the form of an array factor
(Sec. A.5) applied in addition to the antenna gain on each
of the resulting azimuth bins.

fig:specularity, fig:reflections

(a) Specularity

fig:specularity, fig:reflections

(b) Ghost Reflections

Figure 11. View-dependent reflectance and transmittance captures
both specularity and ghost reflections.

A.2. Reflectance and Transmittance Modeling

DART’s view-dependent transmittance-reflectance model is
analagous to the density-color representation of NeRFs, and
enables modeling a range of physical phenomena, such as:
1. Diffuse reflections: This makes up for the majority of

first order reflections from non-metallic surfaces.
2. Partial occlusions: Modeling transmittance allows ob-

jects behind surfaces such as drywall to be visible while
occluding objects behind opaque surfaces, e.g. concrete.

3. Specularity (Fig. 11a): This manifests as high re-
flectance in specific directions, e.g. metallic surfaces.

4. Ghost reflections (Fig. 11b): This occurs as a result of
seeing an object after multiple orders of reflections from
other objects, e.g. seeing the ghost reflection of a chair
off of the ground when radar is looking at the ground.

A.3. Spherical Harmonics

Our usage of spherical harmonics provides view-
dependence, while also making interpretation of the
resulting implicit map easier. In this section, we describe
how our usage of spherical harmonics contrasts with
common practice in visual Neural Radiance Fields and
provides key advantages for our use case.

Spherical Harmonics Representation Spherical har-
monics are a spherical (orthonormal) basis function which
is commonly used to decompose functions defined on the
unit sphere. Neural Radiance Field models typically handle
view dependence by projecting the incidence angle of the
incoming ray to between 9 and 25 (real) spherical harmonic
coefficients, which is used as an input to the neural network
[51, 74], acting as essentially a positional embedding on
the viewing angle. We instead use spherical harmonic co-
efficients as an output similar to non-neural-network based
radiance field methods [18, 83].

We use spherical harmonic coefficients of degree 25. Let
Y : R3 → R25 be the function that maps incoming incident
angles to the degree-25 spherical harmonics. Then, our field

2



function output is given by

σ(w) = σ̄⟨Y (w), c/||c||2⟩,
α(w) = f (ᾱ⟨Y (w), c/||c||2⟩) ,

(8)

where σ̄ ∈ R, ᾱ ∈ R, c ∈ R25 are outputs of the neural
network, f is the activation function on α (Sec. A.4), and w
is the incident angle.

Crucially, unlike visual NeRFs, we also must model
transmittance α (which is analogous to the density in NeRF)
as having view dependence. While reflective surfaces in
visual NeRFs are modeled as “screens” whose content
changes depending on the viewing angle, radars measure
distance, which requires reflective surfaces to instead be
measured as “holes” which become transparent depending
on the viewing angle.

Interpretability Since spherical harmonics are an or-
thonormal basis, we can analytically evaluate the spherical
L2 norm of our DART field at each point without requir-
ing numerical integration in order to sample a “mean” re-
flectance and transmittance. For example:

||σ||22 =

∫
w

(σ̄⟨Y (w), c/(||c||2)⟩ dw)
2

=
σ̄2

||c||22

∫
w

cTY (w)Y (w)T c dw

= σ̄2

(9)

since, by the orthonormality of spherical harmonics Y ,∫
w

Y (w)Y (w)T dw = I, (10)

and neural network output coefficients c are unrelated to
w given a fixed point in space. If we ignore the activation
function f , the same applies to α.

A.4. Transmittance Representation

Each ray in our rendering pipeline corresponds to one sam-
pled reflectance σ from DART. As such, negative σ are im-
mediately penalized by gradient descent, so an activation
function on σ is not necessary, and can harm the numerical
stability of DART (Sec. C.1).

On the other hand, since each transmittance value σ af-
fects all bins behind it, allowing α > 1 (i.e. for points in
space to transmit more energy than they receive) can allow
for a significant degree of overfitting. At the same time, we
must account for the fact that most points in space are empty
(so it should be “easy” for the model to represent α = 1),
while handling initialization instability and the possibility
of “dead” gradients.

Finally, to further reduce the potential for overfitting, we
only allow α < 1 when σ exceeds a set threshold (0.05

in our experiments). To reduce the “swiss cheese” effect
caused when this threshold is initialized to a (relatively)
large value, we also anneal this threshold in over 600 steps
(starting from -1, which in practice is always less than the
initialized σ, to 0.0 linearly in 100 steps, and from 0.0 to
0.05 linearly in 500 steps).

Existing Activation Functions No existing activation
functions satisfy our desired properties:
• Sigmoid: this requires a −∞ input to represent 0, and

suffers from vanishing gradients at either end.
• Value clipping α = clip(α′, 0, 1): clipping output val-

ues to [0, 1] suffers greatly from “dead” regions in space,
especially where α is initialized at α′ < 0, and cannot
recover.

• Partial clipping α = exp(min(0, α′)): clipping at only
one end suffers from the same “dead” region problem,
though only at one side.

Indeed, any activation function on [0, 1] must have vanish-
ing gradients of some form. As such, we instead turn to a
custom gradient estimator to create an activation function
which satisfies our desired properties.

Gradient Estimator Using partial clipping α =
exp(min(0, α′)) as a starting point, we specify our gradi-
ent estimator for min(0, α′) as follows:
• α′ ≤ 0: gradients pass through, i.e. d/dα′ = d/dα.
• α′ > 0, d/dα′ ≥ 0: In this case, d/dα′ > 0, indi-

cating that the gradients are trying to push α′ negative,
even though min(0, α) is “saturated”. As such, we pass
d/dα′ = d/dα as well.

• α′ > 0, d/dα′ < 0: In this case, the gradients are try-
ing to push α′ positive, even though it is already positive.
To prevent our parameter values from exploding, we set
d/dα′ = 0.

A.5. Rendering Equation Derivation Details

DART’s rendering process is summarized by Eq. 5 at a high
level; in this section, we expand on the derivation of this
equation, as well as specific elements of our implementation
of the rendering equation.

Field of view calculation While radar rendering theoret-
ically requires integrating spherically around the radar, the
gain to the rear of the radar is close to zero in practice8. As
such, we only integrate across the front of the radar.

Our rendering equation begins by generating an or-
thonormal basis {

p, q,
v

||v||2

}
(11)

8Our radar uses a PCB-based antenna, which acts as a metal plane pre-
venting the radar from seeing backwards.
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Figure 12. Illustration of our integration arc equation derivation.

for velocity vector v. We select p such that its direction is
aligned with the positive x axis (which define to be the front
of the sensor), i.e.

p ∝
[
1 0 0

]T − vxv

||v||22
, (12)

and define q accordingly.
Each range-Doppler bin is modeled as the intersection

of a sphere with radius r and a cone ⟨v,w⟩ = d. When
intersected with the half-space corresponding with x ≥ 0,
this results in an arc or circle on the p-q plane (or the empty
set if degenerate). Since we define the sensor to be facing
in the +x axis, and define p to be aligned with +x, the
valid integration arc will always be (−ψ,ψ) for angle ψ
counterclockwise from the +p axis, again relative to the p-
q plane.

We now calculate this angle ψ. We begin by calculating
the distance γ to the center of the integration arc and its
radius r̃ (Fig. 12a). Choosing an arbitrary direction w in
our p-q-v basis, the cosine of the angle η between v and w
yields

cos(η) =
γ

r
=

⟨v,w⟩
||v||2||w||2

=⇒ γ =
rd

||v||2
(13)

using the definition of Doppler d and orthonormality of w.
It follows that

r̃ =

√
r2 − r2d2

||v||2
= r

√
1− d2

||v||22
. (14)

Next, we calculate the length of the chord corresponding to
the integration arc ±ψ. Let h be the distance from the chord
to v (Fig. 12b); h can be specified relative to γ and the angle
θ between v and the +x axis (Fig. 12c). It follows that

h = γ tan(θ) =
rd

||v||2

(
vx√

||v||22 − v2
x

)
, (15)

which finally yields (Fig. 12b)

ψ = arccos

(
h

r̃

)
. (16)

We also must account for three degenerate cases:

v
dj +∆D

dj

ri
ri +∆R

r̃
A

η

Figure 13. Annular section A for the revolved solid approximation
of Eq. 5. η is the angle to the velocity vector v.

• When d > ||v||2, the Doppler bin exceeds the velocity
(and Eq. 14 becomes imaginary).

• When h > r̃, the entire doppler cone is pointing behind
the radar (i.e. the x > 0 half-space no longer intersects
with the cone; Eq. 16 is undefined).

• When h < −r̃, the entire doppler cone is in front of the
radar. In this case, we instead have ψ = π.

Volume of integration region Expanding on Eq. 4 more
explicitly using our integration bound ψ, the radar return
Y (ri, dj , k) can be expressed as the circular integral

Y (ri, dj , k) ∝ r̃

∫
−ψ≤ϕ≤ψ

C(r, k,w(ϕ)) dϕ (17)

for projection w to the integration arc.
While our rendering equation (Eq. 4) makes a “thin-

shell” assumption, we must also examine the effect of bin
size in order to correctly determine which constants to ap-
ply to our approximation. Let ∆R and ∆D be the width
of each range and Doppler bin. Instead of using a “point”
approximation of C, we instead derive the integral based on
the revolved solid of an annular section A (Fig. 13). Us-
ing again the fact that cos(η) = d/||v||2, we arrive at the
approximation

dA = ri drdθ =
ri

||v||2
√
1− d2j

||v||22

drdd

=
r2i

||v||2r̃
drdd, (18)
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Figure 14. Radar rendering dataflow.

which yields the net correction of r2i /||v||2 found in Eq. 5
when combined with Eq. 17.

Array factor and antenna gain In our rendering process,
we begin by applying the antenna gain for the radar as a
whole, which is specified by the AWR1843Boost datasheet
[76]. After performing the azimuth FFT, each azimuth
bin (i.e. transmit-receive pair) then acts as an independent
beamformed radar with a narrower azimuth gain; as such,
we also apply the array factor to each azimuth bin [60].

A.6. Optimized Radar Rendering

Figure 14 shows our optimized rendering dataflow:
1. We use each Doppler “column” across all antennas as a

sample which has (range, antenna) dimensions.
2. For this Doppler, we sample a fixed (128) number of rays

(i.e. from (−ψ,ψ), projecting to 3D space via the v-p-q
basis); we trace each ray (Eq. 3), sampling σ and α once
at each range bin for a total of (Doppler, ray samples)
times.

3. For each antenna, we apply the corresponding gain and
sum across the Doppler samples (Eq. 5), yielding (range,
antenna) outputs for this Doppler column.

In total, we sample the field (range, Doppler, ray samples)
times per image per epoch, which is comparable to the
(width, height, range samples) times in NeRF. With the di-
mensions of images in our datasets (128 range bins, 256
Doppler bins, 128 ray samples, and 8 antenna), this equates
to only 16 field samples per output value — less than most
visual NeRF methods today such as Nerfacto [74], which
samples 48 points per pixel.

A.7. Training and other Hyperparameters

Implementation and Training DART is implemented
using JAX [8], which we tune for training on the RTX
4090 (24GB of VRAM). In our implementation, we per-
form the ray-tracing cumulative product in the log-space as

Figure 15. Our data collection system consists of a handheld rig
(Fig. 6) and a backpack which carries power equipment.

an exp-sum-log, learning the log-transmittance instead. We
also absorb any constants (including the square for trans-
mittance) into σ and α.

We trained our (σ, α) field function using stochastic gra-
dient descent with the Adam optimizer and an l1 objective
with a learning rate of 0.01 for 3 epochs with a batch size
of 1024 “Doppler columns” (i.e. all range-Doppler-antenna
bins with the same Doppler value in a given image; see
Sec. A.6). For each Doppler column, we sampled 128 rays
along the arc defined by that Doppler bin intersected with
the half-sphere corresponding to the front of the radar (since
our radar is forward-facing).

Architecture Hyperparameters For our base model, we
use the Instant Neural Graphics Primitive [51] with the fol-
lowing parameters:
• Hash table size: 220.
• Number of features per hash table level: 2.
• Hash table resolution scale factor: 20.43 ≈ 1.347 (se-

lected to avoid “aliasing” from different hash table levels
lining up to multiples of each other).

• Number of hash table levels: 12.
• Grid resolution: 25cm (coarsest) to 0.94cm (finest).
• Output MLP: 2 hidden layers of 64 and 32 units.

B. Datasets and Evaluation
In this section, we provide additional details about our data
collection system (B.1), collected radar traces (B.2), base-
lines (B.3), and evaluation methodology (B.4).

B.1. Data Collection System

Our data collection rig (Fig. 15) is handheld and fully
portable, and consists of a TI AWR1843Boost mmWave
radar with a DCA1000EVM capture card for recording
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Dataset Length Training Time Description

Lab 1 4:55 8:43 A lab space with 5 boxes of varying material placed inside.
Lab 2 4:24 7:22

Office 1 10:37 15:14 An office space with cubicles and an enclosed meeting room.
Office 2 15:39 22:18

Yard 7:38 12:13 A backyard and adjacent detached garage.
House 1 7:55 9:53 A early 20th century house with two above-ground floors. Traces include only the

ground floor, and both the ground and 2nd floor.House 2 9:48 12:54
Apartment 1 6:04 9:26 A late 20th century high rise one-bedroom apartment; traces include just the

open-plan living area, and both the living area and bedroom.Apartment 2 6:38 10:30
Rowhouse 1 7:41 10:48 Traces of varying lengths and room inclusions in a 2-bedroom apartment with an

open-plan living space in a low-rise townhouse.Rowhouse 2 7:37 10:41
Rowhouse 3 10:51 15:17

Table 2. Total trace length and training times (minutes) for our method on each trace; the training time of our method is between 1-2× the
data collection time. While we captured multiple traces from each location, each trace was collected independently.

Figure 16. Components of our data collection system.

raw I/Q frames. The data collection rig also includes an
Ouster OS0-64 64-beam LIDAR and a Xsens MTi-3 IMU,
which are used for our LIDAR-based radar simulator base-
line (Appendix B.3) as well as pose estimates using Car-
tographer SLAM [24]. These components, along with the
backpack-carried power and control components, are shown
in Fig. 16.

Radar Configuration We configured the radar for inter-
chirp period of 1ms with 512 samples per chirp, and pro-
cessed the data into range-Doppler images with a frame
length of 256 chirps computed on a rolling window with
a stride of 64 chirps. This gives a maximum Doppler of
±0.95 m/s across 256 Doppler bins and a maximum range
of 21.6m across 512 range bins, which we truncated to the
first 128 range bins (5.4m) after removing bins with nega-
tive range after radar calibration.

Radar Processing To avoid degenerate Doppler bins at
low speeds (violating our thinness assumption) and aliased
speeds exceeding the maximum Doppler velocity, we re-
moved frames with speeds below 0.2m/s and above 0.95m/s

from our training and validation datasets. We also use all 8
azimuth antennas by configuring transmitters to operate in
a time-division multiplex mode.

Pose Processing DART relies on accurate velocity esti-
mates; however, SLAM systems such as Cartographer are
typically not designed to produce accurate or continuous
velocity estimates, especially at the frequency that we gen-
erate range-Doppler images (64ms). This can lead to erratic
velocity estimates, especially if loop closure results in dis-
continuous pose estimates.

To calibrate the estimated speed, we implemented a
speed estimation algorithm which uses simple thresholding
to detect the maximum velocity detected in a range-Doppler
image. Assuming a static scene, this then indicates the
speed of the radar. Using this estimate, we tuned a gaussian
smoothing parameter applied to the SLAM pose estimates
to produce our final velocity estimates.

In our datasets, we observed that false or sudden relocal-
izations can also cause erratic speed estimates. Thus, as a
final check, we calculated the acceleration of the final speed
estimates, and excluded frames (and ±15 neighbors) if the
acceleration exceeded 2.0 m/s2. Datasets that we collected
that included a high frequency of likely SLAM system fail-
ures were then either recollected or excluded.

B.2. Collected Traces

Our 12 collected radar novel view synthesis traces include
6 unique environments across residential and commercial
spaces of various construction. Each trace consists of sev-
eral passes through each scene with different paths, ve-
locities, and orientations, and is collected with a full pass
through the scene at the end to enable a convenient test set.
We summarize these traces in Table 2, and provide a vi-
sual map of the lidar scan and DART’s radar tomography in
Fig. 17.
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(a) Lab 1, 2 (b) Yard

(c) Office 1, 2 (d) Apartment 1, 2

(e) House 1, 2 (1st floor) (f) House 1, 2 (2nd floor)

(g) Rowhouse 1, 2, 3

Figure 17. Lidar maps (left), radar tomography maps (right), and sample trajectories (red) on the 6 locations used to collect our novel radar
view synthesis dataset. Multiple traces were collected from each location, with each trace being completely independent (and in some
cases visiting different rooms). Note that House contains two floors; the trajectory shown here is not separated by floor.

Trajectory Like many off-the-shelf radars, the TI
AWR1843 radar is designed for automotive applications,
and has a relatively narrow vertical field of view (±20°,
compared to ±50° horizontally). As such, we took mul-
tiple passes with varying attitude (e.g. horizontal, up, and
down) in order to ensure full 3D coverage.

Velocity We found Cartographer to be most stable for our
handheld data collection platform when moving smoothly
at ≈0.5m/s, and targeted this speed during each trace. This
also corresponds to the velocity range (0.2m/s – 0.95m/s)
which we tuned our radar system for.
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B.3. Baseline Details

In this section, we provide additional details about the im-
plementation of our baselines.

Lidar Scan-based Simulator Using Cartographer [24],
we created an occupancy grid of each scene with a 2cm res-
olution. Each occupied cell was assigned a reflectance of 1
unit, and a transmittance of 0 (i.e. fully opaque). We then
used a ray-tracing simulator (based on our rendering equa-
tion) to simulate radar images, with trilinear interpolation
applied to the grid during sampling. This simulator used
the same settings as DART (128 rays per Doppler bin, 128
range bins, simultaneous range-antenna rendering).

CFAR Point Cloud Aggregation We used the CFAR im-
plementation provided by the Matlab Phased Array System
Toolbox [1] with a false alarm rate of 0.01 to select dis-
crete reflectors. Each reflector was assigned an estimated
azimuth angle using direction of arrival estimation, pro-
jected to 3D space, and aggregated into a common point
cloud along with their estimated reflectance amplitude.

Since finite element modeling is impractical with tens of
thousands of CFAR points, we projected each reflector to a
5cm grid (which must be coarser than the 2cm lidar-based
simulator grid due to lower point cloud density), taking the
maximum gain for each point when multiple fall in the same
grid cell. Finally, we used the same simulation settings as
our lidar baseline to generate range-Doppler images. Note
that since CFAR has no way of measuring the transmittance
of points in space, we set all grid cells to be fully transparent
(i.e. transmittance α = 1).

For our comparison of the CFAR point cloud with
DART’s sampled tomography images (Fig. 7), we qualita-
tively tuned the visualization to show sharp outlines and the
general geometry of the scene to the best of our ability:
• The scatter plot shows points within ±10cm of the ref-

erence plane to ensure we capture a sufficient density of
strong reflectors.

• To reduce clutter due to spurious points in the CFAR point
cloud, we then removed the 80% weakest reflectors, and
scaled the color range in our visualization so that points
close to the 80% cutoff point have a color similar to the
plot background.

B.4. Evaluation Metrics

In order to evaluate DART and our baselines, we calcu-
late the SSIM of each valid9 range-Doppler-antenna frame

9Since our Doppler FFT “wraps” once we exceed our maximum
doppler velocity, we must exclude these frames. Our method also does
not work on stationary radars (as we note in our limitations), so frames
with a velocity near zero are also excluded.

(treating each antenna as a different channel) after normaliz-
ing each image to a set [0, 1] range. Then, to calculate error
bars and evaluate the statistical significance of our results,
we estimate the effective sample size of each trace in order
to calculate standard errors and perform a paired z-test.

Image Scaling Not all of our baselines are capable of pro-
ducing accurately scaled output images. Since SSIM re-
quires the input dynamic range to be properly scaled, we
scale all images relative to the ground truth prior to SSIM
calculation as follows:
1. We clip extreme values from the ground truth images

(0.1% and 99.9% percentiles), and normalize this range
to [0, 1], which we use as the dynamic range for SSIM
calculation.

2. We compute the l2 “optimal scaling” multiplier between
the predicted ŷ and actual y∗ images using scale factor

argmin
ξ

||y∗ − ξŷ||22 =
ŷT y∗

ŷT ŷ
(19)

and apply this to ŷ. We then clip ξŷ to the same thresh-
olds as y∗, and normalize to [0, 1].

3. We then compute the SSIM, using a dynamic range of 1.

SSIM Calculation Range-Doppler-antenna radar images
are mostly sparse, and even contain large regions where
nonzero values cannot theoretically be observed (i.e. when
Doppler velocities exceed the current actual speed for a sen-
sor in a stationary scene). As such, a naive application of
SSIM leads to misleadingly high SSIM, since the SSIM be-
tween empty regions is exactly 1.0.

To correct for this, we exclude empty regions of our im-
age, which are defined as areas where the pixel sample mean
is less than a set threshold (ε = 0.005 in our dataset).

Sample Size Correction The standard error of the mean
(SE) of a measurement X is defined as std(X)/

√
N . How-

ever, this assumes each of the n samples are independent
and identically distributed.

Intuitively, sampling the same signal with greater fre-
quency does not give any additional insight into the general
performance of a method. Thus, in time series signals such
as ours (i.e. SSIM over time), the number of samples must
be corrected to estimate the effective sample size, which we
substitute for N . This is given by [62]

Neff =
N

1 + 2
∑∞
t=1 ρt

(20)

for autocorrelation ρt (where t is the delay). In our calcu-
lations, we estimate the sum up to t = N/2, and clip ρt
estimates to positive values10.

10Negative ρt can occur for large delays t due to broader trends in our
dataset, e.g. scanning different rooms or directions
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DART Without View Dependence 20cm Grid 10cm Grid 4cm Grid

Figure 18. Sample tomographic maps of the reflectance (σ) compared to using a simple grid with varying resolutions. Coarse grids result
in blurry tomographic images, while finer grids result in “holes” in walls and other surfaces. By using an adaptive grid, DART is able to
learn tomographic maps which are reasonably sharp but also largely continuous.

Lidar DART Without Estimator Without Clipping Without Activation

Figure 19. Sample tomographic maps of the transmittance (α) learned by DART (compared to a Lidar occupancy grid), along with ablations
on our representation for α without the gradient estimator (Without Estimator), without clipping α when σ < 0.05 (Without Clipping), and
without any activation treatment (Without Activation).

Paired z-Test Since each method is evaluated on exactly
the same test frames, we use a paired z-test to evaluate the
statistical significance of our results. Specifically, we pro-
vide error bars for a one-sided p-value of 0.05 (i.e. indicat-
ing 95% confidence that one method is better than another).

C. Additional Results

C.1. Ablations

In addition to view dependence, we ran additional ablations
showing the impact of DART’s implicit representation and
transmittance activation function.

Grid Size and Adaptive Grid To demonstrate the ben-
efit of an (implicit) adaptive grid, we trained a version of
DART using a fixed grid of 20cm, 10cm, and 4cm resolu-
tions. DART’s adaptive grid leads to more accurate radar
simulations compared to fixed grids (Table 3). Examin-
ing tomographic slices of the learned reflectance reveals the
reason: a coarse grid leads to a blurry image (and there-
fore blurry synthesized radar range-Doppler images), while

Method Mean SSIM Relative SSIM

DART 0.636 ± 0.012 —
No View Dep. 0.614 ± 0.015 0.022 ± 0.005
20cm Grid 0.591 ± 0.015 0.046 ± 0.004
10cm Grid 0.580 ± 0.017 0.056 ± 0.006
4cm Grid 0.564 ± 0.019 0.073 ± 0.008

Table 3. Mean and relative SSIM (to DART) of different grid sizes;
we include a baseline which does not use view dependence for
comparison since a simple reflectance and transmittance grid does
not represent view dependence.

a fine grid leads to holes in the learned reflectance (Fig. 18).

Transmittance Activation Function While we did not
run full ablations for each element of the design of DART’s
activation function (Sec. A.4), we trained ablations on an
example scene (Fig. 19) for the activation function as a
whole in addition to ablations on our transmittance clipping
procedure and gradient estimator.

• Without any activation function on α, DART can greatly
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Dataset DART Lidar Nearest CFAR

Lab 1 0.676 0.438 (0.238 ± 0.017) 0.490 (0.186 ± 0.033) 0.571 (0.105 ± 0.013)
Lab 2 0.680 0.471 (0.209 ± 0.012) 0.468 (0.212 ± 0.045) 0.566 (0.114 ± 0.014)

Office 1 0.642 0.461 (0.181 ± 0.014) 0.482 (0.160 ± 0.026) 0.555 (0.087 ± 0.013)
Office 2 0.669 0.478 (0.190 ± 0.025) 0.449 (0.220 ± 0.028) 0.562 (0.107 ± 0.019)

Rowhouse 1 0.622 0.458 (0.164 ± 0.023) 0.471 (0.151 ± 0.031) 0.535 (0.087 ± 0.018)
Rowhouse 2 0.619 0.458 (0.161 ± 0.018) 0.450 (0.169 ± 0.036) 0.529 (0.090 ± 0.025)
Rowhouse 3 0.620 0.462 (0.158 ± 0.017) 0.480 (0.140 ± 0.026) 0.540 (0.080 ± 0.022)

House 1 0.626 0.471 (0.155 ± 0.017) 0.462 (0.164 ± 0.025) 0.549 (0.077 ± 0.013)
House 2 0.629 0.474 (0.155 ± 0.016) 0.459 (0.170 ± 0.026) 0.524 (0.105 ± 0.016)

Yard 0.615 0.457 (0.158 ± 0.020) 0.466 (0.149 ± 0.033) 0.538 (0.077 ± 0.022)
Apartment 1 0.620 0.464 (0.155 ± 0.015) 0.459 (0.160 ± 0.032) 0.533 (0.087 ± 0.015)
Apartment 2 0.618 0.460 (0.158 ± 0.022) 0.479 (0.139 ± 0.030) 0.537 (0.081 ± 0.018)

Overall 0.636 0.463 (0.174 ± 0.013) 0.468 (0.168 ± 0.012) 0.545 (0.091 ± 0.006)

Table 4. The mean SSIM of each dataset for each method along with the improvement of DART over each baseline and 95% (one-sided)
confidence intervals calculated using a z-Test with a effective sample size-adjusted standard error. CFAR is the next best baseline in all
cases, followed by Lidar and Nearest which perform similarly depending on the similarlity between the train and test sets.
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Figure 20. SSIM CDFs for each of the 12 traces (down and to the right is better), along with the mean SSIM of Gaussian noise with
25/30/35db PSNR for reference. DART achieves much higher SSIMs than each baseline on all traces in our dataset, which is roughly
equivalent to gaussian noise with a PSNR of 30db.

overfit the training data (e.g. with α > 1). This can be
seen in a very “cloudy” transmittance map, along with
a “trail” of low transmittance that appears to follow the
training trajectory. These artifacts are similar to “foggy”
artifacts that can be seen in many NeRF techniques.

• Adding the activation function α = exp(min(0, α′)) with
our gradient estimator results in a cleaner map; however,
the trail along the training trajectory still remains, since
this only addresses some forms of overfitting.

• To prevent DART from overfitting by creating this low-
transmittance trail, we set α = 1 at approximately empty
regions of space (i.e. σ < 0.05). However, without
the gradient estimator, points with an unfavorable initial-
ization may “saturate” min(0, α′) and become stuck at
α = 1. This can be seen in the pillar in Fig. 19, which
is split into multiple parts when the gradient estimator is
not used.

C.2. SSIM by Dataset

Table 4 provides a full breakdown of the SSIM of DART
and each baseline on each view synthesis dataset; DART
dominates each baseline on all datasets. 95% (one-sided)
confidence intervals for the difference to DART are calcu-
lated using the procedure described in Sec. B.4. We also
provide the CDF of the SSIM for each dataset as a distribu-
tional view (Fig. 20).

C.3. Additional Tomography Examples

Garden Fig. 22 shows a zoomed view of the Garden
scene shown in Fig. 7. Metal features along the edge of the
raised section are clearly visible in our tomographic images.

Tent Fig. 21 shows a 3D volume rendering of the Tent
scene shown in Fig. 7 when occupied and unoccupied. In
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(a) Empty - Volume (b) Occupied - Volume (c) Empty - Section (d) Occupied - Section

Figure 21. Volume renderings of the tent with and without a person inside, created only using radar sensor readings from outside a tent.

Figure 22. Metal “anti-skate strips” (the bright dots) are clearly
visible in our tomography map along with a metal band on the
outside of a raised section (the bright outline of the shape).

addition to the tent poles, the tent’s occupant is clearly vis-
ible; a rough approximation of the occupant’s seated pose
can also be seen after cutting along a section plane.

Mapping DART can also be used to generate maps of
spaces. Fig. 17 shows example learned reflectance maps
compared to Lidar occupancy grids; DART is able to learn
a coarse map of the room via its radar reflectance, indicating
the potential for future localization and mapping algorithms
based on DART.
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