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The value of real-time data in controlling electric
loads for demand response

Johanna L. Mathieu, Duncan S. Callaway

Abstract—We describe approaches to controlling aggregations
of residential thermostatically controlled loads (TCLs), such as
air conditioners and refrigerators, to participate in energy and
ancillary services markets, and energy arbitrage. Additionally,
we examine the effect of offline and real-time data on the ability
of the aggregations to track signals or minimize energy costs.
We find that if real time information is available only from
the distribution substation, load aggregations can track market
signals, though tracking results improve significantly if each load
transmits its temperature and on/off state in real time. Real-time
information is also important for energy arbitrage. We find that
with real-time data from the distribution substation and a good
(offline) understanding of a TCL aggregation’s aggregate power
and energy capacities as a function of ambient temperature,
it is possible for TCL aggregations to save money on energy
purchased in 5-minute energy markets. Improved access to real-
time data (e.g., from the individual loads) and more advanced
controls approaches may yield even better results. In sum, our
results shed light on the required sensing, communications, and
data needed for loads to effectively participate in electricity
markets and arbitrage.

I. INTRODUCTION

Deployment of advanced metering infrastructure promises
increasing access to data about residential end use electric-
ity consumption. Real-time data could be used to achieve
fast time-scale demand response (DR), allowing loads to
participate in both energy and ancillary services markets.
Importantly, we expect DR will be a low-cost resource capable
of providing much of the additional regulation, load following,
and ramping required of power systems with high penetrations
of variable and uncertain renewables. However, how much and
what kind of data do we really need to control loads with high
fidelity? What is the value of offline versus real-time data?
How do data needs change if loads participate in electricity
markets or energy arbitrage?

Our work focuses on using offline and real-time data along
with load aggregation models, state estimation techniques, and
control and optimization strategies, to control heterogeneous
populations of residential thermostatically controlled loads
(TCLs) to deliver power systems services and participate
in short time scale energy markets. TCLs operate within a
hysteric dead-band and therefore have inherent energy storage
capabilities. In this white paper, we summarize our results
describing the role of real-time data in energy and ancillary
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Fig. 1. A cooling TCL’s temperature dead-band and discretized state bins.

services market signal tracking and we describe our prelimi-
nary work to understand data and modeling requirements for
energy arbitrage.

II. ELECTRICITY MARKET SIGNAL TRACKING

The goal of the central controller is to actuate TCLs to track
a market dispatch or automatic generation control signal. We
assume that the controller can switch loads on or off while
the loads are within their temperature dead-band; however,
it can not change a TCL’s temperature directly or affect its
temperature set point. Additionally, we assume TCLs become
uncontrollable if they are outside of the dead-band. This
ensures that the TCLs provide the service requested by the
user. The performance of the central controller is a function
of the offline and real-time information available for system
identification, state estimation, and control. In this section, we
summarize our recent findings. More information is available
in [1], [2], [3].

We modeled individual TCLs with difference equations and,
for control and state estimation purposes, we developed an LTI
model of populations of heterogenous TCLs:

x(k + 1) = Ax(k) +Bu(k) (1)
y(k) = Cx(k) (2)

where x contains the fraction of TCLs in discretized state bins
characterizing both a TCL’s current temperature and on/off
state (Fig. 1), A is the transpose of the Markov transition
matrix, u is the input vector which allows us to switch TCLs
in certain bins on or off, B ensures that TCLs maintain their
temperature state while switching from on to off or vice
versa, and y is the aggregate power consumption of the TCL
population. This model is similar to those in [4], [5], [6].
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TABLE I
CONTROLLER TRACKING PERFORMANCE: SEVERAL DATA SCENARIOS

(RMS ERROR AS A PERCENT OF STEADY STATE POWER CONSUMPTION OF
A 1,000 TCL POPULATION)

controller: PPC PPC SPC
real-time data: offline data: (1) or (2) (3) (3)
(a) full state, each TCL 0.59% x 1.1%
(b) partial state, each TCL 0.69% x 1.1%
(c) partial state, 30% of TCLs 4.8% x 4.3%
(d) substation, 5% forecast error 5.2% 7.1% 9.1%
(e) substation, 10% forecast error 6.1% 8.1% 10.5%

x: scenario unrealistic and not investigated

To minimize communication from the central controller to
the TCLs, we broadcast a control vector of ‘switch probabili-
ties’ to all TCLs, and TCLs decide whether or not to switch
probabilistically based on their current temperature and on/off
state, which corresponds a specific entry of the control vector.
We examined three scenarios for offline data and five scenarios
for real-time data sent from the TCLs to the central controller
every 2 seconds.

Offline data scenarios:
(1) TCLs report their physical parameters, ambient conditions,

and set points (each assumed time invariant)
(2) TCLs record and report their on/off state and temperature

over some period of time
(3) no data is available offline

Real-time data scenarios:
(a) TCLs report their current temperature and on/off state (i.e.

full state)
(b) TCLs report their on/off state (i.e. partial state)
(c) 30% of the TCLs report their on/off state (i.e. partial state)
(d) the distribution substation reports aggregate power – this

compared to the counterfactual substation load forecast
gives us a noisy estimate of the aggregate power consumed
by the TCLs – and the load forecast error is Gaussian
white noise with standard deviation 5%

(e) same as scenario d, except the load forecast error standard
deviation is 10%

We designed two controllers: a predictive proportional con-
troller (PPC) which uses all available offline and real-time
data to identify the LTI model and develop state estimates
with Kalman Filters in real time, and a simple proportional
controller (SPC) which simply uses noisy measurements of y
in real time. For the PPC, if offline data was available (scenario
1 or 2), we identified a 40-bin TCL model, and, if it was
not, we identified a 2-bin TCL model using a joint parameter
and state estimation technique. In simulation, we controlled
populations of individual TCLs to track trajectories designed
to mimic California ISO 5-minute market signals, increasing
or decreasing the TCL population’s aggregate power consump-
tion by up to one-quarter of the steady state aggregate power
consumption. In each case, we tuned the controller gains to
minimize RMS tracking error. Results are shown in Table I.

The PPC almost always performs better than the SPC mean-
ing that there is value in the modeling and state estimation
framework. The one exception is scenario c. In that case, the

measurement noise is not Gaussian so the Kalman Filter has
trouble estimating the state. The results also show the value
of offline and real-time data. If real-time state information
from each TCL is available, the TCL population can follow
the signal very closely. Interestingly, if real-time information
is only available from the distribution substation, the TCLs
can still track the signals though the tracking performance de-
grades. These results point out the important tradeoff between
performance and costs.

III. ENERGY ARBITRAGE

Here, we examine the potential for energy arbitrage, i.e.
consuming more energy when the wholesale electricity price
is high and less when the price is low, in 5-minute energy
markets. In this case, the TCL population is not sent a control
signal to follow. Instead, TCL populations must compute their
own trajectory, with the goal of minimizing their total energy
costs. We employ a hierarchical approach consisting of three
layers of control:

1) a linear program (LP) which solves for the optimal
control trajectory based on a simple energy storage model

2) a TCL population controller (e.g., the PPC or the SPC
described in the previous section) which controls TCLs
to follow the optimal trajectory

3) a population of TCLs (each with a hysteric local con-
troller), each modeled with a difference equation

This approach can be thought of as similar to approaches
commonly used in aviation path planning in which simplified
models are used to compute trajectories and more precise and
complicated models are used for control [7].

A TCL’s energy usage is a function of ambient temperature,
and while a refrigerator’s or water heater’s ambient tem-
perature (indoor temperature) may not vary significantly, air
conditioners and heaters experience a wide range of ambient
temperatures (outdoor temperature). In the analysis described
in the previous section, we ignored this issue because it
would not change our methodology, though it would require
occasional re-identification of the model used in the PPC
formulation (scenario 1 or 2). However, we can not ignore
changing ambient temperatures when computing optimal con-
trol trajectories.

Consider a population of air conditioners. The population’s
energy capacity (i.e. state of charge), e, in each time step, k,
is related to past mean power usages, p:

ek+1 = ek + (pk − pbaseline,k)∆T (3)

where ∆T is the length of each time step and pbaseline is the
power usage in the absence of control, which is a function of
the current ambient temperature and the past ambient temper-
atures. For example, an air conditioner does not immediately
turn on in the morning when the outdoor air temperature
rises above the TCL dead-band because the house has stored
‘coolth’ from the night.
e and p are positive and bounded by maximum capacities:

0 6ek 6 emax,k (4)
0 6pk 6 pmax,k (5)
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Since, as before, we assume that we can not control TCLs
outside of the dead-band, emax is a function of the dead-
band. Specifically, emax is the energy required for all air
conditioners that are currently available for control (i.e. TCLs
operating within the dead-band) to traverse from right edge
of the dead-band to the left edge of the dead-band (see
Fig. 1). pmax is the aggregate power consumption of the TCL
population when all available air conditioners are turned on at
the same time. Importantly, emax and pmax are also functions
of both the current ambient temperature and the past ambient
temperatures.

For arbitrage, our goal is to find p∗ = p1, ...pN , which
minimizes total energy costs over N time steps:

J = l1p1∆T + l2p2∆T + ...+ lNpN∆T (6)

subject to (3)-(5), where lk is the energy price in each interval.
This problem can be solved as a linear program (LP):

min f ′x (7)
s.t Ax 6 b (8)

and x > 0 (9)

where x = [p1, ..., pN , e1, ..., eN ]′ and the constraints are
given in (3)-(5).

In our preliminary implementation, we computed pbaseline,
emax, and pmax as a function of only the current ambient
temperature. Specifically, we assume TCLs are available for
control if the current ambient temperature is above the TCL
dead-band. Using 2010 interval locational marginal prices
from California ISO’s Merced node and outdoor air temper-
atures from NOAA, we implemented an iterative LP with
noisy price and temperature forecasts. Specifically, using a
prediction horizon of one hour, we re-solved the LP in each
time-step with updated price and temperature forecasts, but we
only implement the first control in each step. In the future, we
plan to investigate more sophisticated approaches, e.g., [8].

We modeled the temperature forecast error in the next hour
as Gaussian white noise with standard deviation β, and we
modeled the price forecast error, ω, with an AR(1)-process:

ωk+1 = γωk + αεk (10)

where ε is Gaussian white noise with standard deviation 1,
and ω(1)= 0. Varying α, β, and γ, we can understand how
performance changes with forecast error. In Fig. 2, we show
an example optimal control trajectory for approximately one
day assuming α = 40$/MWh, β = 3◦C, and γ = 0.3.

After solving for the trajectory, we controlled the population
to follow it using the SPC from the previous section. Using
the PPC would require a time-varying model (a subject for
future research). While the results of the LP predict significant
energy cost savings, the TCL population is unable to track
the signal closely resulting in lower energy savings (Fig. 3).
For example, considering the same error statistics used to
generate Fig. 2, the LP predicts 15% annual energy costs
savings while the TCL population is only able to achieve
about 9% annual energy cost savings. Savings predicted by
the LP and actual savings over a range of α are shown in
Fig. 4. The discrepancy between the LP-predicted savings and
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Fig. 2. Optimized state of charge and control trajectory, given 5-minute
energy prices and 1,000 air conditioners.
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Fig. 4. LP-predicted and actual energy cost savings as a function of the
standard deviation of the price forecast error, α. (β = 3◦C, γ = 0.3)

the actual savings is in part because we do not take into
account temperature history when solving for pbaseline, emax,
and pmax causing us to significantly over estimate the resource
in the mornings and somewhat underestimate the resource in
the evenings. It is also because the proportional controller is
unable to switch the correct number of TCLs in each time step,
and this issue is further compounded by the fact that at each
time interval (especially when the system is forced to the min
or max) some TCLs are outside of the dead-band and therefore
uncontrollable. It is likely that the PPC approach could lessen
these issues.

For this analysis, we have assumed the controller has access
to the aggregate power of the TCL population, and noisy price
and temperature forecasts. Additional real-time information
such as notification from each load when it becomes available
for control, its current temperature, and its current on/off
state would help us compute pbaseline, emax, and pmax, though
we have not yet determined the value of that information.
Additionally, we plan to explore the benefit of including real-
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Fig. 3. TCL population tracking performance: 1,000 air conditioners.

time information about the TCL population dynamics in the
iterative LP. Right now the trajectory is created open-loop with
respect to the TCL population dynamics (though closed-loop
with respect to the price forecasts).

IV. CONCLUSIONS

TCLs could provide a significant amount of the energy stor-
age capacity desired in power systems with high penetrations
of intermittent renewables. However, there are many open
questions about the best methods of control and the sensing,
communications, and data required for each method. We have
detailed some of the cost/performance trade-offs to consider
when using TCLs in electricity markets, and energy arbitrage.
Our results show that TCL aggregations are able to provide
reliable services. Additionally, our preliminary research into
energy arbitrage show that significant energy cost savings are
possible.
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