
BAP: A Binary Analysis Platform

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA, USA

Abstract. BAP is a publicly available infrastructure for performing pro-
gram verification and analysis tasks on binary (i.e., executable) code. In
this paper, we describe BAP as well as lessons learned from previous in-
carnations of binary analysis platforms. BAP explicitly represents all side
effects of instructions in an intermediate language (IL), making syntax-
directed analysis possible. We have used BAP to routinely generate and
solve verification conditions that are hundreds of megabytes in size and
encompass 100,000’s of assembly instructions.

1 Introduction

Program analysis of binary (i.e., executable) code has become an important and
recurring goal in software analysis research and practice. Binary code analysis
is attractive because it offers high fidelity reasoning of the code that will actu-
ally execute, and because not requiring source code makes such techniques more
widely applicable.

BAP, the Binary Analysis Platform, is the third incarnation of our infras-
tructure for performing analysis on binary code. Like other platforms such as
CodeSurfer/x86 [3], McVeto [15], Phoenix [11], and Jakstab [9], BAP first dis-
assembles binary code into assembly instructions, lifts the instructions to an
intermediate language (IL), and then performs analysis at the IL level. BAP
provides the following salient features:

– BAP makes all side effects of assembly instructions explicit in the IL. This
enables all subsequent analyses to be written in a syntax-directed fashion.
For example, the core code of our symbolic executor for assembly is only 250
lines long due to the simplicity of the IL. The operational semantics of the
IL are formally defined and available in the BAP manual [7].

– Common code representations such as CFGs, static single assignment/three-
address code form, program dependence graphs, a dataflow framework with
constant folding, dead code elimination, value set analysis [3], and strongly
connected component (SCC) based value numbering.

– Verification capabilities via Dijkstra and Flanagan-Saxe style weakest pre-
conditions and interfaces with several SMT solvers. The verification can be
performed on dynamically executed traces (e.g., via an interface with Intel’s
Pin Framework), as well as on static code sequences.

– BAP is publicly available with source code at http://bap.ece.cmu.edu/.
BAP currently supports x86 and ARM.

We have leveraged BAP and its predecessors in dozens of security research
applications ranging from automatically generating exploits for buffer overflows
to inferring types on assembly. A recurring task in our research is to generate

2 BAP

logical verification conditions (VCs) from code, usually so that satisfying an-
swers are inputs that drive execution down particular code paths. Generating
VCs that are actually solvable in practice is important; we routinely solve VCs
hundreds of megabytes in size that capture the semantics of 100,000s of assembly
instructions using BAP.
In the rest of this paper we discuss these features, how they evolved, compare

them to other platforms where possible, and provide examples of how we have
used them in various projects.

2 BAP Goals and Related Work

Fully representing the semantics of assembly is more challenging than it would
seem. In order to appreciate the difficulty, consider the three line assembly pro-
gram below. Suppose we want to create a verification condition (VC) that is sat-
isfied only by inputs that take the conditional jump (e.g., to find inputs that take
the jump). The challenge is that arithmetic operations set up to 6 status flags,
and control flow in assembly depends upon the values of those flags. Simply lifting
line 1 to something like ebx = eax + ebx does not expose those side effects.

1 add %eax , %ebx # ebx=eax+ebx (s e t s OF, SF , ZF , AF, CF, PF)
2 sh l %c l , %ebx # ebx=ebx<<c l (s e t s OF, SF , ZF , AF, CF, PF)
3 j c t a rge t # jump to ta rge t i f car ry f l a g i s s e t

The first generation of our binary analysis tools, asm2c, attempted to directly
decompile x86 assembly to C, and then perform all software analysis on the re-
sulting C code. asm2c left instruction side effects implicit, which made it difficult
to analyze control flow. Other binary tools such as instrumentors, disassemblers,
and editors (e.g., DynInst [13], Valgrind [12], and Microsoft Phoenix [11]) also
did not represent these side effects explicitly.
Our next incarnation, Vine, was designed to address the problem by explic-

itly encoding side-effects in the IL. The result is that subsequent analyses and
verification could rely upon the IL syntax alone. Vine is significantly more suc-
cessful than asm2c, and has been used in dozens of research projects (see [4]).1

Vine used VEX [12] to provide a rough IL for each instruction, which was then
augmented by Vine to expose all otherwise-implicit side effects. An important
implementation decision was to implement the Vine back-end in OCaml (asm2c
was in C++). We found OCaml’s language features to be a much better match for
program analysis and verification. However, the Vine IL grew over time, lacked
a formal semantics for the IL itself, and did not handle bi-endian architectures
such as ARM correctly.
BAP is a complete re-design of Vine that encompasses lessons learned from our

previous work on binary analysis. The main goals of BAP are: 1) explicitly repre-
sent all assembly side-effects to allow for syntax-directed analysis; 2) use a simple
IL with formally defined semantics; 3) include useful analyses and verification
techniques appropriate for binary code (either by design or by adaptation); and
4) allow user-defined analyses. The semantics of the BAP IL is formally defined,
which weeded out several bugs from Vine and allowed us to better argue about
the correctness of implemented analyses and algorithms. The IL also adds primi-
tives to handle instruction issues discovered in Vine such as bi-endian memory op-
erations, and is simpler overall. In addition to modeling the semantics of instruc-

1 Vine is still actively developed at Berkeley under the BitBlaze project [4].

BAP 3

Intermediate
Language

Binary Analysis Platform

Trace Interface

Instruction Lifting

Binary Format

Interface

Front-End

Program Analysis

Program Verification
Graphs

Back-End

Optimizations

Code Generation

Fig. 1. The BAP binary analysis architecture and components.

program ::= stmt*

stmt ::= var := exp | jmp exp | cjmp exp,exp,exp | assert exp

| label label kind | addr address | special string

exp ::= load(exp, exp, exp, τreg) | store(exp, exp, exp, exp, τreg) | exp ♦b exp

| ♦u exp | var | lab(string) | integer | cast(cast kind, τreg, exp)

| let var = exp in exp | unknown(string, τ)
Table 1. An abbreviated syntax of the BAP IL.

tions explicitly, BAP also exposes the low-level semantics of memory where loads
and stores are byte-addressable and thus can result in “overlapping operations”.
An example of the IL produced for Example 1 is (after deadcode elimination):

1 addr 0x0 @asm ”add %eax ,%ebx”
2 t : u32 = R EBX: u32
3 R EBX: u32 = R EBX: u32 + R EAX: u32
4 R CF : bool = R EBX: u32 < t : u32
5 addr 0x2 @asm ” sh l %c l ,%ebx”
6 t1 : u32 = R EBX: u32 >> 0x20 : u32 − (R ECX: u32 & 0 x1f : u32)
7 R CF : bool =
8 ((R ECX: u32 & 0 x1f : u32) = 0 : u32) & R CF : bool |
9 ˜ ((R ECX: u32 & 0 x1f : u32) = 0 : u32) & low : bool (t1 : u32)

10 addr 0x4 @asm ” j c 0x000000000000000a ”
11 cjmp R CF : bool , 0xa : u32 , ”nocjmp0” # branch to 0xa i f R CF = true
12 l a b e l nocjmp0

3 BAP Architectural Overview

BAP is divided into front-end and back-end components that are connected by
the BAP intermediate language (IL), as shown in Figure 1. The front end is
responsible for lifting binary code for the supported architectures to the IL. The
back-end implements our program analyses and verifications for low-level code.
The front end reads binary code from an execution trace or a region of a

binary executable. When lifting instructions from a binary, BAP uses a linear
sweep disassembly algorithm. The user or an analysis is responsible for directing
BAP to properly aligned instructions. The result of lifting is an IL program.
An abbreviated definition of the IL syntax is shown in Table 1; the full IL syn-

tax and semantics are provided at [7]. The special statement indicates a system
call or other unmodeled behavior. Other statements have their obvious meaning.
All expressions in BAP are side-effect free. The unknown expression indicates
an unknown value; for instance, we use this to model the contents of registers
having an undefined state after a specific instruction (e.g. the AF flag after shl).
The semantics of load(e1, e2, e3, τreg) is to load from the memory specified by e1
at address e2. e3 tells us the endianness to use when loading bytes from memory,

4 BAP

which can vary at runtime on ARM. τreg tells us how many bytes to load. store
is similar, but takes an additional parameter to specify the stored value.
The BAP IL can be transformed into other useful representations. One ex-

ample is static single assignment (SSA) [1] form. SSA form makes use-def and
def-use chains explicit in syntax, and enforces the use of three-address code.
These changes often make it significantly easier to implement new analyses and
optimizations.
Once a binary is lifted to the BAP IL, it can be analyzed by the BAP back-

end. The BAP back-end consists of program analyses and transformations. We
discuss these in more detail in Section 4.
Usage Users are expected to use BAP’s front-end to lift binary code to IL

form, and then to interact with the analyses and transformations in the back-end.
Users can use BAP command line utilities out of the box to perform standard
operations. For instance, users can use the iltrans tool to create a pipeline of
actions that 1) converts an IL program to SSA form; 2) applies all BAP opti-
mizations; 3) converts back to IL form; 4) outputs a verification condition (VC)
for the optimized program.
BAP can also be extended programatically. New analyses can build on existing

analyses and transformations, allowing for modularity and reuse of implemented
analyses similar to a source-level compiler architecture.

4 BAP Capabilities

Analyses and Optimizations Analyses can either be accessed programati-
cally, or via the command line iltrans utility. Built in analyses include the
ability to:

– Compute slices for a source or a chop for a source/sink pair so that subse-
quent analysis only considers relevant parts of a program. For example, if
we are interested in whether integer overflow occurs for a particular variable
we can reason about the slice of statements affecting (backwards slicing) or
affected by (forward slicing) that variable.

– Optimize the IL. Optimizations are an important part of the BAP framework
for several reasons. First, the IL makes all side-effects explicit by default,
many of which may not matter for a particular analysis. Deadcode elimina-
tion will remove these. For instance, deadcode elimination will remove OF,
SF, ZF, AF, and PF in Example 2 because they are not relevant.
In our coreutils experiments [8], we found that the use of optimizations re-
sulted in an overall speedup of 4.5x in the time it took to generate and solve
formulas, and enabled us to solve 81% of the VCs that could not be solved
without optimizations.

– Evaluate the IL. Our evaluator allows us to run a BAP program and examine
any dynamic properties. For instance, the evaluator can be used to record
control flow, perform randomized testing of a software property, or verify
that the IL semantics are consistent with the real program’s.

Verification Conditions BAP can create verification conditions using several
methods. A verification condition (VC) is a syntactically generated boolean pred-
icate over a program’s input variables that is true if and only if some program
property holds over the program’s execution on that input. Naturally, a VC is

BAP 5

valid if and only if the respective program property holds for all inputs. BAP
generates VCs with respect to a postcondition, such that if the formula is true
then the program terminates and the postcondition holds.
Built-in methods for generating VCs include:

– Dijkstra’s weakest preconditions (WP). The process involves converting the
BAP IL, which represents unstructured code, to Dijkstra’s guarded com-
mand language. The resulting VC is O(2n) in size where n is the number of
IL statements. Other methods produce smaller VCs.

– Efficient weakest preconditions. We implement two algorithms. First, we
have implemented Flanagan and Saxe’s algorithm, which guarantees the gen-
erated VC will be only O(n2) in size where n is the number of IL statements.
Second, we have developed and proved correctness of a variant of Flanagan
and Saxe that can be run in the forward direction [8].

– Forward symbolic execution [14]. Symbolic execution is built into BAP’s
evaluator.

– Direct (API) and filesystem bindings to STP [6], as well as the ability to
interact via the filesystem with SMTLIB1 compliant decision procedures.

5 Applications

We have used the BAP toolchain for a number of binary analysis and verification
tasks. Due to space, please refer to [5] for a full list. Example applications are:

– We designed and performed type reconstruction on compiled C programs in
a system called TIE [10]. TIE analyzes each memory access in x86 to find
variable locations (similar to VSA [2]), creates a system of type constraints
based upon variable usage, and solves for a typing on all variables.

– We evaluated the performance of VC generation algorithms by checking VCs
for leaf functions in GNU coreutils [8]. For instance, we tested each function
to see if the overflow flag could be set, or if the return address could be
overwritten2. For each condition, we generated a VC and checked its validity
with standard SMT solvers (CVC3 and Yices).

– Perform binary-only symbolic execution. We are able to lift TEMU [4] in-
struction traces to our IL, add constraints on the input, e.g., to find inputs
where a safety property breaks, generate an input that takes a specific branch
in the trace, and so on. We have used this to perform automatic patch-based
exploit generation, malware analysis, and other security-related tasks [4, 5].

6 Limitations

BAP currently supports subsets of the x86 and ARM ISAs. Some features, like
floating point and privileged instructions are unsupported. It is not possible to
prove the correctness of BAP’s lifting code correct because the semantics of
the x86 ISA is not formally defined. Instead, we use random testing to identify
any differences between the semantics of our lifted IL and behavior on a real
processor.

2 We chose these postconditions because they are non-trivial and can be applied to
all functions.

6 BAP

BAP’s lifting process expects to be pointed to an aligned sequence of instruc-
tions. Thus, the user must identify code locations. This can be done manually,
by relying on symbol data, or by using a recursive descent analysis (such as IDA
Pro). Lifting also assumes that code is static. BAP’s execution trace feature can
be used to reason about dynamic code.
Some analyses require indirect jumps to be resolved to concrete locations. For

instance, it is not possible to generate VCs using weakest preconditions in the
presence of unresolved indirect jumps, since weakest precondition is a static
analysis. (It is still possible to use dynamic symbolic execution, however.)

7 Conclusion

BAP is a flexible binary analysis framework that enables program analysis and
verification on binary code. BAP explicitly represents side effects of instructions
in a simple, formally defined IL. A number of analyses, optimizations, and verifi-
cation techniques are already built into BAP, and adding new ones is easy. The
source code for BAP is periodically released at http://bap.ece.cmu.edu.

This research was supported in part by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army Research Office.

References

1. A. Appel. Modern Compiler Implementation in ML. Cambridge University Press,
1998.

2. G. Balakrishnan. WYSINWYX: What You See Is Not What You eXecute. PhD the-
sis, Computer Science Department, University of Wisconsin at Madison, Aug. 2007.

3. G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. Codesurfer/x86 -
a platform for analyzing x86 executables. In Proceedings of the International
Conference on Compiler Construction, Apr. 2005.

4. BitBlaze binary analysis project. http://bitblaze.cs.berkeley.edu, 2007.
5. D. Brumley. http://security.ece.cmu.edu.
6. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In

Proceedings of the Conference on Computer Aided Verification, pages 524–536,
July 2007.

7. I. Jager, T. Avgerinos, E. Schwartz, and D. Brumley. BAP: A binary analysis
platform. In Proceedings of the Conference on Computer Aided Verification, 2011.

8. I. Jager and D. Brumley. Efficient directionless weakest preconditions. Technical
Report CMU-CyLab-10-002, Carnegie Mellon University, CyLab, Feb. 2010.

9. J. Kinder and H. Veith. Jakstab: A static analysis platform for binaries. In
Proceedings of the Conference on Computer Aided Verification, 2008.

10. J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled reverse engineering of
types in binary programs. In Proceedings of the Network and Distributed System
Security Symposium, Feb. 2011.

11. Microsoft. Phoenix framework. http://research.microsoft.com/phoenix/.
URL checked 4/21/2011.

12. N. Nethercote and J. Seward. Valgrind: A program supervision framework. In
Proceedings of the Third Workshop on Runtime Verification, Boulder, Colorado,
USA, July 2003.

13. Paradyn/Dyninst. Dyninst: An application program interface for runtime code
generation. http://www.dyninst.org. URL checked 4/21/2011.

BAP 7

14. E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been
afraid to ask). In Proceedings of the IEEE Symposium on Security and Privacy,
pages 317–331, May 2010.

15. A. V. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and
T. W. Reps. Directed proof generation for machine code. In CAV, pages 288–305,
2010.

