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Abstract—It has been almost a decade since the earliest reliable CORBA implementation and, despite the adoption of the Fault-

Tolerant CORBA (FT-CORBA) standard by the Object Management Group, CORBA is still not considered the preferred platform for

building dependable distributed applications. Among the obstacles to FT-CORBA’s widespread deployment are the complexity of the

new standard, the lack of understanding in implementing and deploying reliable CORBA applications, and the fact that current

FT-CORBA do not lend themselves readily to complex, real-world applications. In this paper, we candidly share our independent

experiences as developers of two distinct reliable CORBA infrastructures (OGS and Eternal) and as contributors to the FT-CORBA

standardization process. Our objective is to reveal the intricacies, challenges, and strategies in developing fault-tolerant CORBA

systems, including our own. Starting with an overview of the new FT-CORBA standard, we discuss its limitations, along with

techniques for best exploiting it. We reflect on the difficulties that we have encountered in building dependable CORBA systems, the

solutions that we developed to address these challenges, and the lessons that we learned. Finally, we highlight some of the open

issues, such as nondeterminism and partitioning, that remain to be resolved.

Index Terms—CORBA, FT-CORBA, fault tolerance, nondeterminism, replication, recovery, OGS, Eternal.
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1 INTRODUCTION

THE integration of distributed computing with object-
oriented programming has led to distributed object

middleware, where objects are distributed across proces-
sors. Typical middleware applications consist of client
objects invoking operations on, and receiving responses
from, remote server objects, through messages sent across
the network. The Common Object Request Broker Archi-
tecture (CORBA) [31] is a standard for middleware that was
established by the Object Management Group.

CORBA uses its Interface Definition Language (IDL) to

define interfaces to server objects. CORBA’s language
transparency implies that a client needs to be aware of

only the IDL interface, and not the language-specific
implementation, of its server object. CORBA’s interoper-

ability enables clients and servers to communicate over the

TCP/IP-based Internet Inter-ORB Protocol (IIOP), despite
heterogeneity in their respective platforms and operating

systems. CORBA’s location transparency allows clients to

invoke server objects without worrying about the physical
locations of the server objects. The key component of the

CORBA model, the Object Request Broker (ORB), acts as an
intermediary between the client and the server objects and

shields them from differences in platform, programming

language, and location.
Until the recently adopted Fault-Tolerant CORBA

standard (FT-CORBA) [29], CORBA had no intrinsic

support for reliability. Early fault-tolerant CORBA sys-

tems (which preceded the FT-CORBA standard) adopted

diverse approaches:

. The integration approach, where support for replica-
tion is integrated into the ORB (e.g., systems such as
Electra [17], Orbix+Isis [16], and Maestro [37]),

. The interception approach, where support for replica-
tion is provided transparently underneath the ORB
(e.g., Eternal [23]), and

. The service approach, where support for replication is
provided primarily through a collection of CORBA
objects above the ORB (e.g., systems such as OGS [6],
AQuA [4], DOORS [27], Newtop [19], FRIENDS [5],
FTS [12], and IRL [18]).

Many of these systems have contributed to our collective

understanding of distributed fault tolerance for CORBA

and have, directly or indirectly, influenced the FT-CORBA

standard.
However, there exist some inherent drawbacks in these

systems (e.g., regular clients cannot interact with replicated

servers in a fault-tolerant manner); furthermore, each

system exposes different APIs to the application, making

the development of portable fault-tolerant CORBA applica-

tions almost impossible. While the FT-CORBA standard

aims to resolve these issues through standardized CORBA

APIs for reliability, it fails to address the nontrivial

challenges (e.g., nondeterminism) in providing fault toler-

ance to real-world CORBA applications.
This paper focuses on the challenges that are commonly

faced in developing fault-tolerant CORBA implementations,

the strategies that can be used to address these challenges,

and the insights that can be gleaned, as a result. Our wealth

of experience—both as independent implementors of

distinct fault-tolerant CORBA implementations (Eternal
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and OGS, respectively) and as contributors to the
FT-CORBA standard—allows us to reflect candidly and
critically on the state-of-the-art and the state-of-practice in
fault-tolerant CORBA and on the significant challenges that
remain to be resolved for real-world deployment.

1.1 Replication

Despite their differences, the various approaches to fault-
tolerant CORBA are alike in their use of replication to
protect the application against faults. CORBA applications
can be made fault-tolerant by replicating their constituent
objects and distributing these replicas across different
processors in the network. The idea behind object replica-
tion is that the failure of a replica (or of a processor hosting
a replica) of a CORBA object can be masked from a client
because the other replicas can continue to provide the
services that the client requires.

1.1.1 Replica Consistency

Replication fails in its purpose unless the replicas are true
copies of each other, both in state and in behavior. Strong
replica consistency implies that the replicas of an object are
consistent or identical in state, under fault-free, faulty, and
recovery conditions. Because middleware applications in-
volve clients modifying a server’s state through invocations
and serversmodifying their clients’ states through responses,
the transmission of these invocations and responses becomes
critical inmaintaining consistent replication.One strategy for
achieving this is to transmit all of the client’s (server’s)
invocations (responses) so that all of the server (client)
replicas receive and, therefore, process the same set of
messages in the same order. Another issue is that replication
results in multiple, identical client (server) replicas issuing
the same invocation (response), and theseduplicatemessages
should not be delivered to the target server (client) as they
might corrupt its state. Consistent replication requires
mechanisms to detect, and to suppress, these duplicate
invocations (responses) so that the target server (client)
receives only one, nonduplicate, invocation (response).

The integration, interception, and service approaches to
fault-tolerant CORBA all require the application to be
deterministic, i.e., any two replicas of an object, when
starting from the same initial state and after processing the
same set of messages in the same order, should reach the
same final state. Mechanisms for strong replica consistency
(ordered message delivery, duplicate suppression, etc.)
along with the deterministic behavior of applications,
enables effective fault tolerance so that a failed replica can
be readily replaced by an operational one, without loss of
data, messages or consistency.

1.1.2 Replication Styles

There are essentially two kinds of replication styles—active
replication and passive replication [22]. With active (also
known as state-machine) replication, each server replica
processes every client invocation and returns the response
to the client (of course, care must be taken to ensure that
only one of these duplicate responses is actually delivered
to the client). The failure of a single active replica is masked
by the presence of the other active replicas that also perform
the operation and generate the desired result. With passive

replication, only one of the server replicas, designated the
primary, processes the client’s invocations, and returns
responses to the client. With warm passive replication, the
remaining passive replicas, known as backups, are preloaded
into memory and are synchronized periodically with the
primary replica so that one of them can take over should the
primary replica fail. With cold passive replication, however,
the backup replicas are “cold,” i.e., not even running, as
long as the primary replica is operational. To allow for
recovery, the state of the primary replica is periodically
checkpointed and stored in a log. If the existing primary
replica fails, a backup replica is launched, with its state
initialized from the log, to take over as the new primary.
Both passive and active replication styles require mechan-
isms to support state transfer. For passive replication, the
transfer of state occurs periodically from the primary to the
backups, from the existing primary to a log, or from the log
to a new primary; for active replication, the transfer of state
occurs when a new active replica is launched and needs its
state synchronized with the operational active replicas.

1.1.3 Object Groups

The integration, service, and interception approaches are
also alike in their use of the object group abstraction, where
an object group represents a replicated CORBA object and
the group members represent the individual replicas of the
CORBA object. Object group communication is a powerful
paradigm because it often simplifies the tasks of commu-
nicating with a replicated object by hiding the number, the
identities, and the locations of the replicas from other
objects in the system. With an object group being equivalent
to a replicated CORBA object, group communication1 can
be used to maintain the consistency of the states of the
object’s replicas. Reliable ordered multicast protocols often
serve as concrete implementations of (and are therefore
synonymous with) group communication systems. For this
reason, several of the various fault-tolerant CORBA systems
described in this paper employ totally ordered reliable
multicast group communication toolkits to facilitate con-
sistent replication.

1.1.4 Relevant Non-CORBA Systems

This discussion of replication would not be complete
without a brief overview of reliable distributed systems
that preceded, and paved the way for, fault-tolerant
CORBA. The Delta-4 system [33] provided fault tolerance
in a distributed Unix environment through the use of an
atomic multicast protocol to tolerate crash faults at the
process level. Delta-4 supported active replication and
passive replication, as well as hybrid semi-active replica-
tion. The Arjuna system [32] used object replication together
with an atomic transaction strategy to provide fault
tolerance. Arjuna supported active replication, coordina-
tor-cohort passive replication, and single-copy passive
replication. These systems, and the insights that they
provided, have contributed greatly to the science and
engineering behind distributed fault tolerance. It is no
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surprise that almost every fault-tolerant CORBA system

embodies principles that are derived from one or the other

of these systems.

2 EXISTING FAULT-TOLERANT CORBA SYSTEMS

Initial efforts to enhance CORBA with fault tolerance leaned

toward the integration approach, with the fault tolerance

mechanisms embedded within the ORB itself. With the

advent of Common Object Services in the CORBA standard,

other research efforts adopted the service approach, with

the fault tolerance support provided by service objects above

the ORB. Yet another strategy, the interception approach,

allowed the transparent insertion of fault tolerance mechan-

isms underneath the ORB.
The underlying system model for all three approaches is

an asynchronous distributed system, where processors

communicate via messages over a network that is com-

pletely connected, i.e., network partitioning does not occur.

Communication channels are not assumed to be FIFO or

authenticated and the system is asynchronous in that no

bounds can be placed on computation times or message-

transmission latencies. Processors have access to local

clocks that are not necessarily synchronized across the

system. The fault model includes communication, proces-

sor, and object faults. Communication between processors

is unreliable and, thus, messages may need to be retrans-

mitted. Processors, processes, and objects are subject to

crash faults and, thus, might require recovery and reinstate-

ment to correct operation.

2.1 The Integration Approach

The integration approach to providing new functionality to

CORBA applications involves modifying the ORB to

provide the necessary fault tolerance support. The addition

of group communication support directly into the ORB is

likely to involve replacing CORBA’s TCP/IP-based IIOP

transport by a proprietary group communication protocol.

The resulting modified, but fault-tolerant, ORB may there-

fore be noncompliant with the CORBA standard.
However, because the fault tolerance mechanisms form

an intrinsic part of the ORB, they can be implemented so

that the application’s interface to the ORB (and the behavior

that the application expects of the ORB) remains un-

changed. Thus, an integration approach to providing fault

tolerance for CORBA implies that the replication of server

objects can be made transparent to the client objects and

that the details of the replica consistency mechanisms

(buried within the ORB) can be hidden from the application

programmer.
Electra: Developed at the University of Zurich, Electra

[17] is the earliest implementation of a fault-tolerant

CORBA system and consists of a modified ORB that

exploits the reliable totally ordered group communication

mechanisms of the Horus toolkit [36] to maintain replica

consistency. As shown in Fig. 1a, adaptor objects that are

linked into the ORB (and, therefore, implicitly into the

CORBA application) convert the application’s/ORB’s mes-

sages into multicast messages of the underlying Horus

toolkit. In Electra, the Basic Object Adapter (an ORB

component that has been rendered obsolete by the Portable

Object Adapter of the CORBA 2.x standard) of the

CORBA 1.x standard is enhanced with mechanisms for

creating and removing replicas of a server object and for

transferring the state to a new server replica.
With Electra’s use of the integration approach, a CORBA

client hosted by Electra can invoke a replicated server object

just as it would invoke a single server object, without

having to worry about the location, the number, or even the

existence of the server replicas.
Orbix+Isis: Developed by Iona Technologies, Orbix+Isis

[16] was the first commercial offering in the way of fault

tolerance support for CORBA applications. Like Electra,

Orbix+Isis modifies the internals of the ORB to accommo-

date the use of the Isis toolkit [1] for the reliable ordered

multicast of messages.
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The replication of server objects can be made transparent
to the client objects. Orbix-specific smart proxies can be
used on the client side to collect the responses from the
replicated server object and to use some policy (delivering
the first received response, voting on all received responses,
etc.) in order to deliver a single response to the client object.
With Orbix+Isis, the implementation of a CORBA server
object must explicitly inherit from a base class. Two types of
base classes are provided—an Active Replica base class
that provides support for active replication and hot passive
replication and an Event Stream base class that provides
support for publish-subscribe applications.

Maestro Replicated Updates ORB: Developed at Cornell
University, Maestro [37] is CORBA-like middleware that
supports IIOP communication and that exploits the En-
semble group communication system [35]. The ORB is
replaced by an IIOP Dispatcher and multiple request
managers that are configured with different message
dispatching policies. In particular, the Replicated Updates
request manager supports the active replication of server
objects. “Smart” clients have access to compound Inter-
operable Object References2 (IORs) consisting of the
enumeration of the addresses of all of the replicas of a
server object. The client connects to a single server replica; if
this replica fails, the client reconnects to one of the other
server replicas using the addressing information in the
compound IOR.

In the typical operation of Maestro, a client object
running over a normal ORB uses IIOP to access a single
Maestro-hosted server replica, which then propagates the
client’s request to the other server replicas through the
messages of the underlying Ensemble system. However, the
server code must be modified to use the facilities that
Maestro’s request managers provide. Maestro’s emphasis is
on the use of IIOP and on providing support for inter-
working with non-CORBA legacy applications, rather than
on strict adherence to the CORBA standard. Thus, Maestro
can be used to add reliability and high availability to
CORBA applications where it is not feasible to make
modifications at the client side.

2.2 The Service Approach

The service approach to enhancing CORBA involves adding
a new service, along the lines of CORBA’s existing Common
Object Services [28]. Because a CORBA service is a
collection of CORBA objects entirely above the ORB, the
ORB does not need to be modified and the approach is
CORBA-compliant. However, to take advantage of a
CORBA service, the CORBA application needs to be
explicitly aware of the service objects; the application code
is, therefore, likely to require modification.

Using this approach, fault tolerance can be provided as a
CORBA service. Of course, because the objects that provide
reliability reside above the ORB, every interaction with
these service objects necessarily passes through the ORB
and incurs the associated performance overheads.

Distributed Object-Oriented Reliable Service (DOORS): The
Distributed Object-Oriented Reliable Service (DOORS) [27]
developed at Lucent Technologies adds support for fault
tolerance to CORBA by providing replica management,
fault detection, and fault recovery as service objects above
the ORB. DOORS focuses on passive replication and is not
based on group communication and virtual synchrony. It
also allows the application developer to select the replica-
tion style (cold and warm passive replication), degree of
reliability, detection mechanisms, and recovery strategy.

DOORS consists of a WatchDog, a SuperWatchDog, and
a ReplicaManager. The WatchDog runs on every host in the
system and detects crashed and hung objects on that host
and also performs local recovery actions. The centralized
SuperWatchDog detects crashed and hung hosts by receiv-
ing heartbeats from the WatchDogs. The centralized
ReplicaManager manages the initial placement and activa-
tion of the replicas and controls the migration of replicas
during object failures. For each object in the system, the
ReplicaManager maintains a repository that stores the
number of replicas, the hosts on which the replicas are
running, the status of each replica, and the number of faults
seen by the replica on a given host. As part of the state of
the ReplicaManager, this repository is periodically check-
pointed. DOORS employs libraries for the transparent
checkpointing [39] of applications.

Object Group Service (OGS): Developed at the Swiss
Federal Institute of Technology, Lausanne, the Object
Group Service (OGS) [6], [9] consists of service objects
implemented above the ORB that interact with the objects of
a CORBA application to provide fault tolerance to the
application. OGS comprises a number of subservices
implemented on top of off-the-shelf CORBA ORBs. The
multicast subservice provides for the reliable unordered
multicast of messages to server replicas; the messaging
subservice provides the low-level mechanisms for mapping
these messages onto the transport layer; the consensus
subservice imposes a total order on the multicast messages;
the membership subservice keeps track of the composition
of obect groups; finally, the monitoring subservice detects
crashed objects. Each of these IDL-specified subservices is
independent and is itself implemented as a collection of
CORBA objects.

To exploit the facilities of the OGS objects, the server
objects of the application need to be modified. The server
replicas inherit a common IDL interface that permits them
to join or leave the group of server replicas and allows OGS
to perform state transfer actions.

OGS provides a client object with a local proxy for each
replicated server with which the client communicates. The
client-side server’s proxy and the server-side OGS objects
are together responsible for mapping client requests and
server responses onto multicast messages that convey the
client-server communication. The client establishes com-
munication with a replicated server object by binding to an
identifier that designates the object group representing all
of the server replicas. Using this object group identifier, the
client can then direct its requests to the replicated server
object; once the client is bound to the server’s object group,
it can invoke the replicated server as if it were invoking a
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single unreplicated server. However, because the client is
aware of the existence of the server replicas and can even
obtain information about the server object group, the
server’s replication is not necessarily transparent to the
client. Clients need to be modified to bind, and to dispatch
requests, to a replicated server.

Newtop Object Group Service: Developed at the University
of Newcastle, the Newtop [19] service provides fault
tolerance to CORBA using the service approach. While the
fundamental ideas are similar to OGS, Newtop has some
key differences. Newtop allows objects to belong to multi-
ple object groups. Of particular interest is the way the
Newtop service handles failures due to partitioning—
support is provided for a group of replicas to be partitioned
into multiple subgroups, with each subgroup being con-
nected within itself. Total ordering continues to be pre-
served within each subgroup. However, no mechanisms are
provided to ensure consistent remerging once communica-
tion is reestablished between the subgroups.

IRL and FTS: The Interoperable Replication Logic (IRL)
[18] and FTS [12] are two different systems that provide
fault tolerance to CORBA applications through a service
approach. Both IRL and FTS were developed after the
adoption of the FT-CORBA standard, and aim to provide
the client-side replication support required by the new
FT-CORBA standard (see Section 2.4).

IRL aims to uphold CORBA’s interoperability by
supporting fault-tolerant CORBA applications that are
composed of objects running over implementations of
ORBs from different vendors. FTS aims to provide some
support for network partitioning by imposing a primary
component model (where operation is sustained in one of
the components, known as the primary) if the system
partitions into disconnected components.

AQuA: Developed jointly by the University of Illinois at
Urbana-Champaign and BBN Technologies, AQuA [4] is a
framework for building fault-tolerant CORBA applications.
AQuA employs the Ensemble/Maestro [35], [37] toolkits
and is comprised of the Quality Objects (QuO) runtime and
the Proteus dependability property manager [34]. Based on
the user’s QoS requirements communicated by the QuO
runtime, Proteus determines the kinds of faults to tolerate,
the replication policy, the degree of replication, the type of
voting, and the location of the replicas, and dynamically
modifies the configuration to meet those requirements. The
AQuA gateway translates a client’s (server’s) invocations
(responses) into messages that are transmitted via Ensem-
ble; the gateway also detects and filters duplicate invoca-
tions (responses). The gateway handlers contain monitors to
detect timing faults and voters which either accept the first
invocation/response or perform majority voting on the
received invocations/responses.

AQuA provides mechanisms for application-level ma-
jority voting to detect an incorrect value of an invocation
(response) from a replicated client (server). However, in
order for majority voting to be effective for applications that
must tolerate arbitrary faults, more stringent guarantees are
required from the underlying multicast protocols than are
provided by the underlying group communication system,
which tolerates only crash faults.

FRIENDS: The FRIENDS [5] system aims to provide
mechanisms for building fault-tolerant applications
through the use of libraries of meta-objects for fault
tolerance, security, and group communication. FRIENDS
is composed of a number of subsystems, including a fault
tolerance subsystem that provides support for object
replication and detection of faults. A number of interfaces
are provided for capturing the state of an object to stable
storage and for transmitting the state of the primary replica
to the backup replicas in the case of passive replication.

2.3 The Interception Approach

The interception approach to extending CORBA with new
functionality involves providing fault tolerance transpar-
ently through an interceptor, a software component that can
attach itself to existing precompiled and prelinked binaries
of applications. The interceptor can contain additional code
to modify the application’s behavior, without the applica-
tion or the ORB being aware of the interceptor’s existence or
operation.

However, if the interception mechanisms are specific to
the operating system, as is often the case, then the
interceptor needs to be ported to every operating system
that is intended to run the CORBA application. CORBA’s
Portable Interceptors [30] aim at providing standardized
interception “hooks” within the ORB so that this porting
effort is eliminated.

Eternal: Developed at the University of California, Santa
Barbara, the Eternal system [20], [23] exploits the intercep-
tion approach to provide fault tolerance to CORBA
applications. The mechanisms implemented in different
parts of the Eternal system work together to provide strong
replica consistency without requiring the modification of
either the application or the ORB; this allows Eternal to
work with both C++ and Java ORBs, currently including
VisiBroker, Orbix, Orbacus, ILU, TAO, e*ORB, omniORB2,
and CORBAplus.

Eternal conveys the application’s IIOP messages over the
reliable totally ordered multicast messages of the under-
lying Totem system [21]. Eternal’s Replication Manager
replicates each application object, according to user-speci-
fied fault tolerance properties (such as the replication style,
the checkpointing interval, the fault monitoring interval, the
initial number of replicas, the minimum number of replicas,
etc.), and distributes the replicas across the system.
Different replication styles—active, cold passive, warm
passive, and hot passive replication—of both client and
server objects are supported. Eternal’s Interceptor captures
the IIOP messages (containing the client’s requests and the
server’s replies), which are intended for TCP/IP, and
diverts them instead to Eternal’s Replication Mechanisms
for multicasting via Totem. Eternal’s Replication Mechan-
isms, together with its Logging-Recovery Mechanisms,
maintain strong consistency of the replicas, detect and
recover from faults, and sustain operation in all compo-
nents of a partitioned system, should a partition occur.
Gateways [26] allow unreplicated clients that are outside
the system to connect to, and exploit the services of,
replicated server objects. Eternal also provides for con-
trolled thread scheduling to eliminate the nondeterminism
that multithreaded CORBA applications exhibit.
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Eternal tolerates communication faults, including mes-
sage loss and network partitioning, and processor, process,
and object faults. To tolerate value faults in the application,
Eternal employs more stringent protocols to support active
replication with majority voting [25] on both the invocations
and the responses for every application object.

2.4 The Fault-Tolerant CORBA Standard

The recent Fault-Tolerant CORBA (FT-CORBA) standard
describes minimal fault-tolerant mechanisms to be included
in any CORBA implementation, as well as interfaces for
supporting more advanced fault tolerance. FT-CORBA
implementors are free to use proprietary mechanisms (such
as reliable multicast protocols) for their actual implementa-
tions as long as the resulting system complies with the
specified interfaces and the behavior expected of those
interfaces.

Because some developers of fault-tolerant CORBA
systems (namely, [20], [27], and [23]) were involved in the
standardization, FT-CORBA builds on the experiences from
these systems. Due to the fundamental differences between
these systems and diverging goals of the industrial and
academic participants involved in the standardization
process, the resulting specification evolved into a general,
but complex, framework. For instance, FT-CORBA can be
implemented through different mechanisms, such as group
communication and replicated databases. The client-side
mechanisms that CORBA implementations must support—
regardless of whether they implement the server-side
FT-CORBA mechanisms—are deliberately minimal. The
client-side mechanisms support multiprofile object refer-
ences, where each profile designates a server replica, along
with rules for iterating through the profiles, if a replica fails.
This allows unreplicated clients to interact with replicated

FT-CORBA-supported servers in a fault-tolerant manner. At
the time of writing, Eternal [20] and DOORS [27] support
both client-side and server-side FT-CORBA mechanisms;
IRL [18] and FTS [12] include support for FT-CORBA’s
client-side mechanisms.

Fig. 2 shows the architecture of the FT-CORBA specifica-
tion. The Replication Manager replicates objects and dis-
tributes the replicas across the system. Although each server
replica has an individual reference, the Replication Manager
fabricates an object-group reference that clients can use to
contact the replicated server. The Replication Manager’s
functionality is achieved through the Property Manager, the
Generic Factory, and the Object Group Manager.

The Property Manager allows the user to configure each
object’s reliability through fault-tolerance properties, such
as the Replication Style (stateless, active, cold passive, or
warm passive replication), the Membership Style (whether
the addition, or removal, of replicas is application-con-
trolled or infrastructure-controlled), the Consistency Style
(whether recovery, checkpointing, logging, etc., are applica-
tion-controlled or infrastructure-controlled), list of factories
(objects that can create and delete replicas), the Initial
Number of Replicas, the Minimum Number of Replicas to be
maintained, the Checkpoint Interval (time interval between
successive checkpoints of the object’s state), the Fault
Monitoring Style (whether the object is periodically “pinged”
or instead sends periodic “i-am-alive” messages), the Fault

Monitoring Granularity (whether the object is monitored on
the basis of an individual replica, a location, or a location-
and-type), and the Fault Monitoring Interval (the frequency
at which an object is to be “pinged” for fault-detection).

The Generic Factory allows users to create replicated
objects in the same way that they would create unreplicated
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objects. The Object Group Manager allows users to directly
control the creation, deletion, and location of individual
replicas of an application object and is useful for expert
users who wish to exercise direct control over the
replication of application objects.

The Fault Detector is capable of detecting host, process,
and object faults. Each CORBA object inherits a Monitorable
interface to allow the Fault Detector to determine the
object’s status. The Fault Detector communicates the
occurrence of faults to the Fault Notifier. The Fault
Detectors can be structured hierarchically, with the global
replicated Fault Detector triggering the operation of local
fault detectors on each processor. On receiving reports of
faults from the Fault Detector, the Fault Notifier filters them
to eliminate duplicate reports. The Fault Notifier then
distributes fault reports to all interested parties. The
Replication Manager, being a subscriber of the Fault
Notifier, can initiate appropriate recovery actions on
receiving fault reports.

One limitation of the FT-CORBA specification is that it
requires all of the replicas of an object to be deployed on the
same FT-CORBA infrastructure, i.e., heterogeneity is not
supported within a group. Also, FT-CORBA requires
CORBA applications to be deterministic and does not
protect them against partitioning faults. A comparison of
differenct approaches to FT-CORBA is shown in Table 1.

3 CRITICAL LOOK AT FAULT-TOLERANT CORBA
SYSTEMS

We take a critical look at the integration, service, and
interception approaches, side by side with the FT-CORBA
standard, in order to identify their respective challenges
and limitations.

3.1 Server-Side and Client-Side Transparency

Replication transparency hides the use of replication from
the application programmer by providing the illusion that
messages are sent to, and received from, single objects. This

transparency is clearly advantageous to the application
programmer; not only does it preserve the current CORBA
programming model, but it also relieves the application
programmer from having to deal explicitly with the difficult
issues of fault tolerance.

With client-side transparency, the client is unaware of
the server’s replication and its code does not need to be
modified to communicate with the replicated server. The
main difficulty in achieving client-side transparency is to
make the replicated server’s group reference (i.e., reference
containing the addresses of all of the server replicas) appear
the same as the unreplicated server’s object reference to the
client application. Fault-tolerant CORBA systems deal with
this in different ways.

The integration approach (Electra and Orbix+Isis) uses
custom object reference types and requires clients to execute
on proprietary reliable ORBs. The interception approach
(Eternal) transparently maps CORBA’s object references
(IORs) to custom group references that are hidden from the
client application. The service approach (OGS and IRL) lets
the application code explicitly deal with group references or
transparently invoke replicated servers through a generic
gateway that maps normal object references to group
references. With the FT-CORBA standard, group-specific
information can be embedded into object references;
however, this information is not intended to be exposed
to the client application. The FT-CORBA group references
are intended to be consumed solely by client-side ORBs that
have been enhanced with fault tolerance mechanisms.
Although the ummodified client application code can
generally be used to invoke a replicated server, it might
need to be compiled/linked with different libraries in order
to obtain the respective support provided by the intercep-
tion approach, the service approach, or the FT-CORBA
standard. With server-side transparency, the server objects
are unaware of their own, and of each other’s, replication.
Thus, the server code does not need to be modified to
support its own replication or the replication of other
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servers. Server-side transparency is harder to achieve than
client-side replication because of the existence of server
state. For the purposes of recovery and consistent replica-
tion, there needs to exist some way of retrieving and
transferring the state of a server replica. Because an object’s
state consists of the values of its application-level data
structures, there must be some provision for extracting this
state. FT-CORBA requires every replicated object to inherit
the Checkpointable (or Updateable) interface that
defines operations for the retrieval and the assignment of
the complete (incremental) state of the object. The complete
state refers to the entire state of the server object, while the
partial state (known as an update or a state increment)
refers to only that part of the object’s state that has been
modified since the last state snapshot. Every fault-tolerant
CORBA system that supports stateful servers with consis-
tent replication requires each object to support such
interfaces for state transfer.

Thus, true server-side transparency (i.e., absolutely no
modifications to the server code) is impossible to accom-
plish so long as the server must support these additional
interfaces for state transfer. Of course, server-side transpar-
ency is achievable for stateless CORBA objects or if there
exist other ways of manipulating/accessing an object’s state
other than through an IDL interface, e.g., through a pickling
mechanism [3] for taking snapshots of the operating
system’s layout of a process’ state. However, for all practical
purposes, no fault-tolerant CORBA infrastructure ever fully
achieves server-side transparency.

Both CORBA and FT-CORBA are server-centric and
support only the notions of handling server state through
server interfaces. Objects that play both client and server
roles (i.e., they act as a server to one set of objects and as a
client to possibly a different set of objects) might require
support for both client-side and server-side transparency.
Such dual-role objects need support for client replication,
in addition to the server replication that most fault-tolerant
systems traditionally consider. For recovering such objects,
the Checkpointable and Updateable interfaces need

to handle both the client-side and the server-side state.

Other issues with dual-role objects are discussed further in

Section 3.4.
Finally, it has been argued that, even when transparency

is technically achievable, it leads to generic protocols that

are conservative and that cannot perform application-

specific optimizations, thereby resulting in poor perfor-

mance [38]. One solution [10] involves using semantic

application information (e.g., knowledge that operations are

read-only, deterministic, or commutative) to determine the

optimal protocols for replica consistency.

3.2 Object versus Processes

Group communication toolkits have traditionally dealt with

process groups; with FT-CORBA, the fundamental unit of

replication is the CORBA object and groups must deal with

objects rather than processes. A CORBA application

containing a large number of objects might, therefore, lead

to the creation and management of a large corresponding

number of object groups; this is known as the group

proliferation problem [14].
In particular, if any one of the processors fails, all of the

replicas hosted by that processor can be considered to have

failed. The fault-tolerant CORBA infrastructure must then

update all of the associated object groups as part of a

membership-change protocol; this might require notifying

each individual replica of the new membership of its

associated object group. Thus, the failure of a single

processor can lead to multiple object group membership-

change messages propagating through the system.
This problem can sometimes be avoided by having the

underlying fault-tolerant infrastructure detect object groups

that span the same set of processors and treat them as

logical groups that all map onto a single physical group.

This approach is, however, not readily applicable when

groups partially overlap, as shown in Fig. 3b. This is often

the case when replicas are created and hosted across a

subset of a pool of processors.
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The conflict between objects and processes results from
the mismatch between object-oriented computing, which
promotes a small granularity for application components,
and fault-tolerant distributed computation, which benefits
from coarse components. The developer can generally
architect the application to avoid this problem. Another
aspect of the mismatch between objects and processes is the
fact that CORBA applications are often not pure object-
oriented programs, i.e., an object’s state might depend on
information (e.g., global variables) that is outside the object,
but nevertheless within the process containing the object. In
fact, a CORBA object’s “real” state can be considered to be
distributed in three different places: 1) application-level
state, consisting of the values of data structures within the
CORBA object, 2) ORB/POA-level state, consisting of
“pieces” of state within the ORB and the Portable Object
Adapter (POA) that affect, and are affected by, the CORBA
object’s behavior, e.g., the last-seen outgoing IIOP request
identifier, and 3) infrastructure-level state, consisting of
“pieces” of state within the fault-tolerant CORBA infra-
structure that affect, and are affected by, the CORBA object’s
behavior, e.g., the list of connections/clients for the object.

Because a CORBA object’s state is not contained entirely
within the object, other parts of the object’s process need to
be considered during the retrieval, assignment, and transfer
of the object’s state. When a new replica of the CORBA
object is launched, all three pieces of state—the application-
level, the ORB/POA-level and the infrastructure-level state
—need to be extracted from an operational replica and
transferred to the recovering/new replica.

Application-level state is possibly the easiest to obtain
because it can be extracted through the Checkpointable

or Updateable interfaces. ORB/POA-level state is far
more difficult to obtain because CORBA standardizes
interfaces and not ORB implementations, which means that
ORBs can differ widely in their internals. Furthermore, ORB
vendors tend to regard (and want their users to regard)
their ORBs as stateless black-boxes and are reluctant to
reveal the details of their proprietary mechanisms. Some of
our biggest challenges in building strongly consistent fault-
tolerant CORBA systems lie in deducing the ORB/POA-
level state (with or without the assistance of the ORB
vendor), and in retrieving, transferring, and assigning this
state correctly [23]. Infrastructure-level state, although
entailing additional mechanisms within the fault-tolerant
infrastructure, is relatively easy for the fault-tolerant
CORBA developer to deduce and to maintain.

The “leakage” of the object’s state into its containing
process, through the ORB/POA-level and the infrastructure-
level state, cannot be fully avoided, given the current state-of-
the-art in ORB implementations. Because the ORB and the
POA handle all connection and transport information on
behalf of a CORBA object that they support, the ORB and the
POA necessarily maintain some information for the object.
This implies that there really are no stateless objects—a
CORBA object with no application-level state will never-
theless have some ORB/POA-level state. The vendor-
dependent, nonstandard nature of the ORB/POA-level state
means that different replicas of the same object cannot be
hosted on ORBs from different vendors (i.e., it is not possible

to have a two-way replicated object with one replica hosted
on ORB X and the other replica hosted over ORB Y from a
different vendor) because no assurances can be provided on
the equivalence of the ORB/POA-level states of the respec-
tive ORBs. Another consequence of the vendor-dependent
ORB/POA-level state is that a fault-tolerant CORBA devel-
oper must be fully aware of the internal, hidden differences
across diverse ORBs and must be able to deduce and handle
this state for each new target ORB.

3.3 Interaction with Unreplicated Objects

Traditional group communication systems often assume a
homogeneous environment, where all of the application’s
components execute on top of the same fault-tolerant
infrastructure. In practice, distributed CORBA systems
often need to obtain services from external or legacy
components that do not necessarily have any support for
replication or fault tolerance. In some cases, the fault-
tolerant CORBA developer might not even have access to
these external entities, e.g., databases behind firewalls.
Thus, there is a need to support two-way interoperable
communication between fault-tolerant (replicated) applica-
tions and non-fault-tolerant (unreplicated) entities.

This interoperability requirement increases the complex-
ity of the fault-tolerant infrastructure. When receiving an
IIOP request from an unreplicated client, the fault-tolerant
CORBA infrastructure for an actively replicated server now
needs to relay the request to all of the server replicas and to
ensure that only one reply is returned to the client.
Similarly, when an actively replicated client issues a request
to an unreplicated server, only one invocation must be seen
by the unreplicated server, while the response must be
received by all of the active client replicas.

Gateways [26] alleviate the complexity of interfacing
replicated CORBA objects with unreplicated objects or with
ORBs from other vendors. The part of the application/
system that the fault-tolerant CORBA infrastructure sup-
ports and renders fault-tolerant, is referred to as a fault-
tolerant domain. A gateway serves to bridge non-fault-
tolerant clients/servers into a fault-tolerant domain by
translating an unreplicated client’s regular IIOP requests
into the reliable multicast requests expected within the
fault-tolerant domain and vice versa. Gateways can also be
used to manage loosely replicated, or weakly consistent,
CORBA servers without the need for reliable protocols [7].
Another use for gateways is to bridge two fault-tolerant
CORBA infrastructures, where each uses different protocols
or mechanisms.

Support for heterogeneity in FT-CORBA has a price, as
end-to-end reliability cannot be guaranteed in all cases when
unreplicated or non-fault-tolerant entities are involved.
Despite these issues, gateways are useful in many scenarios
where fault-tolerant CORBA applications must necessarily
dealwith clients outside of their reach.Whereverpossible,we
recommend deploying all of the clients and servers of a
CORBA application over the same fault-tolerant infrastruc-
ture for reasons of efficiency and strong replica consistency.

3.4 Multitiered Applications

CORBA objects are often not restricted to either a pure
client or a pure server role, but can act as clients for one
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operation and servers for another (in this sense, the terms
“client” and “server” do not refer to the entities themselves,
but rather to the roles that these entities play in an
operation). This occurs in a multitiered application, where
middle-tier objects (also known as application servers or
business logic) mediate interactions between front-end pure
clients and back-end pure servers. As a part of processing
an incoming invocation, the middle-tier server might act as
a client and, in turn, invoke the back-end server; the second
invocation is known as a nested operation. A special case of
this is a callback, where the middle-tier server, in its role as a
client, invokes itself.

Nested invocations force us to consider replicating the
clients (instead of the servers alone) of distributed applica-
tions. For fault tolerance, the middle-tier of a three-tier
application needs to be replicated; however, this involves
replicating both the client-side and the server-side portions
of the middle-tier. While duplicate invocations are normally
handled for server replication, multitiered applications
require the handling of duplicate responses as well.

Consider the three-tier application in Fig. 4, where, for
the sake of simplicity, only the middle-tier is actively
replicated (the problem is no different even if all tiers are
replicated). Each middle-tier replica processes the incoming
invocation from the first-tier client (1) and, in turn, invokes
the third-tier server (2). Each second-tier replica sends an
identical invocation to the third-tier; unless two of these
three duplicate invocations are suppressed, the state of the
third-tier server might be corrupted by its processing of the
same operation thrice (if this invocation represented the
withdrawal of funds from a bank account, then the account
would be debited three times, instead of only once). The
third-tier server responds to the replicated middle-tier (3);
in turn, each middle-tier replica sends an identical response
to the first-tier client (4). Again, the duplicate responses
from the second-tier to the first-tier should be suppressed so
that the state of the first-tier client is not corrupted by the
processing of redundant responses.

Duplicate messages are equally possible for passively
replicated objects under the case of recovery. Suppose that
the middle-tier of Fig. 4 is passively replicated. If the

primary middle-tier replica fails after invoking (and before
receiving the corresponding response from) the third-tier
server, a new middle-tier primary replica will be elected.
Because the new primary cannot always ascertain the status
of the invocation issued to the third-tier, the new primary
will reissue the same invocation. The third-tier object, as the
recipient of two identical invocations (from the old and new
primaries, respectively), risks the corruption of its state if it
processes both invocations. Thus, the third-tier and the first-
tier objects need to detect and suppress duplicate messages
to handle a passive replicated middle-tier.

In an asynchronous distributed system, it is difficult to
guarantee the detection of duplicates at their source;
duplicate suppression should also occur at the destination
to handle duplicates that escape detection at their respective
sources.

FT-CORBA implements duplicate detection by embed-
ding unique, request-specific information in the “service-
context” field of each IIOP request message. For this to
work, the client-side ORB hosting the request’s originator
(the first-tier client) must create this context and encapsu-
late it into requests sent to the middle-tier; in the case of a
nested invocation, the client-side ORBs of the middle-tier
must forward this context. To exploit this duplicate-
detection mechanism, objects in a nested-invocation chain
must run on top of an FT-CORBA-aware ORB. Fault-
tolerant CORBA systems that do not have access to an
FT-CORBA-aware ORB must resort to some other mechan-
ism (e.g., library interpositioning, client-side smart proxies,
portable interceptors) to support duplicate detection and
suppression for unreplicated clients. Of course, the perfor-
mance overhead of accomplishing the service-context
addition outside of the ORB is typically greater than when
an FT-CORBA-aware ORB is used.

3.5 Nondeterminism

A frequent assumption in building reliable CORBA systems
is that each CORBA object is deterministic in behavior. This
means that distinct, distributed replicas of the object, when
starting from the same initial state, and after receiving and
processing the same set of messages in the same order, will
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all reach the same final state. It is this reproducible behavior
of the application that lends itself so well to reliability.
Unfortunately, pure deterministic behavior is rather diffi-
cult to achieve, except for very simple applications.
Common sources of nondeterminism include the use of
local timers, operating system-specific calls, processor-
specific functions, shared memory primitives, etc.

Nondeterministic behavior is an inevitable and challen-
ging problem in the development of fault-tolerant systems.
For active replication, determinism is crucial to maintaining
the consistency of the states of the replicas of the object.
Passive replication is often perceived to be the solution for
nondeterministic applications. There is some truth in this
because, with passive replication, invocations are processed
only by the primary and the primary’s state is captured and
then used to assign the states of the backup replicas. If the
primary fails while processing an invocation, any partial
execution is discarded and the invocation is processed
afresh by the new primary. Because the state updates
happen only at one of the replicas, namely, at the primary
replica, the results of any nondeterministic behavior of the
replicated object are completely contained and do not
wreak havoc on the replica consistency of the object.

However, there do exist situations where passive
replication does not compensate for nondeterminism. This
is particularly true of scenarios where the nondeterministic
behavior of a passively replicated object is not contained
because the behavior has “leaked” to other replicated
objects in the system. Consider the case where the primary
replica invokes another server object based on some
nondeterministic decision (e.g., for load balancing, the
primary replica randomly chooses one of n servers to
process a credit-card transaction). If the primary replica
fails after issuing the invocation, there is no guarantee that
the new primary will select the same server as the old
primary; thus, the system will now be in an inconsistent
state because the old and the new primary replicas have
communicated with different servers, both of whose states
might be updated.

For passive replication to resolve nondeterministic
behavior, there should be no persistent effect (i.e., no
lingering “leakage” of nondeterminism) resulting from the
partial execution of an invocation by a failed replica. This is
possible if the passively replicated object does not access
external components based on nondeterministic decisions/
inputs or if all accesses are performed in the context of a
transaction aborted upon failure [11]. In general, though,
passive replication is no cure for nondeterminism.

3.6 Identity and Addressing

CORBA is known for its weak identity model.3 However,
reliable infrastructures need a strong identity model in order
tomanage replicas and tomaintain their consistency. Because
CORBA objects can have several distinct references whose
equivalence cannot be established with absolute certainty,
FT-CORBA implementations need to use additional schemes

for the unique identification of an object’s replicas.
CORBA’s location transparency also poses a problem
because fault-tolerant systems often take advantage of their
knowledge of the replicas’ physical placement, e.g., to elect
a new primary upon the failure of an existing primary
replica, to optimize distributed protocols, or to manage the
group membership of collocated components efficiently.

Reliable infrastructures often rely on an indirect addres-
sing model for replicated objects in order to hide the fact
that the number, and locations, of the replicas can change
over time. This requires the FT-CORBA infrastructure to
maintain a custom group-oriented addressing scheme that
maps a replicated object’s reference, at runtime, onto the
references of the individual replicas currently in the group.
This group reference is made available to clients and
encapsulates both the server group’s identity as well as the
individual addresses of its constituent replicas. However,
an object’s group reference enumerates only the replicas
that exist at the time of group-reference generation; thus, a
group reference can become obsolete, as replicas fail and are
reintroduced. A major challenge for any FT-CORBA
infrastructure is to keep track of the current group
memberships of the replicated objects that it hosts and to
update the group references that clients hold.

When a client invokes a method using a replicated
server’s group reference, the FT-CORBA infrastructure
translates this to invoke the same method on the individual
server replicas whose addresses are present in the group
reference. Clearly, if the group reference that the client
holds is stale (i.e., the membership of the group has
changed so that none of the replica references contained
in the group reference represents an operational replica),
then the client will not be able to reach the replicated server
even if, in fact, there exist other operational replicas that are
not represented in the stale group reference.

The obsolescence of group references is typically solved
by embedding, within a group reference, the addresses of
one or more objects with permanent or persistent addresses
(i.e., addresses that are guaranteed not to change over the
object’s lifetime); these persistent objects can act as for-
warding agents that can refresh outdated client references.
The FT-CORBA infrastructure’s Replication Manager
(shown in Fig. 2) might itself act as this forwarding
persistent entity. If a client tries to invoke a replica using
an outdated group reference, the replica’s FT-CORBA
infrastructure can transparently update the reference held
by the client through standard CORBA redirection mechan-
isms (such as a LOCATION_FORWARD message, where a
recipient ORB can redirect an incoming invocation to
another address, much in the way that a post office
provides mail forwarding services).

3.7 Factories

One of the limitations of early fault-tolerant CORBA
implementationswas that they could not adequately support
objects with methods that return object references. A classic
example of this problem is illustrated by “factories” whose
sole purpose is to create and destroy CORBA objects in
response to client requests. After requesting the creation of a
new CORBA object and then obtaining a reference to the
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newly created object from the factory, a client can subse-
quently invoke operations on that object.

Factories are a very common and useful paradigm in
distributed programming, e.g., the Factory design pattern
[13] that many CORBA systems use extensively. In fact,
FT-CORBA makes explicit provision for a Generic Factory
interface specifically for the purpose of instantiating and
deleting replicas, as described in Section 2.4. Typically,
when asked to create an object, the FT-CORBA factory
instantiates the object within its local process address-space,
registers the instance with its local ORB, and then returns a
reference to the newly created instance to the client that
requested the object’s creation. The client can subsequently
use the returned reference to contact the object directly. Of
course, to accomplish this, the client must first have a
reference to the factory.

Thus, the FT-CORBA factory can be used to instantiate
replicas on specific processors. However, in the interests of
fault tolerance, the object factory must not pose a single
point of failure. Therefore, we must consider the possibility
of replicating the object factory itself. At the same time, we
expect this replicated factory to instantiate other replicated
CORBA objects, i.e., the replicas of the object factory,
independent of their own replication style, must be able to
instantiate a set of the same CORBA application object,
register these instances (or replicas) with their respective
ORBs as part of a new group, and, finally, return the group
reference to the client, rather than a reference to any
individual replica. Thus, although each individual factory
object is designed to instantiate an individual CORBA
object, the factory’s replicas must be coordinated across
different processors in an asynchronous distributed system
in order to create a replicated CORBA application object.

One way of achieving this is to have the factory deal
explicitly with group management. However, factories are
typically written by the application programmer; adding
group management to the factory merely increases the
complexity of the application. Furthermore, the number and
identity of the new replicas must be known to the replicated
factory in order for it to be able to instantiate a new group.
Exposing the details of replication management to the
application programmer violates replication transparency;
also, the replicas of the factory now have two different
“pieces” of state—a common state that is identical across all
of the factory replicas and an individual state that is specific
to each factory replica. If the object factory is actively
replicated, then its replicas must coordinate among them-
selves to achieve the end-result of creating a replicated
object and generating a group reference. If the factory is
passively replicated, then the backups must be equally
involved in creating replicas on their respective processors;
the replica creation process should not form a part of the
periodic state transfer (of the common state) from the
primary replica, but must occur synchronously across both
the primary and the backup replicas. Thus, the backup
replicas are passive in normal operations, but are active in
the coordinated creation of a replicated object.

Another way of implementing a replicated factory is to
decouple the replicas of the factory and to perform the
coordination of the factory replicas using a higher-level

entity, such as the FT-CORBA Replication Manager (shown
in Fig. 2). In this case, the requests for the creation of a
replicated application object are issued by clients directly to
the Replication Manager, which then delegates the creation
of individual application replicas to factories on specific
processors. Each factory replica creates an application
replica and returns its application replica’s reference to
the Replication Manager. In turn, the Replication Manager
“stitches” together a group reference using the individual
application replica references that it has received from the
various factories and returns this group reference to the
client that requested the creation of the replicated object.

Regardless of whether the factories or the Replication
Manager generate the group reference, FT-CORBA provides
some interfaces and mechanisms to deal with replica
creation. Using the FT-CORBA Property Manager interface
described in Section 2.4, the application programmer can
register custom factories for each object in the application.
While FT-CORBA’s Generic Factory interface makes the
creation of replicated objects relatively straightforward, it
requires significant modifications to, and the redesign of,
existing CORBA applications.

3.8 Trade Offs in Configuring Fault Tolerance

The FT-CORBA specification permits considerable latitude
in terms of configuring fault tolerance to suit an applica-
tion’s requirements. This is possible through the various
fault tolerance properties that are assigned values by the
user at the time of deploying an FT-CORBA application.
With this flexibility also comes the potential for abuse—
selecting the wrong replication style for a specific object can
adversely impact its performance, selecting the wrong fault
detection timeout for an object might lead to its being
suspected as having failed far too often, etc.

Investing the effort to consider the various trade offs
(e.g., active replication versus passive replication) in a
resource-aware manner [24] will allow FT-CORBA infra-
structures to work efficiently, to make the best possible use
of the available resources, and to provide fault tolerance
with superior performance. One of the most important sets
of trade offs occurs in choosing between the active and
passive replication styles for a object:

. Checkpointing.With cold passive replication, under
normal operation, the primary replica’s state is
checkpointed into a log. If the state of the object is
large, this checkpointing could become quite ex-
pensive. With warm passive replication, if the state
of the object is large, transferring the primary’s state
to the backup replicas, even if it is done periodically,
could become quite expensive. This state-transfer
cost is incurred for active replication only when a
new active replica is launched and never during
normal operation.

. Computation. Cold passive replication requires only
one operational replica and, thus, consumes CPU
cycles only on one processor. While warm passive
replication requires more replicas to be operational,
these backups do not perform any operations (other
than receiving the primary replica’s state periodi-
cally) and also conserve CPU cycles on their
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respective processors. With active replication, every
replica performs every operation, and therefore
consumes CPU cycles on its respective processor.
Thus, passive replication consumes cycles on fewer
processors during normal operation, i.e., normal
fault-free operations are not performed by every
replica on its respective processor. For operations
that are compute-bound, i.e., requiring many CPU
cycles, the cost of passive replication can be lower (in
the fault-free case) than that of active replication.

. Bandwidth usage. For active replication, a multicast
message is required to issue the operation to each
replica. This can lead to increased usage of network
bandwidthbecauseeachoperationmay itself generate
further nested operations. For passive replication,
because only one replica, the primary client (server)
replica, invokes (responds to) every operation, less
bandwidthmay be consumed.However, if the state of
the primary replica is large, the periodic state transfer
may also require significant network bandwidth.

. Speed of recovery. With active replication, recovery
time is faster in the event that a replica fails. In fact,
because all of the replicas of an actively replicated
object perform every operation, even if one of the
replicas fails, the other operational replicas can
continue processing and perform the operation.
With passive replication, if the primary replica fails,
recovery time may be significant. Recovery in
passive replication typically requires the election of
a new primary, the transfer of the last checkpoint,
and the application of all of the invocations that the
old primary received since its last checkpoint. If the
state of the object is large, retrieving the checkpoint
from the log may be time-consuming. Warm passive
replication yields faster recovery than cold passive
replication.

The cost of using active versus passive replication is also

dictated by other issues, such as the number of replicas and

the depth of nesting of operations. For a CORBA object,

active replication is favored if the cost of network

bandwidth usage and the cost of CPU cycles is less than

the cost incurred in passive replication due to the periodic

checkpointing of the object’s state. In a wireless setting,

other resources, such as battery-power, may also be

considered in the choice of replication style.
Hybrid active-passive replication schemes [15] have been

considered, with the aim of addressing the reduction of

multicast overhead in active replication styles, as well as of

achieving the best of the active and passive replication

styles. An approach for combining both replication styles

has been proposed in [8]. At the protocol level, this system

uses a variant of a distributed consensus protocol that acts

as a common denominator between both replication styles.

An important property of this system is that both replica-

tion styles can be used at the same time in a distributed

application; a unique feature is that the replication style can

be dynamically specified on a per-operation basis.

3.9 Common Limitations

Regardless of the specific approach (interception, integra-

tion, service, or FT-CORBA) used, the following holds true

of current fault-tolerant CORBA systems:

. Whenever a reliable, ordered group communication
toolkit is employed to convey the messages of the
CORBA application, the resulting fault-tolerant
CORBA system will require the group communica-
tion toolkit to be ported to new operating systems, as
required.

. A CORBA object has application-level state, ORB/
POA-level state, and infrastructure-level state; for
effective fault tolerance and strong replica consis-
tency, all three kinds of state must be maintained
identical across all replicas of the same object. Even
if a CORBA object is seemingly stateless (in terms of
application-level state), the other two kinds of state
nevertheless exist.

. As long as a CORBA object has application-level
state, true server-side transparency (i.e., no modifi-
cations to the server code) cannot be fully achieved
in a portable manner.

. Although a CORBA object is widely regarded as the
unit of replication, the process containing the
CORBA object is, for all practical purposes, the
correct unit of replication due to the presence of
unavoidable in-process state.

. Replicas of a CORBA object cannot currently be
supported across different ORB implementations
while preserving strong replica consistency, e.g., it is
not possible for a CORBA object to have one replica
using VisiBroker and the other using Orbix.

. Replicas of a CORBA object cannot currently be
supported across different FT-CORBA implementa-
tions, even if the same ORB is used by all of the
replicas, e.g., it is not possible for a CORBA object to
have one replica supported by Eternal and the other
by OGS.

. The CORBA application must be deterministic in
behavior so that, when replicas are created and
distributed across different processors, the states of
the replicas will be consistent as the replicas process
invocations and responses, and even if faults occur
in the system.

. If an unreplicated client (server) that is not
supported by a fault-tolerant CORBA infrastructure
communicates with a replicated server (client),
replica consistency might be violated if a fault
occurs, even if gateways are used.

. There is no support for the consistent remerging of
the replicas of CORBA objects following a network
partition (most of the approaches assume a primary-
partition model, which allows only one component,
called the primary, to continue operating, while the
other disconnected components cease to operate).

. Design faults, i.e., intrinsic problems in the applica-
tion that cause all of the replicas of an object to crash
in the same way, are not tolerated. Current fault-
tolerant CORBA systems do not use software fault
tolerance mechanisms such as design diversity or
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N-version programming [2] in order to remedy this
deficiency.

. Faults are assumed to be independent, i.e., proces-
sors, processes, and objects fail independently of
each other (also known as the independent-failures
assumption). Thus, correlated, or common-mode,
failures are not handled.

4 CONCLUSION

As applications become more distributed and complex, the
likelihood of faults undoubtedly increases because indivi-
dual processors and communication links can fail indepen-
dently. For most of the decade since its inception, CORBA
had no standard support for fault tolerance. Various
research efforts were expended to remedy this deficiency,
with each of the resulting systems using replication to
protect applications from faults. The Fault-Tolerant CORBA
(FT-CORBA) standard represents the marriage of several of
these efforts and their insights and comprises the specifica-
tions necessary to replicate CORBA objects.

We strongly believe that reliability should not be an after-
thought. Fault tolerance can be added transparently only to
very simple applications. Real-world applications can use
many proprietary mechanisms, can communicate with
legacy systems, can work with commercial databases, and
can exhibit nondeterminism. In such cases, it should not be
assumed that the use of an FT-CORBA infrastructure “out-
of-the-box” will provide a ready solution for complicated
applications. FT-CORBA cannot magically resolve nonde-
terminism in CORBA applications; for example, if multi-
threading is used by the application, then the application
programmer must take care to ensure that threads do not
update shared in-process states concurrently.

Investing the thought and the effort to plan ahead for
reliability while designing a new application can eliminate
the redesign and reimplementation of the application when
fault tolerance does become an issue. Planning ahead might
involve examining

1. the important system/application state, i.e., the data
that will need to be protected despite faults in the
system,

2. the appropriate granularity of the application’s
objects (because replicating many small objects
might impact performance or resources),

3. the critical elements of processing, i.e., the proces-
sing or operations that will need to continue
uninterrupted, despite faults in the system, and

4. the data flows within the system (because objects
that communicate frequently might need to be
colocated within the same process).

Unfortunately, the FT-CORBA standard, while being
rather detailed, does have some practical limitations and
does not fully address some of the issues faced by
developers of real-world CORBA applications. The pro-
blems of providing fault tolerance for the complex and
critical CORBA applications of the future are far from over.

FT-CORBA cannot rectify any problems that already
exist in applications and, therefore, does not provide
solutions for cases where applications may crash due to
design faults; for example, with FT-CORBA, if one replica

crashes due to a programming error, such as a divide-by-

zero exception, all of the replicas will crash identically.

Furthermore, if the network partitions so that some of the

replicas are disconnected from other replicas of the same

object, FT-CORBA infrastructures cannot automatically

reconcile any differences in the states of the replicas when

communication is reestablished. Other open issues, such as

supporting the CORBA Component Model (CCM), combin-

ing fault tolerance and real-time, combining fault tolerance

and security, combining replication and transactions, still

remain to be addressed by the developers of fault-tolerant

CORBA systems.
In this paper, we have shared our experiences and

insights as users of multiple CORBA implementations,
developers of fault-tolerant CORBA systems, and contribu-
tors to the FT-CORBA standardization process. We have
discussed the challenges that are commonly faced in
developing fault-tolerant CORBA implementations, the
pitfalls encountered when building reliable applications,
and how best to take advantage of the FT-CORBA standard.
While some of the insights might seem rather intuitive in
hindsight, our experience has shown us that these practices
are often sadly neglected in the development of reliable
distributed applications and that these lessons are learned
the hard, and often costly, way. It is our sincere hope that
FT-CORBA users/implementors, application developers,
and ORB vendors will benefit from our knowledge,
experiences, and contributions and that our insights will
help to shape the future of fault-tolerant infrastructures for
middleware and distributed applications.
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