
The TESLA Broadcast Authentication Protocol∗

Adrian Perrig Ran Canetti J. D. Tygar Dawn Song

Abstract

One of the main challenges of securing broadcast
communication is source authentication, or enabling
receivers of broadcast data to verify that the received
data really originates from the claimed source and was
not modified en route. This problem is complicated
by mutually untrusted receivers and unreliable com-
munication environments where the sender does not
retransmit lost packets.

This article presents the TESLA (Timed Efficient
Stream Loss-tolerant Authentication) broadcast au-
thentication protocol, an efficient protocol with low
communication and computation overhead, which
scales to large numbers of receivers, and tolerates
packet loss. TESLA is based on loose time synchro-
nization between the sender and the receivers.

Despite using purely symmetric cryptographic
functions (MAC functions), TESLA achieves asym-
metric properties. We discuss a PKI application based
purely on TESLA, assuming that all network nodes
are loosely time synchronized.

1 Introduction

Broadcast communication is gaining popularity for
efficient and large-scale data dissemination. Exam-
ples of broadcast distribution networks are satellite

∗Most of this work was done at UC Berkeley and IBM Re-
search. The authors can be reached at
adrian+@cs.cmu.edu, canetti@watson.ibm.com,
tygar@cs.berkeley.edu, skyxd@cs.cmu.edu.

broadcasts, wireless radio broadcast, or IP multicast.
While many broadcast networks can efficiently dis-
tribute data to multiple receivers, they often also allow
a malicious user to impersonate the sender and inject
broadcast packets — we call this a packet injection at-
tack. (Source-Specific Multicast (SSM, EXPRESS) is
a notable exception, and attempts to prevent this at-
tack [17, 40].)

Because malicious packet injection is easy in many
broadcast networks, the receivers want to ensure that
the broadcast packets they receive really originate
from the claimed source. A broadcast authentication
protocol enables the receivers to verify that a received
packet was really sent by the claimed sender.

Simply deploying the standard point-to-point au-
thentication mechanism (i.e., appending a message au-
thentication code (MAC) to each packet, computed us-
ing a shared secret key) does not provide secure broad-
cast authentication. The problem is that any receiver
with the secret key can forge data and impersonate the
sender. Consequently, it is natural to look for solutions
based on asymmetric cryptography to prevent this at-
tack; a digital signature scheme is an example of an
asymmetric cryptographic protocol. Indeed, signing
each data packet provides secure broadcast authenti-
cation; however, it has high overhead, both in terms of
the time required to sign and verify, and in terms of
the bandwidth. Several schemes were proposed that
mitigate this overhead by amortizing a single signa-
ture over several packets, e.g., [14, 25, 28, 33, 38, 39].
However, none of these schemes is fully satisfactory in
terms of bandwidth overhead, processing time, scala-
bility, robustness to denial-of-service attacks, and ro-
bustness to packet loss. Even though some schemes

1



amortize a digital signature over multiple data packets,
a serious denial-of-service attack is usually possible
where an attacker floods the receiver with bogus pack-
ets supposedly containing a signature. Since signature
verification is often computationally expensive, the re-
ceiver is overwhelmed verifying bogus signatures.

Researchers proposed information-theoretically se-
cure broadcast authentication mechanisms [10, 11, 12,
13, 20, 34, 35, 36]. These protocols have a high over-
head in large groups with many receivers.

Canetti et al. construct a broadcast authentication
protocol based on k different keys to authenticate ev-
ery message with k different MAC’s [7]. Every re-
ceiver knows m keys and can hence verify m MAC’s.
The keys are distributed in such a way that no coali-
tion of w receivers can forge a packet for a specific
receiver. The security of their scheme depends on the
assumption that at most a bounded number (which is
on the order of k) of receivers collude.

Boneh, Durfee, and Franklin show that one cannot
build a compact collusion resistant broadcast authen-
tication protocol without relying on digital signatures
or on time synchronization [4]. They show that any se-
cure broadcast authentication protocol with per-packet
overhead slightly less than the number of receivers can
be converted into a signature scheme.

Another approach to providing broadcast authen-
tication uses only symmetric cryptography, more
specifically on message authentication codes (MACs),
and is based on delayed disclosure of keys by the
sender. This technique was independently discov-
ered by Cheung [8] in the context of authenticat-
ing link state routing updates. A related approach
was used in the Guy Fawkes protocol for interactive
unicast communication [1]. In the context of mul-
ticast streamed data it was proposed by several au-
thors [2, 3, 5, 27, 28].

The main idea of TESLA is that the sender attaches

to each packet a MAC computed with a key k known
only to itself. The receiver buffers the received packet
without being able to authenticate it. A short while
later, the sender discloses k and the receiver is able to
authenticate the packet. Consequently, a single MAC
per packet suffices to provide broadcast authentica-
tion, provided that the receiver has synchronized its
clock with the sender ahead of time.

This article is an overview of the TESLA broadcast
authentication protocol. A more detailed description
is in a forthcoming book [30] and in our earlier publi-
cations [27, 28]. A standardization effort for TESLA
is under way in the Multicast Security (MSEC) work-
ing group of the IETF [26]. TESLA is used in a wide
variety of applications, ranging from broadcast au-
thentication in sensor networks [29], to authentication
of messages in ad hoc network routing protocols [18].

2 Background and Assumptions

TESLA requires that the receivers are loosely time
synchronized with the sender. In this section, we re-
view a simple protocol to achieve this time synchro-
nization. TESLA also needs an efficient mechanism
to authenticate keys at the receiver — we first review
one-way chains for this purpose.

2.1 One-Way Chains

Many protocols need to commit to a sequence of ran-
dom values. For this purpose, we repeatedly use a one-
way hash function to generate a one-way chain. One-
way chains are a widely-used cryptographic primitive.
One of the first uses of one-way chains was for one-
time passwords by Lamport [21]. Haller later used the
same approach for the S/KEY one-time password sys-
tem [16]. One-way chains are also used in many other
applications.

2



PSfrag replacements

s`s`−1s`−2s1s0

F (s`)F (s`−1)F (s2)F (s1)
. . .

Generate

Use / Reveal

Figure 1: One-way chain example. The sender gen-
erates this chain by randomly selecting s` and repeat-
edly applying the one-way function F . The sender
then reveals the values in the opposite order.

Figure 1 shows the one-way chain construction. To
generate a chain of length ` we randomly pick the
last element of the chain s`. We generate the chain
by repeatedly applying a one-way function F . Fi-
nally, s0 is a commitment to the entire one-way chain,
and we can verify any element of the chain through
s0, e.g. to verify that element si is indeed the ele-
ment with index i of the hash chain, we check that
F i(si) = s0. More generally, si commits to sj if
i < j (to verify that sj is part of the chain if we know
that si is the ith element of the chain, we check that
F j−i(sj) = si). We reveal the elements of the chain
in this order s0, s1, . . . , s`−1, s`. How can we store
this chain? We can either create it all at once and store
each element of the chain, or we can just store s` and
compute any other element on demand. In practice, a
hybrid approach helps to reduce storage with a small
recomputation penalty. Jakobsson [19], and Copper-
smith and Jakobsson [9] propose a storage efficient
mechanism for one-way chains: a one-way chain with
N elements only requires log(N) storage and log(N)
computation to access an element.

In TESLA, the elements of the one-way chain are
keys, so we call the chain a one-way key chain. Fur-
thermore, any key of the one-way key chain commits
to all following keys, so we call such a key a one-way
key chain commitment, or simply key chain commit-
ment.

2.2 Time Synchronization

TESLA does not need the strong time synchroniza-
tion properties that sophisticated time synchronization
protocols provide [22, 24, 37], but only requires loose
time synchronization, and that the receiver knows an
upper bound on the sender’s local time. We now out-
line a simple and secure time synchronization protocol
that achieves this requirement. For simplicity, we as-
sume the clock drift of both sender and receiver is neg-
ligible (otherwise the receiver can periodically resyn-
chronize the time with the sender). We denote the real
difference between the sender and the receiver’s time
with δ. In loose time synchronization, the receiver
does not need to know the exact δ but only an upper
bound on it, ∆, which we also refer to as the maximum
time synchronization error.

We now describe a simple protocol for time syn-
chronization, where each receiver performs explicit
time synchronization with the sender. This approach
does not require any extra infrastructure to perform
time synchronization. We present a simple two-
round time synchronization protocol that satisfies the
requirement for TESLA, which is that the receiver
knows an upper bound on the sender’s clock. Reiter
previously describes this protocol [31, 32].

Figure 2 shows a sample time synchronization be-
tween the receiver and the sender. In the protocol,
the receiver first records its local time tR and sends
a time synchronization request containing a nonce to
the sender.1 Upon receiving the time synchronization
request, the sender records its local time tS and replies
with a signed response packet containing tS and the
nonce.2

1The security of this time synchronization protocol relies on
the unpredictability of the nonce — if an attacker could predict
the receiver’s nonce, it could send a time synchronization request
to the sender with that nonce, and replay the response later to the
receiver.

2Interestingly, the processing and propagation delay of the re-
sponse message does not change δ (assuming that the sender im-

3



PSfrag replacements
t1

t2

t3 tS

tR

∆

δ

Receiver time Sender time

Figure 2: Direct time synchronization between the
sender and the receiver. The receiver issues a time
synchronization request at time tR, at which time the
sender’s clock is at time t1. The sender responds to the
request at its local time tS . In TESLA, the receiver
is only interested in an upper bound on the sender’s
time. When the receiver has its current time tr, it com-
putes the upper bound on the current sender’s time as
ts ≤ tr − tR + tS . The real synchronization error af-
ter this protocol is δ. The receiver, however, does not
know the propagation delay of the time synchroniza-
tion request packet, so it must assume that the time
synchronization error is ∆ (or the full round-trip time
(RTT)).

1. Setup. The sender S has a digital signature key
pair, with the private key K−1

S and the public
key KS . We assume a mechanism that allows
a receiver R to learn the authenticated public key
KS . The receiver chooses a random and unpre-
dictable nonce.

2. Protocol steps. Before sending the first message,

mediately records and replies with the arrival time of the request
packet), since the receiver is only interested in an upper bound
on the sender’s clock. If the receiver were interested in the lower
bound on the sender’s clock, the processing delay and delay of the
response message would matter. For more details on this refer to
the more detailed time synchronization description [30].

the receiver records its local time tR.

R → S : Nonce

S → R : {Sender time tS,Nonce}
K−1

S

To verify the return message, the receiver verifies
the digital signature and checks that the nonce
in the packet equals the nonce it randomly gen-
erated. If the message is authentic, the receiver
stores tR and tS . To compute the upper bound
on the sender’s clock at local time t, the receiver
computes t − tR + tS .

Upon receiving the signed response, the receiver
checks the validity of the signature and verifies that the
nonce in the response packet equals the nonce in the
request packet. If all verifications are successful, the
receiver uses tR and tS to compute the upper bound
of the sender’s time: when the receiver has the cur-
rent time tr, it computes the upper bound on the cur-
rent sender’s time as ts ≤ tr − tR + tS . The real
synchronization error after this protocol is δ, as Fig-
ure 2 shows. The receiver, however, does not know the
propagation delay of the time synchronization request
packet, so it must assume that the time synchroniza-
tion error is ∆ (or the full round-trip time (RTT)).

A digital signature operation is computationally ex-
pensive, and we need to be careful about denial-of-
service attacks in which an attacker floods the sender
with time synchronization requests. Another problem
is request implosion: the sender is overwhelmed with
time synchronization requests from receivers. We ad-
dress these issues in our earlier paper [27].

3 The TESLA Broadcast Authentica-
tion Protocol

A viable broadcast authentication protocol has the fol-
lowing requirements:

4



• Low computation overhead for generation and
verification of authentication information.

• Low communication overhead.

• Limited buffering required for the sender and the
receiver, hence timely authentication for each in-
dividual packet.

• Robustness to packet loss.

• Scales to a large number of receivers.

The TESLA protocol meets all these requirements
with low cost — and it has the following special re-
quirements:

• The sender and the receivers must be at least
loosely time-synchronized as outlined in Sec-
tion 2.2.

• Either the receiver or the sender must buffer some
messages.

Despite the buffering, TESLA has a low authenti-
cation delay. In typical configurations, the authenti-
cation delay is on the order of one round-trip delay
between the sender and receiver.

3.1 Sketch of TESLA protocol

We first outline the main ideas behind TESLA. Broad-
cast authentication requires a source of asymmetry,
such that the receivers can only verify the authentica-
tion information, but not generate valid authentication
information. TESLA uses time for asymmetry. We as-
sume that receivers are all loosely time synchronized
with the sender — up to some time synchronization
error ∆, all parties agree on the current time. Here is
a sketch of the basic approach:

• The sender splits up the time into time intervals
of uniform duration. Next, the sender forms a
one-way chain of self-authenticating values, and
assigns the values sequentially to the time inter-
vals (one key per time interval). The one-way
chain is used in the reverse order of generation,
so any value of a time interval can be used to de-
rive values of previous time intervals. The sender
defines a disclosure time for one-way chain val-
ues, usually on the order of a few time intervals.
The sender publishes the value after the disclo-
sure time.

• The sender attaches a MAC to each packet.
The MAC is computed over the contents of the
packet. For each packet, the sender determines
the time interval and uses the corresponding
value from the one-way chain as a cryptographic
key to compute the MAC. Along with the packet,
the sender also sends the most recent one-way
chain value that it can disclose.

• Each receiver that receives the packet performs
the following operation. It knows the sched-
ule for disclosing keys and, since the clocks are
loosely synchronized, can check that the key used
to compute the MAC is still secret by determin-
ing that the sender could not have yet reached the
time interval for disclosing it. If the MAC key is
still secret, then the receiver buffers the packet.

• Each receiver also checks that the disclosed key
is correct (using self-authentication and previ-
ously released keys) and then checks the correct-
ness of the MAC of buffered packets that were
sent in the time interval of the disclosed key.
If the MAC is correct, the receiver accepts the
packet.

One-way chains have the property that if interme-
diate values of the one-way chain are lost, they can
be recomputed using later values. So, even if some
disclosed keys are lost, a receiver can recover the key
chain and check the correctness of packets.

5



The sender distributes a stream of messages {Mi},
and the sender sends each message Mi in a network
packet Pi along with authentication information. The
broadcast channel may be lossy, but the sender does
not retransmit lost packets. Despite packet loss, each
receiver needs to authenticate all the messages it re-
ceives.

We now describe the stages of the basic TESLA
protocol in this order: sender setup, receiver bootstrap,
sender transmission of authenticated broadcast mes-
sages, and receiver authentication of broadcast mes-
sages.

3.2 Sender Setup

TESLA uses self-authenticating one-way chains. The
sender divides the time into uniform intervals of du-
ration Tint. Time interval 0 will start at time T0, time
interval 1 at time T1 = T0 + Tint, etc. The sender
assigns one key from the one-way chain to each time
interval in sequence. The one-way chain is used in
the reverse order of generation, so any value of a time
interval can be used to derive values of previous time
intervals.

The sender determines the length N of the one-
way chain K0,K1, . . . ,KN , and this length limits the
maximum transmission duration before a new one-
way chain must be created.3 The sender picks a ran-
dom value for KN . Using a pseudo-random func-
tion f , the sender constructs the one-way function F :
F (k) = fk(0). The remainder of the chain is com-
puted recursively using Ki = F (Ki+1). Note that
this gives us Ki = F N−i(KN ), so we can compute
any value in the key chain from KN even if we do not
have intermediate values. Each key Ki will be active
in time interval i.

3For details on how to handle broadcast streams of unbounded
duration by switching one-way key chains, see [27]. For this arti-
cle we assume that chains are sufficiently long for the duration of
communication.

3.3 Bootstrapping Receivers

Before a receiver can authenticate messages with
TESLA, it needs to be loosely time synchronized with
the sender, know the disclosure schedule of keys, and
receive an authenticated key of the one-way key chain.

Various approaches exist for time synchroniza-
tion [24, 37, 22]. TESLA, however, only requires
loose time synchronization between the sender and the
receivers, so a simple algorithm is sufficient. The time
synchronization property that TESLA requires is that
each receiver can place an upper bound of the sender’s
local time, as we discuss in Section 2.2.

The sender sends the key disclosure schedule by
transmitting the following information to the receivers
over an authenticated channel (either via a digitally
signed broadcast message, or over unicast with each
receiver):

• Time interval schedule: interval duration Tint,
start time Ti and index of interval i, length of
one-way key chain.

• Key disclosure delay d (number of intervals).

• A key commitment to the key chain Ki (i = j−d

where j is the current interval index).

3.4 Broadcasting Authenticated Messages

Each key in the one-way key chain corresponds to a
time interval. Every time a sender broadcasts a mes-
sage, it appends a MAC to the message, using the key
corresponding to the current time interval. The key re-
mains secret for the next d − 1 intervals, so messages
sent in interval j effectively disclose key Kj−d. We
call d the key disclosure delay.

As a general rule, using the same key multiple times
in different cryptographic operations is ill-advised —

6



PSfrag replacements

Pj Pj+1 Pj+2 Pj+3 Pj+4 Pj+5 Pj+6

Ki−1 Ki Ki+1 Ki+2

K
′

i−1 K
′

i K
′

i+1 K
′

i+2

F (Ki) F (Ki+1) F (Ki+2) F (Ki+3)

F
′(Ki−1) F

′(Ki) F
′(Ki+1) F

′(Ki+2)

F
′(Ki+3)

Interval i − 1 Interval i Interval i + 1 Interval i + 2 time

Figure 3: At the top of the figure is the one-way key chain (using the one-way function F ), and the derived
MAC keys (using the one-way function F ′). Time advances left-to-right, and the time is split into time intervals
of uniform duration. At the bottom of the figure, we can see the packets that the sender sends in each time
interval. For each packet, the sender uses the key that corresponds to the time interval to compute the MAC of
the packet. For example for packet Pj+3, the sender computes a MAC of the data using key K ′

i+1
. Assuming a

key disclosure delay of two time intervals (d = 2), packet Pj+3 would also carry key Ki−1.

it may lead to cryptographic weaknesses. So we do
not want to use key Kj both to derive key Kj−1 and
to compute MACs. Using a pseudo-random func-
tion family f ′, we construct the one-way function
F ′: F ′(k) = f ′

k(1). We use F ′ to derive the key
to compute the MAC of messages: K ′

i = F ′(Ki).
Figure 3 depicts the one-way key chain construc-
tion and MAC key derivation. To broadcast mes-
sage Mj in interval i the sender constructs packet
Pj = {Mj || MAC(K ′

i,Mj) || Ki−d}.

Figure 3 depicts the one-way key chain derivation,
the MAC key derivation, the time intervals, and some
sample packets that the sender broadcasts.

3.5 Authentication at Receiver

When a sender discloses a key, all parties potentially
have access to that key. An adversary can create a
bogus message and forge a MAC using the disclosed
key. So as packets arrive, the receiver must verify that
their MACs are based on safe keys: a safe key is one

that is only known by the sender, and safe packets or
safe messages have MACs computed with safe keys.

Receivers must discard any packet that is not safe,
because it may have been forged.

We now explain TESLA authentication in detail: A
sender sends packet Pj in interval i. When the re-
ceiver receives packet Pj , the receiver can use the self-
authenticating key Ki−d disclosed in Pj to determine
i. It then checks the latest possible time interval x the
sender could currently be in (based on the loosely syn-
chronized clock). If x < i + d (recall that d is the key
disclosure delay, or number of intervals that the key
disclosure is delayed), then the packet is safe. The
sender has thus not yet reached the interval where it
discloses key Ki, the key that will verify packet Pj .

The receiver cannot yet verify the authenticity of
packet Pj sent in interval i. Instead, it adds the triplet
(i,Mj , MAC(K ′

i,Mj)) to a buffer, and verifies the au-
thenticity after it learns K ′

i.

What does a receiver do when it receives the dis-

7



closed key Ki? First, it checks whether it already
knows Ki or a later key Kj (j > i). If Ki is the
latest key received to date, the receiver checks the le-
gitimacy of Ki by verifying, for some earlier key Kv

(v < i) that Kv = F i−v(Ki). The receiver then com-
putes K ′

i = F ′(Ki) and verifies the authenticity of
packets of interval i, and of previous intervals if the
receiver did not yet receive the keys for these intervals
(the receiver can derive them from Ki).

Note that the security of TESLA does not rely on
any assumptions on network propagation delay, since
each receiver locally determines the packet safety, i.e.
whether the sender disclosed the corresponding key.
However, if the key disclosure delay is not much
longer than the network propagation delay, the re-
ceivers will find that the packets are not safe.

4 Discussion

4.1 TESLA Security Considerations

The security of TESLA relies on the following as-
sumptions:

• The receiver’s clock is time synchronized up to
a maximum error of ∆. (We suggest that be-
cause of clock drift, the receiver periodically re-
synchronizes its clock with the sender.)

• The functions F, F ′ are secure PRFs, and the
function F furthermore provides weak collision
resistance.4

As long as these assumptions are satisfied, it is
computationally intractable for an attacker to forge a
TESLA packet that the receivers will authenticate suc-
cessfully.

4See our earlier paper for a formal security proof [28].

4.2 Achieving Asymmetric Security Proper-
ties with TESLA

Broadcast authentication requires an asymmetric
primitive, which TESLA provides through loosely
synchronized clocks and delayed key disclosure.
TESLA shares many common properties with asym-
metric cryptographic mechanisms. In fact, assuming
that all nodes in a network are time synchronized, any
key of the key chain serves as a key chain commitment
and is similar to a public key of a digital signature: any
loosely time synchronized receiver with an authentic
key chain commitment can authenticate messages, but
not forge a message with a MAC that receivers would
accept.

We can construct an efficient PKI based solely on
TESLA. Consider an environment with n communi-
cating nodes. We assume that all nodes are loosely
time synchronized, such that the maximum clock off-
set between any two nodes is ∆; and that all nodes
know the authentic key chain commitment and key
disclosure schedule of the certification authority (CA).
We further assume that the CA knows the authentic
key chain commitment and key disclosure schedule of
every node. If a node A wants to start authenticat-
ing packets originating from another node B, A can
contact the CA for B’s key chain commitment and
key disclosure schedule, which the CA sends authen-
ticated with its TESLA instance. After the CA dis-
closes the corresponding key, A can authenticate B’s
TESLA parameters and subsequently authenticate B’s
packets.

Note that TESLA is not a signature mechanism and
does not provide non-repudiation, as anybody could
forge “authentic” TESLA packets after the key is dis-
closed. However, in conjunction with a trusted time
stamping mechanism, TESLA could achieve proper-
ties similar to a digital signature. Consider this setup:
all nodes in the network are loosely time synchronized
(as above with an upper bound on the synchroniza-

8



tion error); and all nodes in the network trust the time
stamping server [6, 15, 23]. The time stamping server
timestamps all TESLA packets it receives. The time
stamping server can broadcast the hooks to the trust
chain authenticated with its TESLA instance. A judge
who wants to verify that a sender sent packet P per-
forms the following operations:

1. Receive the current value of the time stamping
server’s trust chain, ensure that it is safe, and wait
for the TESLA key to authenticate it.

2. Based on the trust chain value, verify that packet
P is part of the trust chain.

3. Verify that packet P was safe when the time
stamping server received it (not necessary if the
time stamping server only timestamps safe pack-
ets).

4. Retrieve key from the sender and verify it using
the key chain commitment and disclosure sched-
ule recorded by the time stamping server.

5. Verify that the authenticity of the packet, which
implies that the correct sender must have gener-
ated the packet.

TESLA and a time stamping server can thus achieve
non-repudiation. This example also shows that the
TESLA authentication can also be performed after the
key is already disclosed, as long as the verifier can
check that the packet arrived safely.

5 Acknowledgments

We gratefully acknowledge funding support for this
research. This research was sponsored in part the
United States Postal Service (contract USPS 102592-
01-Z-0236), by the United States Defense Advanced
Research Projects Agency (contract N66001-99-2-
8913), and by the United States National Science

Foundation (grants 99-79852 and 01-22599). DARPA
Contract N66001-99-2-8913 is under the supervision
of the Space and Naval Warfare Systems Center, San
Diego.

The views and conclusions contained in this doc-
ument are those of the author and should not be in-
terpreted as representing official policies, either ex-
pressed or implied, of the United States government,
of DARPA, NSF, USPS, any of its agencies.

References

[1] R. Anderson, F. Bergadano, B. Crispo, J. Lee,
C. Manifavas, and R. Needham. A new family
of authentication protocols. ACM Operating Sys-
tems Review, 32(4):9–20, October 1998.

[2] F. Bergadano, D. Cavagnino, and B. Crispo.
Chained stream authentication. In Selected Ar-
eas in Cryptography, 7th Annual International
Workshop, SAC 2000, volume 2012 of Lecture
Notes in Computer Science, pages 144–157, Au-
gust 2000.

[3] F. Bergadano, D. Cavalino, and B. Crispo.
Individual single source authentication on the
mbone. In ICME 2000, Aug 2000.

[4] D. Boneh, G. Durfee, and M. Franklin. Lower
bounds for multicast message authentication. In
Advances in Cryptology — EUROCRYPT ’2001,
volume 2045 of Lecture Notes in Computer Sci-
ence, pages 434–450, 2001.

[5] B. Briscoe. FLAMeS: Fast, Loss-Tolerant
Authentication of Multicast Streams.
Technical report, BT Research, 2000.
http://www.labs.bt.com/people/
briscorj/papers.html.

[6] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson.
Time-stamping with binary linking schemes. In

9



Advances in Cryptology — CRYPTO ’98, vol-
ume 1462 of Lecture Notes in Computer Science,
pages 486–501, 1998.

[7] R. Canetti, J. Garay, G. Itkis, D. Micciancio,
M. Naor, and B. Pinkas. Multicast security: A
taxonomy and some efficient constructions. In
INFOCOMM’99, pages 708–716, March 1999.

[8] S. Cheung. An efficient message authentica-
tion scheme for link state routing. In 13th
Annual Computer Security Applications Confer-
ence, pages 90–98, 1997.

[9] D. Coppersmith and M. Jakobsson. Almost op-
timal hash sequence traversal. In Proceedings of
the Fourth Conference on Financial Cryptogra-
phy (FC ’02), Lecture Notes in Computer Sci-
ence, 2002.

[10] Y. Desmedt and Y. Frankel. Shared generation
of authenticators and signatures. In Advances in
Cryptology — CRYPTO ’91, volume 576 of Lec-
ture Notes in Computer Science, pages 457–469,
1992.

[11] Y. Desmedt, Y. Frankel, and M. Yung. Multi-
receiver / multi-sender network security: Effi-
cient authenticated multicast / feedback. In Pro-
ceedings IEEE Infocom ’92, pages 2045–2054,
1992.

[12] Y. Desmedt and M. Yung. Arbitrated uncondi-
tionally secure authentication can be uncondi-
tionally protected against arbiter’s attacks. In
Advances in Cryptology — CRYPTO ’90, vol-
ume 537 of Lecture Notes in Computer Science,
pages 177–188, 1991.

[13] F. Fujii, W. Kachen, and K. Kurosawa. Combi-
natorial bounds and design of broadcast authen-
tication. IEICE Transactions, E79-A(4):502–
506, 1996.

[14] R. Gennaro and P. Rohatgi. How to sign digital
streams. In Advances in Cryptology — CRYPTO

’97, volume 1294 of Lecture Notes in Computer
Science, pages 180–197, 1997.

[15] S. Haber and W. Stornetta. How to time-stamp
a digital document. In Advances in Cryptology
— CRYPTO ’90, volume 537 of Lecture Notes in
Computer Science, pages 437–455, 1991.

[16] N. Haller. The S/Key one-time password sys-
tem. In Proceedings of the Symposium on Net-
work and Distributed Systems Security, pages
151–157. Internet Society, February 1994.

[17] H. Holbrook and D. Cheriton. IP multicast chan-
nels: EXPRESS support for large-scale single-
source applications. In Proceedings of ACM
SIGCOMM ’99, September 1999.

[18] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne:
A secure on-demand routing protocol for ad hoc
networks. In Proceedings of the Eighth ACM
International Conference on Mobile Computing
and Networking (Mobicom 2002), September
2002. To appear.

[19] M. Jakobsson. Fractal hash sequence represen-
tation and traversal. In Proceedings of the 2002
IEEE International Symposium on Information
Theory (ISIT ’02), pages 437–444, July 2002.

[20] K. Kurosawa and S. Obana. Characterization
of (k,n) multi-receiver authentication. In Pro-
ceedings of the 2nd Australasian Conference on
Information Security and Privacy (ACISP ’97),
volume 1270 of Lecture Notes in Computer Sci-
ence, pages 205–215, 1997.

[21] L. Lamport. Password authentication with in-
secure communication. Communications of the
ACM, 24(11):770–772, November 1981.

[22] L. Lamport and P. Melliar-Smith. Synchronizing
clocks in the presence of faults. Journal of the
ACM, 32(1):52–78, 1985.

10



[23] H. Lipmaa. Secure and Efficient Time-Stamping
Systems. PhD thesis, Department of Mathemat-
ics, University of Tartu, Estonia, April 1999.

[24] D. Mills. Network Time Protocol (version 3)
specification, implementation and analysis. In-
ternet Request for Comment RFC 1305, Internet
Engineering Task Force, March 1992.

[25] S. Miner and J. Staddon. Graph-based authenti-
cation of digital streams. In Proceedings of the
IEEE Symposium on Research in Security and
Privacy, pages 232–246, May 2001.

[26] Multicast security ietf working group
(msec). http://www.ietf.org/html.
charters/msec-charter.html, 2002.

[27] A. Perrig, R. Canetti, D. Song, and J. D. Ty-
gar. Efficient and secure source authentication
for multicast. In Proceedings of the Sympo-
sium on Network and Distributed Systems Secu-
rity (NDSS 2001), pages 35–46. Internet Society,
February 2001.

[28] A. Perrig, R. Canetti, J. D. Tygar, and D. Song.
Efficient authentication and signature of multi-
cast streams over lossy channels. In Proceedings
of the IEEE Symposium on Research in Security
and Privacy, pages 56–73, May 2000.

[29] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
J. D. Tygar. SPINS: Security protocols for sen-
sor networks. In Proceedings of Seventh Annual
International Conference on Mobile Computing
and Networks (Mobicom 2001), pages 189–199,
2001.

[30] A. Perrig and J. D. Tygar. Security Protocols for
Broadcast Networks. Kluwer Academic Publish-
ers, 2002. To appear.

[31] M. Reiter. A security architecture for fault-
tolerant systems. PhD thesis, Department of
Computer Science, Cornell University, August
1993.

[32] M. Reiter, K. Birman, and R. van Renesse.
A security architecture for fault-tolerant sys-
tems. ACM Transactions on Computer Systems,
12(4):340–371, November 1994.

[33] P. Rohatgi. A compact and fast hybrid signature
scheme for multicast packet. In Proceedings of
the 6th ACM Conference on Computer and Com-
munications Security, pages 93–100, November
1999.

[34] R. Safavi-Naini and H. Wang. New results
on multireceiver authentication codes. In Ad-
vances in Cryptology — EUROCRYPT ’98, vol-
ume 1403 of Lecture Notes in Computer Science,
pages 527–541, 1998.

[35] R. Safavi-Naini and H. Wang. Multireceiver au-
thentication codes: Models, bounds, construc-
tions and extensions. Information and Compu-
tation, 151(1/2):148–172, 1999.

[36] G. Simmons. A cartesian product construction
for unconditionally secure authentication codes
that permit arbitration. Journal of Cryptology,
2(2):77–104, 1990.

[37] B. Simons, J. Lundelius-Welch, and N. Lynch.
An overview of clock synchronization. In B. Si-
mons and A. Spector, editors, Fault-Tolerant
Distributed Computing, number 448 in LNCS,
pages 84–96, 1990.

[38] D. Song, D. Zuckerman, and J. D. Tygar. Ex-
pander graphs for digital stream authentication
and robust overlay networks. In Proceedings
of the IEEE Symposium on Research in Security
and Privacy, pages 258–270, May 2002.

[39] C. Wong and S. Lam. Digital signatures for flows
and multicasts. In IEEE ICNP ‘98, 1998.

[40] Source-Specific Multicast IETF working group
(SSM). http://www.ietf.org/html.
charters/ssm-charter.html, 2002.

11


