
ARENA: The Augmented Reality Edge Networking Architecture
Nuno Pereira* Anthony Rowe* Michael W Farb* Ivan Liang* Edward Lu* Eric Riebling*

Carnegie Mellon University

(a) (b) (c)

Figure 1: ARENA demo applications. (a) Digital and physical art mashup: Rube Goldberg machine with digital objects (watering
can, book) interacting with real objects (servo-controlled air blower, plant); (b) Industrial digital twins: visualizing robotic arm
movements; (c) Virtual worlds: multi-user virtual reality.

ABSTRACT

Many have predicted the future of the Web to be the integration of
Web content with the real-world through technologies such as Aug-
mented Reality (AR). This has led to the rise of Extended Reality
(XR) Web Browsers used to shorten the long AR application develop-
ment and deployment cycle of native applications especially across
different platforms. As XR Browsers mature, we face new chal-
lenges related to collaborative and multi-user applications that span
users, devices, and machines. These collaborative XR applications
require: (1) networking support for scaling to many users, (2) mech-
anisms for content access control and application isolation, and
(3) the ability to host application logic near clients or data sources
to reduce application latency. In this paper, we present the design
and evaluation of the AR Edge Networking Architecture (ARENA)
which is a platform that simplifies building and hosting collaborative
XR applications on WebXR capable browsers. ARENA provides a
number of critical components including: a hierarchical geospatial
directory service that connects users to nearby servers and content,
a token-based authentication system for controlling user access to
content, and an application/service runtime supervisor that can dis-
patch programs across any network connected device. All of the
content within ARENA exists as endpoints in a PubSub scene graph
model that is synchronized across all users. We evaluate ARENA
in terms of client performance as well as benchmark end-to-end
response-time as load on the system scales. We show the ability to
horizontally scale the system to Internet-scale with scenes containing
hundreds of users and latencies on the order of tens of milliseconds.
Finally, we highlight projects built using ARENA and showcase how
our approach dramatically simplifies collaborative multi-user XR
development compared to monolithic approaches.

Index Terms: Computer systems organization—Architectures—
Distributed architectures; Computing methodologies—Computer
graphics—Graphics systems and interfaces Mixed / augmented real-
ity

*e-mail:{npereira, agr, mwfarb, hiliang, elu2, er1k}@andrew.cmu.edu.
Nuno Pereira is a visiting scholar from the School of Engineering of the
Polytechnic of Porto (ISEP), Portugal.

1 INTRODUCTION

People have long imagined mixed reality systems where users could
seamlessly interact with digital content that is tightly coupled with
the physical world [44]. This has catalyzed a number of enabling
AR technologies like localization, tracking, gesture recognition,
and display hardware. Most recently, we have seen platforms like
AR Kit/Core [24, 29] support mobile AR applications like Google
Maps, Pokemon GO, IKEA Place, etc [48]. These are currently
developed as monolithic apps designed to run in isolation with an
arduous develop, debug, and deploy design cycle. To address this
challenge, researchers have spent the last two decades working on
extending Web browser functionality to include AR and VR [7, 11,
14, 20]. Web browsers naturally capture the spirit of a single front-
end application environment (Browser) that retrieves a standard
description of data (HTML) from many networked resources (URLs
pointing to Web Servers) and interprets/renders the data based on the
clients’ local capabilities. Learning from the success of traditional
Web Applications, this approach provides an easy mechanism to
quickly build applications that span a wide range of platforms, from
phones and tablets to headsets. As a result, we are now seeing
standards such as WebXR [46] making their way into commercial
browsers, as these ”Extended Reality” (XR) capabilities mature into
the mainstream.

However, hosting AR applications in a browser is only part of the
challenge. Imagine a scenario where people are walking through
a shared common area, such as a museum or an airport. A user
might run a navigation app to direct them to their destination. In the
background, an airline loyalty app could suggest the closest lounges
or ticket counters. In parallel, a user could load personalized food
recommendation apps or use a friend finder app to connect with
colleagues on their way to the same event, etc. If you extend this
concept to defense or industrial IoT scenarios, we can imagine ex-
amples of how it would be advantageous to paint digital information
from multiple sources together in a single AR fabric for increased
situational awareness. The hope of being able to combine users, ap-
plications, and sensing data into a uniform representation has fueled
much of the excitement behind MetaVerse concepts, Digital Twins,
and the AR Cloud [9, 16].

Unlike traditional Web design workflows, collaborative XR ap-
plications pose new systems challenges for delivering interactive
content at scale. Web frameworks are often structured around repre-
sentational state transfer architectures (REST) that are not ideally
suited for XR environments where you have a set of large models

and many small, low-latency interactions. This becomes more appar-
ent when application state needs to be maintained across multiple
users and applications. In Web applications like online games, which
require low-latency shared state, system designers often implement
one-off solutions with building blocks like WebRTC and WebSocket-
based frameworks. We argue that future XR systems will require a
more structured, safe, secure, and scalable infrastructure backing (a
distributed operating system of sorts) to manage and host network
connected environments.

There are three main framework requirements for collaborative
Web XR applications. First, the system needs to support low-latency,
consistent interaction and graphical updates across a scene. If a
user clicks on a button or an application triggers an animation in
response, these messages should be distributed in a timely manner
to provide a responsive and consistent user experience. Second,
to support multitenancy with users running their own applications,
we need mechanisms that arbitrate access control and the ability
to sandbox and isolate programs. From a systems perspective, this
should strike the right balance between expressiveness of access
control rights while not bogging down the messaging system with
constant permissions checks. Finally, we need mechanisms allow-
ing applications to be launched on targets that optimize objective
functions like reducing latency. In Web systems, this usually means
running custom code on the client or at the server. Given how local-
ity significantly impacts latency, we require a runtime management
system that is able to capture the state of the system resources and
their interconnects and dispatch applications accordingly.

In this paper, we present the AR Edge Networking Architecture
(ARENA), which is a framework designed to both simplify and scale
collaborative multi-user XR applications. It simplifies programming
applications where there is a mix of virtual and physical systems,
where developers usually have to manually place computation and
data storage across interconnected components. This allows devel-
opers to easily host multiple applications that interact with users
and other agents (like sensors, actuators, or digital interfaces) in an
immersive 3D environment. In the same way that a desktop oper-
ating system can run multiple applications, ARENA apps can start
and exit dynamically in a hot-pluggable manner anywhere on the
network. It has built-in support for geographic content lookup and
mechanisms for accurate device localization from a number of differ-
ent types of localization systems (Ultra-wideband Ranging Radios,
Outside-in Optical Trackers, Optical Tags, etc). The graphical con-
tent is delivered using the A-Frame virtual reality framework [25]
for execution on WebXR enabled browsers [46]. The use of modern
XR Web technologies makes content accessible from tablets, phones,
headsets, and desktop browsers. Users can view a scene in VR using
a VR headset or within a 2D projection of a 3D environment in
a desktop browser window. The same 3D content is available in
AR, and ARENA provides mechanisms to simplify camera pose
registration (see Section 3.2). Some example projects built using
ARENA are shown in Figure 1 (more examples later in Section 4).

Core to our goal of scalability, ARENA organizes content into
a set of Scenes that are hosted by local servers that form a Realm.
Realms host services including web servers for static content, a
Publish-Subscribe messaging bus for real-time data distribution, and
a resource manager that monitors and dispatches applications. They
provide natural spatial and/or organizational boundaries for those
who want to host their own servers. A Scene is an abstraction that
contains a group of related virtual assets like 3D objects, configura-
tion parameters, and applications with shared end-points that allow
user interactions. Scenes group together applications and users in
a physical and/or virtual environment, and multiple Scenes can be
overlaid simultaneously. For example, in our earlier public space
scenario, there might be Scenes for each application. All live inter-
actions in ARENA, like graphical updates, sounds, or I/O events are
sent as commands over the Realm’s common PubSub bus. ARENA

also provides a Persistent Data Store that tracks the latest state of
any objects marked as persistent that can be retrieved by clients first
joining a Scene. A token-based user management system provides
users with access tokens that define their access within the Scene.

Based on our set of collaborative XR framework requirements,
we first evaluate ARENA’s viability as an XR programming envi-
ronment in terms of client-side performance as well as the ability
for the backend to scale. We benchmark frame rate as a function of
increased graphical complexity on a variety of modern platforms.
We also evaluate the impact of load on interaction latency and show
an average end-to-end response time for network-connected applica-
tions below 20ms on local wireless networks and above 40ms in the
cloud. ARENA’s topic structure layout was designed to scale with
PubSub broker clustering, and it uses several extensions for captur-
ing network graphs and provides federated access control. We show
the ability for Scenes and Realms to isolate and scale environments
with Scenes supporting hundreds of users within a Realm, and a
Realm supports tens of thousands of Scenes. We also discuss how
different organizations can federate Realms to support Internet-scale
interactions. ARENA is currently running at multiple universities,
each with a Realm that can share Scenes as needed. On the backend,
we present several micro-benchmarks addressing security runtime
overhead, end-to-end application latency across a number of network
interfaces, and typical CPU, memory, and bandwidth profiles as ap-
plication complexity and number of users increase on the system.
Finally, we discuss several example applications, supporting tools,
and an example Python Application Programming Interface (API)
that can be used for writing programs.
In summary, our main contributions are:

1. The design of a framework for developing scalable collabora-
tive Web XR applications including: (1) a geospatial lookup
service, (2) a persistent data store, (3) an authentication and
access control system, (4) a Web client front-end, and (5) a
scalable PubSub architecture.

2. A distributed runtime that hosts network-connected applica-
tions near users and/or data sources.

3. An evaluation of client performance, security overhead, and
scalability of our framework.

4. An open-source implementation with a discussion of various
example projects that we believe could support and amplify
much of the related work in collaborative interfaces.

2 RELATED WORK

In this section, we review four main categories of related work: (i)
Browser support for XR, (ii) tools to facilitate development and
authoring of XR applications, (iii) previous approaches for scal-
ing large virtual environments, and the Publish/Subscribe (PubSub)
model and finally (iv) tools developed for XR collaboration.

2.1 AR Browsers
Early work on AR Browsers started in the late 90s through the
early 2000s [7, 11, 14]. Argon [20] was perhaps the most notable
example of a mobile AR browser, proposing the standardization of
a platform to support XR applications and freeing the developer
from many underlying AR technical details. It introduced the idea
of content channels that can be displayed concurrently, something
our work also supports through ARENA Scenes. Today, thanks
to WebXR [46], we have access to standard APIs, allowing us to
adapt, with minimal changes, to different display capabilities and
experiences. ARENA benefits from the Web application model,
including scalability, no installation, and a large developer base
(consequently, many projects to draw from). Above the browser
layer, we leverage A-Frame [25], an Entity-Component-System
(ECS) architecture used to facilitate the development of primarily
VR applications, but that we also use in AR. A-Frame is built on
three.js [40], a 3D library which uses WebGL [33] to render content.

conix.io

Viewer Devices

A-Frame

three.js

WebGL

WebXR

ARENA Web Client

ATLAS Geospatial
Directory

ARENA Realm

ARENA Realm

ARENA Realm

Persistence
Data Store

ARENA
Services

Web Server
(Static Content)

Headless
Devices

WASM Runtime

PubSub

HTTP/ REST

ARENA Scene

Display

ARENA Realm

WASM Runtime

Apps: e.g. scene
behavior

Apps: e.g. sensor
data processing

Apps: e.g.
distributed
physics

ARENA Browser
Stack

A-Frame

three.js

WebGL

WebXR

ARENA Web Client

Persistence
Data Store

ARENA Services

Web Server
(Static Content)

Auth / ACL

ARENA
Standalone
Stack

WASM Runtime

PubSub

HTTP/ REST

ARENA Scene

Display

WASM Runtime
WASM Runtime

Apps: e.g. scene
behavior

Apps: e.g. sensor
data processing

Apps: e.g.
distributed physics

Auth / ACL

ARTS (Runtime Supervisor)

WASM Runtime

Figure 2: ARENA Overview. Realms represent a geographically distinct set of resources that coordinate over a common message bus.

Currently, WebXR-capable browsers are available in platforms such
as Pixel 3, Pixel 4, and many other ARCore-enabled devices [28],
Oculus Quest [37], or Microsoft Hololens [35]. We imagine the
number of WebXR-supported platforms will continue to grow.

2.2 Native Development and Authoring

ARKit and ARCore [24, 29], from Apple and Google respectively,
ease the task of creating experiences for iOS and Android devices
(many headsets on the market are Android devices). Adobe also re-
cently introduced Aero [23] to create AR experiences. Nevertheless,
a significant number of XR applications are created in platforms
originally meant for 3D game development, such as Unity or the
Unreal Engine [26, 41]. Unfortunately, these common development
platforms often neglect interaction and collaboration between physi-
cally co-located or remote users. Other important services for AR
applications, such as geo-referencing content or access control, are
often ad hoc solutions left to the developer. ARENA proposes a uni-
fied platform, advancing solutions that game development platforms
can also adopt. Beyond just the networking interconnect, game ar-
chitectures assume a single entity controlling/developing each game
and don’t have to deal with the same (hot loadable) programmability
and security issues that crop up in metaverse-style systems.

2.3 Server and Communication Scaling

Modifiable virtual worlds (MVEs), such as Second Life and
Minecraft, and networked games share some attributes with our
architecture and are relevant context for this work. We note, how-
ever, that one of our main goals is to support interaction between
co-located users, something important for AR applications that re-
quire pockets of locality. This contrasts with MVEs and networked
games, which aim to enable a single large virtual world with many
networked users across different geographical areas.

Traditional networked games often exploit the fact that the game
provider is a single author of the content, which makes it easier
to do world partitioning or pre-computations of visibility and 3D
models [6]. More applicable to our scenario (content not controlled
centrally) is another common technique of performing interest man-
agement to optimize the flow of data [19]. Other examples include
systems that deliver different levels of detail based on computed met-
rics (combining proximity, recent interaction, and other aspects) [2].
This later work ([2]) also proposes to predict user state based on
previous observations (dead reckoning). Many networked gaming
systems, including popular MVEs such as Minecraft, use replicated,
non-communicating game instances, which do not scale past a few
hundred users [45].

One fundamental piece of our architecture is the Publish/Sub-
scribe (PubSub) model, which aids in streamlining interest manage-
ment by creating a topic hierarchy that partitions and isolates locally
interacting users. PubSub allows disseminating information be-
tween data producers (publishers) and data consumers (subscribers),
where publishers forward their data through brokers. PubSub is a
central piece of many IoT and cloud infrastructures, and we can
find many popular systems today, such as Google Cloud’s Pub/-
Sub [30], Apache Kafka [15], and MQTT [18, 31]. Peer-to-peer
alternatives [36] have some scaling advantages in that Scenes can be
completely independent, but have drawbacks associated with access
control and per-Scene capacity (often a fraction of what is possible
in a centralized model).

Load balancing users and topics among brokers is a critical aspect
in the design of a distributed PubSub architecture [5]. We leverage
users’ geographic locality to connect clients to the nearest broker
cluster and load balance between the brokers inside a cluster. We
also partition the PubSub hierarchy to manage traffic across brokers
and clusters and evaluate its performance in Section 5.4.

2.4 XR Collaboration Tools
We have seen an explosion of social VR platforms including Rec
Room [39], AltspaceVR [39], and even Web-based platforms such as
Facebook Spaces [27], VRChat [42], and Mozilla Hubs [17]. While
ARENA can be used for multi-user VR worlds, it was primarily
designed for AR. Significant prior work looked into collaborative
AR/VR tools for writing and sketching on whiteboards [10], author-
ing mechanical models [1, 49], information analysis [4], architec-
tural discussions [12], sharing VR experiences with multi-modal
displays [8], promoting cooperation amongst different organiza-
tions [21], and many more. We believe ARENA promotes the rapid
development of similar tools by providing the underlying infras-
tructure for collaborative XR. We show examples of these types of
applications built with ARENA in Section 4.

3 SYSTEM ARCHITECTURE

Figure 2 presents an overview of ARENA1. A directory service,
called Atlas, allows users to find nearby content based on coarse
location and then supports managing the data needed to link Scene
content with the physical world (see 3.2). As users find local content,
they are handed off to a Realm, which is a server (or group of
servers) that hosts ARENA 3D content and services. Channeling
interactions through local/nearby Realms helps to improve latency-
sensitive interactions. Realms connect hardware components like

1See documentation and source links at https://arenaxr.org/

https://arenaxr.org/

AR Scene

Scene Root
realmID/s/ndId/sceneID

User1 Camera
realmID/s/nsID/sceneID/camObjID

User2 Camera
realmID/s/nsID/sceneID/camObjID

Robotic Arm
realmID/s/nsID/sceneID/objID

Pubsub Scene Graph

Figure 3: Objects in an ARENA Scene are implicitly networked
over a PubSub bus, where each object is controlled by a topic end-
point. The topic hierarchy is partitioned by Realm (RealmID), owner
name space (nsID), Scenes (sceneID) and objects within the Scene
(camObjID or objID).

viewing devices, such as headsets, mobile phones, or tablets, and
other headless devices embedded in the environment (e.g., cameras
and other sensors used for localization and environment awareness).
Realms also include a set of ARENA services (message bus, content
server, persistence, runtime manager) to support devices in that
geographical area. Most services expose REST APIs to, for example,
query current state or permissions, or create access tokens.

User devices connected to ARENA can not only show 3D content,
but also host hot-pluggable applications. We created a common
runtime to support sandboxed code launched from any connected
target (see Section 3.3). We leverage modern WebXR-capable
browsers to support diverse platforms and rendering capabilities,
and the browser software in Figure 2 also depicts several existing
frameworks we used: A-Frame [25], three.js [40], and WebGL [33]).

3.1 ARENA Scenes
ARENA Scenes include 3D content, configuration parameters, ap-
plications with shared end-points that allow user interactions, and
information about markers that might serve as location anchors to
the Scene. Scenes exist within a tree-like hierarchy with config-
urable access control and are often attached to a physical location.
Using a Web analogy, the Realm is like a (local) webserver and the
Scene is like a particular Web application at a URL end-point.
Scene Objects: ARENA Scenes are a collection of Entities to
which Components can be attached, following A-Frame’s Entity-
Component-System (ECS) architecture [25]. We support the ma-
jority of A-Frame’s primitives (e.g., geometries like boxes, circles,
spheres) and components (attributes that can be attached to objects,
such as position, rotation, material, sound). We also added ARENA-
specific components for AR markers, programs, networked events,
and options. All ARENA objects have well-defined schemas, which
are the basis for the over-the-wire message format shown in Fig-
ure 4b and are transmitted over the PubSub. All messages have
an object id, a type, and an action (create, update, delete).
Attributes in data are the object-specific attributes and compo-
nents. The example shows a box geometry with depth, height,
and width attributes, position and rotation components, and
an ARENA-specific AR Marker component. Figure 4a shows a
Web interface developed to make simple edits to a Scene, with a
typical Scene object list, including Scene options, a program, lights,
and several GLTF models. We imagine more advanced interfaces
could be developed to create Scenes, and show later (Section 4) an
example of an application for interactive 3D authoring.
Scene Loading: Scenes are loaded akin to Web applications within
a Web browser. However, unlike most standard Web browsers, it is
possible to simultaneously view a composition of multiple Scenes
without switching between tabs. In XR, a user might have access to
one or more Scenes in the same physical area that can be layered
within an XR browser session. When the Scene is loaded, its current
state is fetched from a data store service that tracks the persisted

state of the Scene (see Section 3.4). Compositing Scenes together in
a single view approximates how people naturally interact with the
physical environment (as opposed to manually switching tabs).
Real-time Updates: Once loaded, each of the 3D assets in a Scene
are then updated in real-time over the Realm’s local PubSub bus. For
example, if an application changes the color of a cube, this would be
captured in a message over the bus. Figure 3 exemplifies how a 3D
Scene is represented. Each object in a Scene is managed by a topic
end-point on the PubSub bus, making them “implicitly“ networked.
When a user moves their camera or clicks on an object, these updates
and events are transmitted as messages. This network transparency
allows any number of applications and users running from different
devices to interact seamlessly within the 3D environment. As shown
in Figure 3, users can see an avatar representation of other users in
AR/VR as their camera pose is being published.
Access Control: Each user is given a token which defines read-
/write access to topics within the Scene structure. This mechanism
allows for very granular control over the objects in a Scene. For
example, we can make certain objects invisible to a user by not
granting read access to that particular object in the PubSub struc-
ture. For simplicity, we currently use Scenes as our basic unit of
access control. We have defined two basic roles for users in a Scene:
editor and viewer, and Section 3.4 describes the access control and
authorization service.

3.2 Anchoring to Reality

ARENA provides several mechanisms to help streamline the manage-
ment and sharing of anchor data as well as simplifying the process of
combining multiple tracking technologies into a uniform coordinate
system. As previously mentioned, Scenes can be registered and
discovered by the Atlas service. Atlas operates in a hierarchical
manner much like the Internet’s Domain Name Service (DNS), but
using a mixture of GPS coordinates, UUIDs, and Scenes instead of
domain names. UUID markers can be embedded into QR codes,
BLE beacons or other digital markers (WiFi, LTE tower, etc). At-
las can also provide absolute and/or local coordinates for markers
that are associated with scenes. For example, a user could scan a
QR code or read a BLE beacon which provides a UUID that maps
to a GPS coordinate along with any Scenes containing that GPS
coordinate. Atlas stores a GPS location for each Scene along with
a 3D bounding polygon. The GPS location is typically assigned
to the origin of the Scene’s local coordinate system. A user can
perform followup queries to Atlas for assets that fall within each
Scene. For example, a Scene might contain a number of AprilTags
(low bit-density tracking markers [47]) that have GPS coordinates
as well as local coordinates referenced from the Scene’s origin. It is
worth noting that a Scene’s address can be used to form a URL for
virtual environments that have no physical location.

Since Atlas is a public facing entity that needs administrative
management, ARENA also supports the ability to store location data
within a Scene by attaching real-world properties to objects. Fig-
ure 4b shows an example of how a box object in a scene can have an
AR marker property attached to it. This simplifies the common case
where a developer builds a local Scene and wants a quick way to
manage beacon data annotations for localization systems. AR mark-
ers can be set as ‘static’ or ‘dynamic’ to determine if clients should
use them for relocalization or if clients should provide location in-
formation for the tag. While we wait for WebXR anchor support in
released browsers [32], our current client can decode AprilTags [47]
in browsers that allow camera access (e.g., Mozilla WebXR Viewer).
If the client decodes a static tag, it uses the location data to compute
the pose of the device’s camera. If the tag is dynamic (and the client
has a confident fix on its location), it publishes its estimate of the
tag location to that object. In this way, multiple users in a space
can update and share the location of dynamic tags. Since these tags
are attached to objects, this naturally updates object positions and is

(a) Scene builder Web interface.

{ "object_id": "abox",

"persist": true,

"type": "object",

"action": "create",

"data": {

"object_type": "box",

"depth": 1,

"height": 1,

"width": 1,

"position": { "x": 1, "y": 1, "z": 1},

"rotation": { "x": 0, "y": 0, "z": 0},

"armarker": {

"lat": 40.4432,

"lon": 79.9428,

"markerid": "1",

"markertype": "apriltag_36h11",

"size": 150,

"ele": 200

}

} }

(b) Message and Object definition.

Figure 4: Simple Scene builder and ARENA message/object definition example.

Import arena python library

from arena import *
Init library, connect to scene

scene = Scene(host="arenaxr.org", scene="example")
@scene.run_once # run once; @scene.run_forever(interval_ms) runs periodically

def main():
Create models; Moon model is a child of the Earth

earth = GLTF(object_id="model-earth", position=(0, 0.1, 0),
scale=(10, 10, 10), url="models/Earth.glb")

moon = GLTF(object_id="model-moon", position=(0, 0.05, 0.6),
scale=(0.05, 0.05, 0.05), url="models/Moon.glb", parent="model-earth")

Add models to scene

scene.add_object(earth)

scene.add_object(moon)

Define animation; Earth (and Moon, as it is a child) rotate together

scene.update_object(

earth,

animation=Animation(
property="rotation",

end=(0,360,0),

loop=True,

dur=20000,

easing="linear"))

Start tasks

scene.run_tasks()

Figure 5: Sample Python script to create a Scene with Earth and
Moon models rotating together.

reflected across all users and programs. User cameras and rigs can
also be updated by external tracking systems. For example, we have
a Python agent that converts OptiTrack [38] motion capture objects
into ARENA position updates. If you target those outputs to specific
user cameras or objects, they are automatically localized within the
scene. This seamlessly works side-by-side with devices that use
optical tags or even UWB localization. We have a number of helper
applications that leverage different localization systems to help build
tag maps (e.g., OptiTrack can be used to calibrate AprilTags within
a shared space). Again, this is an example where the implicitly
networked nature of all objects dramatically simplifies merging data
from multiple sensing modalities.

3.3 Application Runtime

ARENA applications are compiled into WebAssembly (WASM),
an open standard that defines a portable binary-code format for
executable programs, currently supported by all major Web browsers.
WASM programs are run in a secure sandbox and have been gaining
traction outside of the browser as a lightweight and secure option
for serverless-style computing [3, 43]. There are compilers for many
languages that target WASM.

ARENA includes a WASM runtime environment for browser-
capable devices that leverages the already available browser infras-
tructure, whereas other headless compute elements run a standalone
WASM runtime. We are currently developing WASM runtimes
in both Linux-capable devices and even dispatch Ahead-of-Time
(AOT) compiled WASM to microcontrollers2. Our WASM runtime
accepts requests to execute programs, provides sandboxed execution
with access to (also sandboxed) networked resources, and manages
the WASM programs’ lifetime, including live migration capabilities

(i.e., context swap across devices). The WASM runtime provides
a basis for agile programs that operate in the dynamic, distributed
computing contexts we imagine for future XR applications. It is
an enabler for ARENA applications that can span cloud, edge, and
device platforms in a network transparent manner. We are also
developing a program manager for Scenes, which we call init3D,
to provide facilities to manage programs interactively from within
Scenes. Section 3.4 describes the ARENA Runtime Supervisor
(ARTS), which manages programs in a Realm.

We developed a Python library to facilitate the development of
ARENA applications2. These applications can be sandboxed in the
WASM runtime, currently with limited library support due to the
still immature support for Python in WASM toolchains. We believe
the Python library provides a very accessible development option for
ARENA applications. Our current API allows us to create and update
objects in a Scene, define animations, and set up callbacks on events
and timers. The library provides a scheduler and a design pattern
familiar to game developers, which includes decorators to create
one-shot, periodic, and delayed (start after a given time) tasks. Any
entity represented in Python is automatically updated upon arrival
of network messages, and we provide calls to load any preexisting
Scene content upon startup. A simple illustrative Python script that
loads GLTF models of the Earth and Moon and rotates them together
is shown in Figure 5.

3.4 Services

PubSub Message Bus: The message bus is supported by a MQTT
Mosquitto broker [18], modified to keep track of connected clients
and data flows. This is organized into a graph that is available
to users and, more importantly, to the runtime supervisor, ARTS
(see the following paragraph). The broker is also configured with a
JWT plugin that implements the PubSub ACL on the topic structure
(more details later in this section), and we use Mosquitto’s bridging
to create clusters of brokers as detailed and evaluated in Section 5.4.
ARENA Runtime Supervisor (ARTS): By leveraging the WASM
runtime and resource monitoring integrated into the PubSub bus,
the ARENA Runtime Supervisor (ARTS) manages the heteroge-
neous compute resources of an ARENA realm2. ARENA Scenes
include program objects that specify how a program is started. As a
user loads an ARENA Scene, program objects originate requests to
ARTS, which, in turn, will forward these requests to one of the avail-
able runtimes that previously indicated its availability and compute
resources. ARTS currently implements simple scheduling policies,
such as (runtime) round-robin or least loaded (runtime), but it will
intelligently respond to available networking and compute resources,
quality-of-service, and security policies as we develop its capabil-
ities. While compute placement is not the focus of this work, we

2https://github.com/conix-center/

https://github.com/conix-center/

(a) Tic-Tac-Guac (b) AR Authoring (c) Facial Avatars (d) Robot Control

(e) XR Telepresence 1-2 (Real World AR) (f) XR Telepresence 2-2 (3D Scan VR) (g) VR Poster Presentation

Figure 6: ARENA Applications. Figure 6a shows the AR POV of User A playing a game (center) with User B using an AR tablet (left).
Figure 6b shows the AR POV of User A, editing a 3D model (center) with a movable control panel (right). Figure 6c shows the VR avatar/audio
conference POV of User A (top-left, landmarks in blue) with Users B/C/D as translated facial avatars (center). Figure 6d shows the AR POV of
a sensing robot and mini-AprilTag (center) with a Scene anchor AprilTag (top-left). A telepresence conference is shown from User A’s AR
tablet POV in Figure 6e and also from User A’s VR POV in Figure 6f. Figure 6g shows the VR POV of User A (top-left) in User B’s (right)
poster session with red laser pointer (center) and Users C/D (left). Some images trimmed for space.

provide a preliminary study of its impact in Section 5.
Persistence Data Store: Once a user connects to a Realm and loads
a particular Scene, a browser is given all of the 3D objects within
the scene. This content is initially requested from a Persistence Data
Store that tracks the latest state of any persistent objects (not all
objects need to be persistent).
Authentication and Access Control: The root of trust for an
ARENA Realm derives from the Access Control List (ACL) permis-
sions managed by the Authentication and Access Control service.
Users are authenticated using OAuth, and the service emits JSON
Web Tokens (JWT) based on permissions for which Scene users
control or grant control as an ACL. PubSub brokers and other ser-
vices (e.g., the persistence datastore) use JWT to enforce access
control. PubSub brokers accept and validate these tokens and use
them to allow/disallow publish or subscribe access. We use the
PubSub topic structure to sculpt and whitelist which 3D objects,
chat, runtime, and other communications bind this ACL to the user’s
JWT. To prevent clients from elevating their privileges by publishing
malicious messages on the topics they are allowed to publish, we
perform client-side checks on message reception and discard invalid
messages. Section 5.1 shows that security overhead is minimal.
Web Server: Static content such as 3D models, images, sound, and
the basic Scene skeleton are fetched from a Web server. ARENA
Scenes take advantage of this basic Web infrastructure to facilitate
the delivery and access to content, which also allows us to leverage
common Web scaling techniques like CDNs.

4 APPLICATIONS

Over the course of designing ARENA, we had several developers
from a variety of backgrounds build an assortment of applications.
These programmers ranged from graphics and animation experts
and students learning about XR design to low-level computer sys-
tems programmers with less experience related to graphical systems.
During this time, we iterated on our programming API to help target
common design patterns. Initially, our ARENA library was a thin

Figure 7: Connection, publish, and subscribe security (TLS+ACL)
overhead, compared to a broker with no security enabled. Box plot
shows minimum, Q1, median, Q3, and maximum.

layer above the PubSub message protocol that we implemented in
C and in Python. Over time, we moved more toward an ECS ar-
chitecture with a Python library that supported the most common
loop and callback functions. In the following section, we describe a
few applications developed using ARENA and highlight trade-offs
compared to more traditional systems.
Large-scale VR Chat: As an extension of the collaborative user-
presence feature of ARENA, we integrated the open source Jitsi [22]
videoconferencing stack into our main JavaScript Web stack to
enable user video chats in VR (Figure 6g). We have experimented
with events having more than 80 users in a single Scene. User
video feeds are rendered on 3D cubes, and their audio feed volumes
are automatically adjusted based on camera movement and stereo
position in 3D. We have hosted multiple VR conferences, poster
sessions, and interactive 3D demonstrations using VR chat.
AR Authoring: The AR Builder (ARB) tool (Figure 6b) was written
using the ARENA Python library to provide interactive 3D authoring.
ARB reacts to MQTT-published user camera positions to render a
rotating 3D control panel of buttons to create, delete, rotate, move,

Video (30 FPS @ 1080p) Audio (2 chan, 16bit, 44KHz) Object Updates (10Hz) User Motion (10Hz)
Raw H.264 Raw 128bit mp3 Raw 80% RLE Raw 80% RLE

Throughput (Bytes/Second) 18,662,400 889,856 176,400 16,384 1,250 250 1,250 * n2 250 * n2

Streams Norm. to Video Stream 0.005 1 5 54 711 3,559 26 105
Streams Norm. to Raw Video 1 209 1,057 11,390 149,299 746,496 386 1,531
of Streams (Users) at 10Mbit/s 0.007 1.4 7 76 1,000 5,000 31 125
of Streams (Users) at 100Mbit/s 0.067 14.05 70 762 10,000 50,000 100 396

Table 1: Typical messaging data rates compared to Audio and Video streaming for graphical updates and user camera updates.

Figure 8: Frames per second (FPS) across five different devices as
we increase the number of triangles in the 3D scene.

stylize, stretch, and manipulate 3D models and primitives in AR.
It can be launched in any scene for AR or VR to place models in
physical and virtual spaces.
MR Games: Tic-Tac-Guac (Figure 6a) presents a 9-block Tic-Tac-
Toe game where users in MR can click a block on their turn to
change a block either blue or red. The game ends with all blocks
falling and bouncing off the ground plane based on our collision and
physics engines (also network attached agents).
Facial Avatar: We added a facial landmark (Figure 6c) detection
algorithm [13] and a landmark-to-head pose estimator. Both of these
are compiled to WebAssembly and run in the browser in an ARENA
Scene. The user’s facial landmarks and head pose are published
across our MQTT network, and can be received by an ARENA
Python program. The Python program employs a custom-trained
machine learning model which generates an emotion vector using fa-
cial landmarks received. The program publishes a rigged, 3D avatar
head that mirrors the user’s mouth movements and emotions. For
this, Jitsi is disabled, allowing for live facial and mouth movements
while speaking, without the need to share video.
XR Sensing Robot: Figure 6d shows a robot click-and-control ap-
plication allowing users to guide a small robot. We used the infrared
and color sensing robot coding platform Sphero RVR, mounted with
a Raspberry Pi (RPi). We wrote an application for Sphero integrating
our Python library to give the robot a planned direction to travel,
which it then reconciles with real-world sensors and reports its ob-
servation of obstacles in real-time to the ARENA scene. There is a
global AprilTag to localize the tablet and a small dynamic AprilTag
on the robot to give it outside-in location updates. We ran the appli-
cation on the RPi to demonstrate self-contained compute, infusing
physical sense with virtual sense.
XR Telepresence: We leveraged the ARENA network and Jitsi to
create a Mixed-Reality Telepresence conference (Figures 6e, 6f). For
this we scanned a campus conference building with a Matterport [34]
scanner and uploaded the resulting model to an ARENA Scene.
Three VR users entered the 3D Scene as video-cube avatars. Then,
a user physically present in the same conference building used an
AR tablet to enter the Scene, anchored in place with an AprilTag.
The AR user sees and hears the three remote VR users, and the
remote VR users see and hear the other VR and AR users in a VR
scanned version of the building. Again, this highlights the simplicity
of creating cross-domain interactive network applications.

5 EVALUATION

To put the network bandwidth involved in our collaborative XR
framework into context, we compared typical audio and video
streaming with graphical and user camera updates in an ARENA
Scene as shown in Table 1. Camera movements must be delivered
to all users in a Scene, and thus grow quadratically. For comparison,
a standard Netflix video stream consumes the same bandwidth as
over 700 objects updating at 10Hz each. Later in this section, we
profile latency, bandwidth, and memory in more detail as the number
of users increases. The remainder of this section will benchmark
the overhead of the security mechanism introduced in ARENA’s
PubSub, browser rendering performance, end-to-end latency, and
PubSub broker clustering.

5.1 Security Overhead
To evaluate the impact of supporting secure channels and PubSub
access control (see access control and authorization in Section 3.4),
we instrumented our MQTT brokers and profiled the time to handle
a client connection, a message publication, and a topic subscription.
The resulting delays compared to a broker with no security enabled
are shown in Figure 7. Connection time is significantly higher,
mostly due to the transport-layer security (TLS) connection setup.
ACL-related checks increase publish and subscribe mean execution
time by 24% and 17%. Relative to communication and application
processing delays, on the order of milliseconds, these are very small.
Later in this section, we see that brokers can be scaled horizontally,
which also helps amortize these overheads.

We also profiled the browser client code to measure the relative
overhead of client-side message parsing and validation, including
security checks to ensure users do not abuse their permissions in a
Scene. We profiled an application that created a Scene with more
than 12.5 thousand triangles, updating objects through PubSub at
70Hz, and observed that parsing and validation accounted for about
2% of the total execution time of the code.

5.2 Rendering Performance
While improving rendering performance is not the aim of this work,
it is an important metric to show the feasibility of using current
WebXR-enabled browsers in practice. To benchmark the rendering
capabilities of modern browsers, we collected the frames per second
(FPS) across five different devices as we increase the complexity of
the scene rendered, as shown in Figure 8. We see that it performs
surprisingly well even on low-compute platforms like Hololens 2. It
is worth noting that WebXR is already compatible with some edge
rendering systems like AirLink on the Oculus Quest 2.

5.3 End-to-End Latency
This section will start by showing the effect of compute placement
under light load on a single broker given different network inter-
connects. We then show how the latency changes as we increase
broker load. Finally, we show how using multiple brokers can isolate
Scenes and scale to support many users.
Compute Placement: Let us look at the achievable latency under
three basic placement scenarios of interactive agents controlling the
behavior of a networked scene: (i) on a node connected across a
local wired network, (ii) across a wireless network, and (iii) placed

(a) Local wired network. (b) Local wireless network. (c) Cloud.

conix.io

Clusters (also bridged)
(#clusters)

Client

Client
Client

Client
Client

Scenes
(#scenes)

Users
(#users)

Clusters (also bridged)
(#clusters)

Client
Client

Client

Scenes
(#scenes)

Users
(#users)

Two brokers per
cluster

(d) Broker cluster setup.

Figure 9: End-to-end latency across three different placements, and broker cluster experimental setup.

(a) End-to-end latency and CPU utilization vs broker load.

(b) Bandwidth and memory vs broker load.

Figure 10: Latency, bandwidth and memory as broker load increases.

in the cloud. We created an agent using the ARENA Python library
that reacted to user inputs in a Scene. The Python agent subscribes
to the object’s events to receive click events, which trigger a location
update of an object in the Scene (this update is published to the
corresponding topic providing access to the object).

We measured the end-to-end latency from the click event to when
the update is received back to the client, shown in Figure 9. While
the placement of the Python agent impacts the end-to-end delay,
observe that even when placed at the cloud (nearby AWS), the
end-to-end delay is often under 40 ms, which can support many
interactive applications. Applications requiring very low latency
(e.g., a networked physics engine) can be supported by placing the
apps/services near users, and we can observe this in Figure 9a, with
latencies under 10 ms. Our architecture was designed to allow such
compute/delay trade-offs, and the placement of agents that control
our networked Scenes is the subject of further research.
Broker Load: We now consider the load on a single broker and its
impact on the end-to-end latency of networked interactive agents.
We placed a similar Python agent (from the previous paragraph) on
the local network and measured the end-to-end delay as we increased
the broker load by adding users to the Scene. Each user placed in
the Scene was configured to send position updates (simulating user
movement) at 10Hz and subscribed to updates from everyone else.
The resulting end-to-end delay, memory, and bandwidth as a function
of the load is presented in Figure 10. We can see the broker is at
92% CPU utilization with 150 users, and, when we get to around
160 users, the broker is CPU-bound, maintaining a throughput of 80

Figure 11: Broker cluster throughput. All clusters have two brokers.

MB/s, while memory starts to increase due to queuing.

5.4 Broker Clustering
We use MQTT brokers’ clustering capabilities to scale PubSub by
carefully managing both where clients connect and the traffic across
brokers and between clusters. Our current setup uses Mosquitto [18],
which is designed to use a single CPU but can scale to multiple CPUs
by bridging brokers together (even on a single machine). In our
clustering configuration, depicted in Figure 9d, we bridge brokers
to form clusters inside a machine such that can fully utilize the
available CPUs and network bandwidth. To isolate traffic between
brokers and clusters, we make sure that Scenes and associated event
traffic are disjoint in the PubSub topic tree. Further scaling, isolation,
and security can be achieved with multiple Realms.

Figure 10 (previous section) shows that a single broker becomes
CPU-bound with 160 users. Thus, increasing the cluster to two
brokers will allow reaching the network capacity available in the
same machine (this is the scenario: 1 Scene, 1 cluster, shown in
Figure 11). Scaling further requires more network capacity, which
we can achieve by, for example, adding more clusters or splitting
users across scenes. We can see this effect in Figure 11, showing
the system throughput for four different variations of the number
of Scenes and clusters (all clusters have two brokers). Observe the
difference from a single broker (Figure 10) to a cluster with two
brokers. With a two-broker cluster, we are bound to 125 MB/s (the
maximum bandwidth available) which is reached at 180 users. With
two clusters, we are bound to 2x125 MB/s, and isolation between
scenes allows around 40% more users. The scaling of multiple
clusters is further shown with three clusters, which reaches 800
users at 3x125 MB/s.

6 CONCLUSION

This paper presents ARENA, a multi-user, collaborative framework
for WebXR applications. ARENA simplifies development with the
ability to hot-load content within an implicitly networked environ-
ment. Our design allows hosting and deploying applications based
on the locality of users and resources within a scene, which helps
reduce latency for interactive XR applications. We believe ARENA
enables a new class of highly connected XR capabilities and opens
future work related to compute placement, security, programming
and authoring models, and perhaps even new XR application ecosys-
tems.

ACKNOWLEDGMENTS

This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. This work would not have
been possible without many collaborations across the CONIX Center.
The authors would also like to thank John Balash and CMU’s En-
tertainment Technology Center (ETC) for their help with designing,
debugging and building ARENA applications.

REFERENCES

[1] O. Bergig, N. Hagbi, J. El-Sana, and M. Billinghurst. In-place 3d
sketching for authoring and augmenting mechanical systems. In 2009
8th IEEE International Symposium on Mixed and Augmented Reality,
pp. 87–94, 2009. doi: 10.1109/ISMAR.2009.5336490

[2] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Se-
shan, and X. Zhuang. Donnybrook: Enabling large-scale, high-speed,
peer-to-peer games. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, SIGCOMM ’08, p. 389–400.
Association for Computing Machinery, New York, NY, USA, 2008.
doi: 10.1145/1402958.1403002

[3] D. Bryant. Webassembly outside the browser: A new foundation for
pervasive computing. https://icwe2020.webengineering.org/
wp-content/uploads/2020/06/ICWE2020_keynote-David_

Bryant.pdf, 2020. Online. Accessed: May 2021.
[4] M. Cavallo, M. Dholakia, M. Havlena, K. Ocheltree, and M. Podlaseck.

Dataspace: A reconfigurable hybrid reality environment for collabora-
tive information analysis. In 2019 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR), pp. 145–153, 2019. doi: 10.1109/VR.
2019.8797733

[5] C. Chen, H.-A. Jacobsen, and R. Vitenberg. Algorithms based on
divide and conquer for topic-based publish/subscribe overlay design.
IEEE/ACM Transactions on Networking, 24(1):422–436, 2016. doi: 10
.1109/TNET.2014.2369346

[6] D. Cohen-Or, Y. Chrysanthou, C. Silva, and F. Durand. A survey
of visibility for walkthrough applications. IEEE Transactions on Vi-
sualization and Computer Graphics, 9(3):412–431, 2003. doi: 10.
1109/TVCG.2003.1207447

[7] S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster. A touring ma-
chine: prototyping 3d mobile augmented reality systems for exploring
the urban environment. In Digest of Papers. First International Sympo-
sium on Wearable Computers, pp. 74–81, 1997. doi: 10.1109/ISWC.
1997.629922

[8] J. Gugenheimer, E. Stemasov, J. Frommel, and E. Rukzio. Sharevr:
Enabling co-located experiences for virtual reality between hmd and
non-hmd users. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, CHI ’17, p. 4021–4033. Association
for Computing Machinery, New York, NY, USA, 2017. doi: 10.1145/
3025453.3025683

[9] C. Hackl. The metaverse is coming and it’s a very big
deal. https://www.forbes.com/sites/cathyhackl/2020/07/
05/the-metaverse-is-coming--its-a-very-big-deal. On-
line. Accessed: May 2021.

[10] Z. He, R. Du, and K. Perlin. Collabovr: A reconfigurable framework
for creative collaboration in virtual reality. In 2020 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 542–554.
IEEE, 2020.

[11] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm.
Next century challenges: Nexus—an open global infrastructure
for spatial-aware applications. In Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Computing and Net-
working, MobiCom ’99, p. 249–255. Association for Computing Ma-
chinery, New York, NY, USA, 1999. doi: 10.1145/313451.313549

[12] T.-W. Hsu, M.-H. Tsai, S. V. Babu, P.-H. Hsu, H.-M. Chang, W.-C.
Lin, and J.-H. Chuang. Design and initial evaluation of a vr based
immersive and interactive architectural design discussion system. In
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
pp. 363–371. IEEE, 2020.

[13] V. Kazemi and J. Sullivan. One millisecond face alignment with an
ensemble of regression trees. 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1867–1874, 2014.

[14] R. Kooper and B. MacIntyre. Browsing the real-world wide web: Main-
taining awareness of virtual information in an ar information space.
International Journal of Human-Computer Interaction, 16(3):425–446,
2003.

[15] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, vol. 11, pp.
1–7, 2011.

[16] C. E. Lathan and G. Ling. Spatial Computing Could Be the Next
Big Thing. https://www.scientificamerican.com/article/
spatial-computing-could-be-the-next-big-thing/. Online.
Accessed: May 2021.

[17] D. A. Le, B. Maclntyre, and J. Outlaw. Enhancing the experience
of virtual conferences in social virtual environments. In 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), pp. 485–494, 2020. doi: 10.1109/VRW50115.2020.
00101

[18] R. A. Light. Mosquitto: server and client implementation of the mqtt
protocol. Journal of Open Source Software, 2(13):265, 2017.

[19] E. S. Liu and G. K. Theodoropoulos. Interest management for dis-
tributed virtual environments: A survey. ACM Comput. Surv., 46(4),
Mar. 2014. doi: 10.1145/2535417

[20] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson. The
argon ar web browser and standards-based ar application environment.
In 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, pp. 65–74, 2011. doi: 10.1109/ISMAR.2011.6092371

[21] S. Nilsson, B. Johansson, and A. Jonsson. Using ar to support cross-
organisational collaboration in dynamic tasks. In 2009 8th IEEE Inter-
national Symposium on Mixed and Augmented Reality, pp. 3–12, 2009.
doi: 10.1109/ISMAR.2009.5336522

[22] 8x8 Inc. Free video conferencing software for web & mobile — jitsi.
http://jitsi.org. Online. Accessed: May 2021.

[23] Adobe Website. Aero. https://www.adobe.com/products/aero.
html. Online. Accessed: May 2021.

[24] Apple Inc. ARKit Website. https://developer.apple.com/
augmented-reality/, May 2021. Online. Accessed: May 2021.

[25] Diego Marcos, D. McCurdy, K. Ngo, and Et al. A-Frame Frame-
work (v1.0). https://github.com/aframevr/aframe/. Online.
Accessed: May 2021.

[26] Epic Games. Unreal Engine Website. https://www.unrealengine.
com/en-US/, May 2021. Online. Accessed: May 2021.

[27] Facebook Inc. Facebook Spaces. https://www.facebook.com/
spaces. Online. Accessed: May 2021.

[28] Google Inc. ARCore supported devices. https://developers.
google.com/ar/discover/supported-devices. Online. Ac-
cessed: May 2021.

[29] Google Inc. ARCore Website. https://developers.google.com/
ar. Online. Accessed: May 2021.

[30] Google Inc. Google Cloud Pub/Sub. https://cloud.google.com/
pubsub/. Online. Accessed: May 2021.

[31] IBM. MQTT V3.1 Protocol Specification. https:

//public.dhe.ibm.com/software/dw/webservices/ws-mqtt/

mqtt-v3r1.html. Online. Accessed: May 2021.
[32] Immersive Web WG. WebXR Anchors Module. https://

immersive-web.github.io/anchors/. Online. Accessed: May
2021.

[33] Khronos Group. WebGL 2.0 Specification. https://www.khronos.
org/registry/webgl/specs/latest/2.0/, Oct 2020. Online. Ac-
cessed: May 2021.

[34] Matterport Inc. Capture, share, and collaborate the built world in
immersive 3d. https://matterport.com/. Online. Accessed: May
2021.

[35] Microsoft. Hololens Website. https://www.microsoft.com/

en-us/hololens/. Online. Accessed: May 2021.
[36] Networked A-Frame Developers. Networked A-Frame.

https://github.com/networked-aframe, June 2021. Online. Ac-
cessed: May 2021.

[37] Oculus. Quest Website. https://www.oculus.com/quest/. Online.

https://icwe2020.webengineering.org/wp-content/uploads/2020/06/ICWE2020_keynote-David_Bryant.pdf
https://icwe2020.webengineering.org/wp-content/uploads/2020/06/ICWE2020_keynote-David_Bryant.pdf
https://icwe2020.webengineering.org/wp-content/uploads/2020/06/ICWE2020_keynote-David_Bryant.pdf
https://www.forbes.com/sites/cathyhackl/2020/07/05/the-metaverse-is-coming--its-a-very-big-deal
https://www.forbes.com/sites/cathyhackl/2020/07/05/the-metaverse-is-coming--its-a-very-big-deal
https://www.scientificamerican.com/article/spatial-computing-could-be-the-next-big-thing/
https://www.scientificamerican.com/article/spatial-computing-could-be-the-next-big-thing/
http://jitsi.org
https://www.adobe.com/products/aero.html
https://www.adobe.com/products/aero.html
https://developer.apple.com/augmented-reality/
https://developer.apple.com/augmented-reality/
https://github.com/aframevr/aframe/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.facebook.com/spaces
https://www.facebook.com/spaces
https://developers.google.com/ar/discover/supported-devices
https://developers.google.com/ar/discover/supported-devices
https://developers.google.com/ar
https://developers.google.com/ar
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://immersive-web.github.io/anchors/
https://immersive-web.github.io/anchors/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://matterport.com/
https://www.microsoft.com/en-us/hololens/
https://www.microsoft.com/en-us/hololens/
https://www.oculus.com/quest/

Accessed: May 2021.
[38] Optitrack Inc. Optitrack Motion Capture Systems. https://

optitrack.com/. Online. Accessed: May 2021.
[39] Rec Room Inc. Rec Room Website. https://recroom.com/. Online.

Accessed: May 2021.
[40] Three.js Developers. Three.js Library. https://threejs.org/.

Online. Accessed: May 2021.
[41] Unity Labs. Unity Website. https://unity.com/. Online. Accessed:

May 2021.
[42] VRChat Inc. VRChat. https://hello.vrchat.com/. Online. Ac-

cessed: May 2021.
[43] WASM WG. Webassembly overview. https://webassembly.org/.

Online. Accessed: May 2021.
[44] I. E. Sutherland. The ultimate display. In Proceedings of the IFIP

Congress, pp. 506–508, 1965.
[45] J. van der Sar, J. Donkervliet, and A. Iosup. Yardstick: A benchmark

for minecraft-like services. In Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, ICPE ’19, p.
243–253. Association for Computing Machinery, New York, NY, USA,
2019. doi: 10.1145/3297663.3310307

[46] W3C. WebXR Device API. https://immersive-web.github.io/
webxr/. Online. Accessed: May 2021.

[47] J. Wang and E. Olson. Apriltag 2: Efficient and robust fiducial detection.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4193–4198. IEEE, 2016.

[48] W. Wang. Understanding Augmented Reality and ARKit, pp. 1–17.
Apress, Berkeley, CA, 2018. doi: 10.1007/978-1-4842-4102-8 1

[49] C. Weichel, M. Lau, D. Kim, N. Villar, and H. W. Gellersen. Mixfab:
A mixed-reality environment for personal fabrication. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, p. 3855–3864. Association for Computing Machinery, New
York, NY, USA, 2014. doi: 10.1145/2556288.2557090

https://optitrack.com/
https://optitrack.com/
https://recroom.com/
https://threejs.org/
https://unity.com/
https://hello.vrchat.com/
https://webassembly.org/
https://immersive-web.github.io/webxr/
https://immersive-web.github.io/webxr/

	Introduction
	Related Work
	AR Browsers
	Native Development and Authoring
	Server and Communication Scaling
	XR Collaboration Tools

	System Architecture
	ARENA Scenes
	Anchoring to Reality
	Application Runtime
	Services

	Applications
	Evaluation
	Security Overhead
	Rendering Performance
	End-to-End Latency
	Broker Clustering

	Conclusion

