Gauri Joshi

Assistant Professor – ECE
Department Electrical and Computer Engineering
Assistant Grace Bintrim

Research Interests

Professor Joshi is interested in performance analysis and optimization of computing systems using a broad range of tools from probability, coding theory, and machine learning. Examples of current research themes are described below.

Efficient Redundancy in Cloud Systems

Cloud services need to ensure fast and seamless service to users. However the inherent randomness in response time of individual servers may cause large and unpredictable delays in serving users. A simple idea to reduce delay is to launch replicas of a task on multiple servers and wait for the earliest copy to finish. We seek a fundamental understanding of when such redundancy can outweigh the cost of additional resources. This research opens many interesting problems at the interface of coding and queueing theory.

Infrastructure for Distributed Machine Learning

The immense amount of data required to train state-of-the-art neural network models calls for a distributed infrastructure to process the data in parallel. The speed-up achieved by parallelizing is impeded by the time taken to synchronize all learners and ensure that they have up-to-date model parameters. A solution often used in practice is to simply run asynchronous model training, while running the risk of learners working with stale parameters. We aim to understand how these two factors: synchronization delays and parameter staleness affect the speed of convergence of the underlying algorithm.

 Gauri  Joshi

Carnegie Mellon, 2016


performance analysis, cloud computing, machine learning