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Abstract

Supporting both real-time and fault-tolerance properties in systems is challenging because real-time sys-
tems require predictable end-to-end schedules and bounded temporal behavior in order to meet task dead-
lines. However, system failures, which are typically unanticipated events, can disrupt the predefined real-
time schedule and result in missed task deadlines. Such disruptions to the real-time schedule are aggra-
vated in asynchronous distributed systems by two main factors: first, delays in failure detection, and sec-
ond, increased latencies due to the reactive fault-recovery routines that are set into motion once a failure is

detected.

In this thesis, we present a general framework for proactive (rather than the classical reactive) fault-recov-
ery that reduces the latencies incurred by the fault-recovery routines. Proactive fault-recovery is a tech-
nique that exploits fault prediction mechanisms in order to compensate for failures even before they occur,
thereby providing bounded temporal behavior in real-time and fault-tolerant systems for certain classes of
faults. In our framework, we also show how to exploit knowledge of the underlying system topology to

apply the benefits of proactive fault-recovery to multi-tiered distributed systems.

We evaluate the impact of the design choices we faced when implementing a prototype of this framework
in a distributed CORBA application. Our preliminary results show a promising 76% reduction in the
worst-case fault-recovery latencies in our application. This demonstrates that proactive fault-recovery can
indeed provide bounded temporal behavior in the presence of certain kinds of faults, thereby facilitating

the development of real-time, fault-tolerant distributed systems.

Keywords: Proactive fault-recovery, Real-time, Fault-Tolerance, Distributed Systems, Middleware,

CORBA
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1 Introduction and Objectives

Middleware platforms, such as the Common Object Request Broker Architecture (CORBA) standard [25]
and Java, are increasingly being adopted because they simplify application programming by rendering
transparent the low-level details of networking, distribution, physical location, hardware, operating systems,
and byte order. Since CORBA and Java have come to support many “-ilities” (e.g., reliability, real-time,
security), these middleware platforms have become even more attractive to applications that require a higher
quality of service, such as firm real-time systems [2]. Firm real-time systems that need to exhibit both real-
time and fault-tolerance properties (such as some control and multimedia applications) can tolerate occa-
sional missed task deadlines; however, if a task is not completed by its deadline, the task is considered to be

of no value and is discarded.

The CORBA standard [25] has attempted to address the needs of such applications by incorporating
separate Real-Time [28] and Fault-Tolerance [26] specifications. However, due to some inherent conflicts
in providing simultaneous real-time and fault-tolerance support [21], it is simply not possible for today’s
CORBA applications to obtain both real-time and fault-tolerance guarantees through a straightforward
adoption of the CORBA standards. The difficulty in supporting both real-time and fault-tolerance properties
arises because real-time systems require predictable end-to-end schedules and bounded temporal behavior
in order to meet task deadlines. On the other hand, faults are unanticipated system events that can disrupt

predefined real-time schedules and result in missed task deadlines.

Furthermore, these difficulties in supporting both real-time and fault-tolerance properties are com-
pounded in highly interconnected distributed systems, where messages may pass through multiple tiers
before reaching their final destination. For instance, in an Unmanned Air Vehicle (UAV) data distribution
system [13], several UAVs can stream video feeds to a stationary distributor, which, in turn, forwards the
video to user hosts for display or to an automated target recognition system. Faults that occur in any one of
these tiers sometimes propagate to the successive tiers involved in the computation, resulting in increased

fault-detection and fault-recovery times across the distributed system.



The MEAD (Middleware for Embedded Adaptive Dependability) system [20] that we are developing
at Carnegie Mellon University attempts to reconcile the conflicts between real-time and fault-tolerance
properties in a resource-aware manner. One novel aspect of MEAD is its use of a proactive dependability
framework that lowers the impact of faults on a distributed application's real-time schedule. The aim here
is to design and implement mechanisms that can predict, with some confidence, when a failure might occur,

and that can compensate for the failure even before it occurs.

Proactive fault-recovery is a technique that exploits fault-prediction mechanisms in order to compensate
for failures even before they occur, thereby providing bounded temporal behavior in real-time and fault-tol-
erant systems, for certain classes of faults. Some faults, such as resource-exhaustion faults [3, 9, 11] and
some intermittent hardware faults like disk crashes [16], exhibit a pattern of abnormal behavior that favors
fault-prediction. MEAD’s proactive dependability framework uses these predictions to initiate fault-recov-
ery that would incur a lower penalty than a reactive fault-recovery strategy in which we first waited for the
process to crash before taking any action. For instance, if we knew that a node had an 80% chance of failing
within the next five minutes, we could gracefully migrate all of its hosted processes to another working node
in the system, with the aim of meeting the application's real-time deadlines. Because it is not always possible
to predict failures for every kind of fault, proactive dependability complements, but does not replace, the

classical reactive fault-tolerance schemes.



1.1 Contributions of this Thesis

The research presented in this thesis addresses the problem of supporting both real-time and fault-tolerance
properties in asynchronous distributed systems. To achieve this goal, this thesis introduces a novel proactive
fault-recovery framework that provides bounded fault-recovery times for distributed real-time applications,
in the face of a class of predictable faults. We focus on the mechanisms needed to implement proactive fault-
recovery in a distributed systems, and do not attempt to develop a new failure-prediction technique. Instead,
we exploit relatively simple failure-prediction mechanisms within the MEAD system, and demonstrate how
to use the resulting predictions to initiate fault-recovery that minimizes both the jitter and the “latency”
spikes experienced by distributed applications in the presence of faults. This thesis makes the following con-

crete contributions:
* A general framework for proactive fault-recovery in distributed systems;

* Exploiting knowledge of the system topology when applying proactive fault-recovery to distributed

multi-tiered applications;
* Implementing this framework transparently for distributed CORBA applications;

* Empirical evaluations and measurements that quantify the overhead and performance of our new
approach, as compared with the classical reactive fault-tolerance strategy.

While we employ CORBA as the vehicle for our investigations in this thesis, our techniques are, for the

most part, independent of CORBA, and can be readily extended to non-CORBA-based distributed applica-

tions.

1.2 Structure of this Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides background information on
CORBA, and discusses related work. Chapter 3 introduces our novel proactive fault-recovery framework
and discusses the factors that determine the effectiveness of our approach. This chapter also explains how
to exploit knowledge of the system topology when extending our approach to multi-tiered distributed appli-
cations. Chapter 4 presents an in-depth description of our system architecture, while Chapter 5 highlights
the experimental results that we obtained from applying our prototype to a distributed CORBA application.

We then conclude by summarizing our main contributions.



2 Background

CORBA [25] is a middleware specification that simplifies application programming in distributed systems
by rendering transparent the low-level details of networking, distribution, physical location, hardware, oper-
ating systems, and byte order. A key component of CORBA is the Object Request Broker (ORB) that
enables clients to request object implementations from servers seamlessly over the network. The ORB
locates object implementations using an Interoperable Object Reference (IOR) that contains the address of
the server hosting the object, as well as an object key that uniquely identifies the object. Object keys can be
either transient or persistent. Transient object keys contain host-specific information such as timestamps,
and are typically only valid during the lifetime of a specific server instance. On the other hand, permanent
object keys (used in our approach) transcend the lifetime of a specific server instance, and assign identical

keys to objects independent of the hosting server.

CORBA specifies a generic communication protocol known as General-Inter-ORB Protocol (GIOP).
GIOP defines a set of eight message formats and common data representations for communications between
ORBs. The GIOP messages that are of most relevance to our work are Request messages sent from the client
to the server, and the Reply messages sent by the server in response to a client’s invocation. Each Request
message encapsulates a request id field that allows the client ORB to match incoming responses from a
server to the outgoing invocations from the client. The Reply message from the server contains a
reply_status that notifies the client of the completion status of its invocation, e.g., whether or not an excep-
tion occurred while the server processed the invocation. Our architecture exploits two values of GIOP

reply_status field:

* LOCATION FORWARD, which indicates to the client that it should reissue its request to a server at

some other location, and

» NEEDS ADDRESSING MODE, which directs the client to supply more addressing information and

usually prompts the client ORB to re-send the request (transparently to the client).



2.1 Fault-Tolerance for CORBA

Until the recent adoption of the Fault-Tolerant CORBA standard [26], CORBA had no intrinsic support for
fault-tolerance. Early fault-tolerant CORBA systems (which preceded the FT-CORBA standard) adopted
diverse approaches: the integration approach, where the support for replication is integrated into the ORB
(e.g., Electra [17]), the interception approach, where the support for replication is provided transparently
underneath the ORB (e.g., Eternal [22]), and the service approach, where support for replication is provided

primarily through a collection of CORBA objects above the ORB (e.g., OGS [8]).

The recent Fault-Tolerant CORBA standard (adopted in March 2000) describes the minimal fault-tol-
erant mechanisms to be included in any CORBA implementation, as well as interfaces for supporting more
advanced fault-tolerance. FT-CORBA implementors are free to use proprietary mechanisms (such as reli-
able multicast protocols) for their actual implementations, as long as the resulting system complies with the
specified interfaces and the behavior expected of those interfaces. Despite their differences, the various
approaches to fault-tolerant CORBA (including the new FT-CORBA standard) are alike in their use of rep-
lication to protect the application against faults. CORBA applications can be made fault-tolerant by repli-
cating their constituent objects, and distributing these replicas across different processors in the network.
The idea behind object replication is that the failure of a replica (or of a processor hosting a replica) of a
CORBA object can be masked from a client because the other replicas can continue to provide the services

that the client requires.

Figure 2-1. Active and Passive Replication.
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There are essentially two kinds of replication styles -- active replication [33] and passive replication [4],
as seen in Figure 2-1 [22]. With active (also known as state-machine) replication, each server replica pro-
cesses every client invocation, and returns the response to the client (of course, care must be taken to ensure
that only one of these duplicate responses is actually delivered to the client). The failure of a single active
replica is masked by the presence of the other active replicas that also perform the operation and generate
the desired result. With passive replication, only one of the server replicas, designated the primary, pro-
cesses the client's invocations, and returns responses to the client. With warm passive replication, the
remaining passive replicas, known as backups, are preloaded into memory, and are synchronized periodi-
cally with the primary replica, so that one of them can take over should the primary replica fail. With cold
passive replication, however, the backup replicas are “cold”, i.e., not even running, as long as the primary
replica is operational. To allow for recovery, the state of the primary replica is periodically checkpointed
and stored in a log. The primary also maintains a log of activities between checkpoints. If the existing pri-
mary replica fails, a backup replica is launched, with its state initialized from the latest checkpoint and activ-
ity log, to take over as the new primary. Typically, clients connected to the old primary will fail-over to the

new primary replica.

Both passive and active replication styles require mechanisms to support state transfer. For passive rep-
lication, the transfer of state occurs periodically from the primary to the backups (warm passive), from the
existing primary to a log (cold passive), or from the log to a new primary (cold passive). For active replica-
tion, the transfer of state occurs when a new active replica is launched and needs its state synchronized with
the operational active replicas. Fault-tolerant CORBA systems require the application to be deterministic,
i.e., any two replicas of an object, when starting from the same initial state, and after processing the same
set of messages in the same order, should reach the same final state. Mechanisms for strong replica consis-
tency (ordered message delivery, duplicate suppression, efc.), along with the deterministic behavior of
applications, enable effective fault-tolerance so that a failed replica can be readily replaced by an opera-
tional one, without loss of data, messages or consistency. Note that the classical reactive fault-tolerance
approach would first wait to detect the failure of an active or a passive replica, and then initiate recovery

such as the launch of a replica.

The underlying system model for fault-tolerant CORBA systems is an asynchronous distributed system,

where processors communicate via messages over a local-area network that is completely connected, (i.e.,
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network partitioning does not occur). Communication channels are not assumed to be FIFO or authenti-
cated, and the system is asynchronous in that no bounds can be placed on computation times or message-
transmission latencies. Processors receive their own messages, and have access to local clocks that are not
necessarily synchronized across the system. The fault model includes communication, processor, and object
faults. Communication between processors is unreliable and, thus, messages may need to be retransmitted.
Processors, processes and objects are subject to crash faults, and thus, might require recovery and re-instate-

ment to correct operation.

2.2 FT-CORBA and RT-CORBA

In addition to the FT-CORBA standard, CORBA also supports a Real-Time CORBA (RT-CORBA) stan-
dard that [28] provides standard interfaces to meet an application’s real-time requirements by facilitating
predictable end-to-end scheduling of activities, and by supporting the management of resources in the sys-
tem. The current FT-CORBA and RT-CORBA standards were developed independently, and make several
conflicting assumptions about the behavior of the system. These conflicts are summarized in Table 2-1, and
are inherent to real-time and fault-tolerant systems [21]. The proactive fault-recovery framework that we
present relaxes the “no advance knowledge of faults” assumption by introducing some notion of “predict-
ability” to system failures. We recognize that some system failures might occur so abruptly that we cannot
possibly hope to predict them; we also acknowledge that fault prediction provides only statistical guaran-
tees. For these reasons, proactive fault-recovery complements, but does not entirely replace, the current

reactive fault-recovery strategy adopted by FT-CORBA.

Table 2-1. Conflicts between real-time and fault-tolerance.

Real-Time Systems Fault-Tolerant Systems

Typically requires a priori knowledge of events No advance knowledge of when faults might occur, and of how
long fault-recovery might take

Determinism means predictability of the temporal | Determinism means predictability/coherence of state and
behavior of a single (likely unreplicated) object responses across the replicas of an object (replica determinism)

Operations ordered to meet task deadlines Operations ordered to preserve replica consistency

Traditionally synchronous Traditionally asynchronous

Multi-threading for concurrency and task schedul- | Replica-determinism prohibits use of multi-threading
ing

Use of timeouts and timer-based mechanisms Replica-determinism prohibits use of local processor time

11



2.3 Related Work

Huang et al. [11] proposed a proactive approach, called software rejuvenation, for handling transient soft-
ware failures such as memory leaks. Software rejuvenation involves gracefully halting an application once
errors accumulate beyond a specified threshold, and then restarting the application with a clean internal
state. Subsequent work in software rejuvenation has focused on constructing rejuvenation policies that
increase system availability and reduce the cost of rejuvenation [3, 9, 11]. Our initial results [29] show that
simply restarting a faulty server that has ongoing client transactions can lead to unacceptable jitter and
missed real-time deadlines at the client. This thesis presents mechanisms needed to gracefully handoff exist-
ing clients on faulty servers at the onset of the rejuvenation threshold, allowing the server to reach a quies-

cent state before it is restarted.

Castro and Liskov [5] developed another proactive fault-recovery system. Their system implemented a
proactive recovery scheme for Byzantine fault-tolerant systems that had untrusted clients. In their scheme,
faulty servers periodically restarted themselves, and clients detected these failures by timing out and retrans-
mitting their requests to all the replicas in the group. Again, this fail-over process may result in increased
jitter at the client. Our system uses proactive notifications to lower fail-over times in systems with trusted

clients.

Ruggaber and Seitz [32] considered the hand-off (similar to fail-over) problem in wireless CORBA sys-
tems. They developed a proxy platform that uses a modified ORB to transparently handoff mobile CORBA
clients to wired CORBA servers. Instead, our approach implements transparent fail-over in wired environ-

ments using interception mechanisms [15] that do not require us to modify the ORB.

A variety of statistical fault-prediction techniques have also been proposed in the literature. Lin and
Siewiorek [16] developed a failure prediction heuristic that achieved a 93.7% success rate in predicting
faults in the campus-wide Andrew File System at Carnegie Mellon University. Vilalta and Sheng [37] used
temporal data mining to predict faults in a telecommunication network. Our research does not focus on fault-
prediction techniques, but rather on how to exploit fault-prediction in systems that have real-time deadlines.
This thesis establishes that proactive fault-recovery is effective and can provide bounded temporal behavior,
in the presence of certain kinds of faults, thereby allowing us to support both fault-tolerance and real-time

properties in distributed applications.
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3 Proactive Fault Recovery

Proactive fault-recovery is an approach that exploits fault-prediction mechanisms in order to compensate
for failures even before they occur, thereby providing bounded temporal behavior in real-time and fault-tol-
erant systems, for certain classes of faults. Even in the absence of fault-prediction, the techniques we
describe may be helpful in solving other research problems in dependable systems such as live software
upgrades [36]. This is because our fault-recovery techniques provide a means of achieving a quiescentl state

at a server process, which is one of the challenges faced during a live software upgrade.

Equation 3-1. Scenario in which proactive fault-recovery is highly beneficial.

Reactive Fault-recovery Latency >> Proactive Fault-recovery Latency

The bounded temporal behavior provided by proactive fault recovery is very evident in systems where
the latencies incurred by the reactive fault-recovery routines are significant (Equation 3-1). In proactive
fault-recovery, we execute the reactive fault-recovery routines before the actual system failure, thereby

reducing the amount of work the system needs to perform to recover from the fault.

For instance, when a server crashes in a warm-passively replicated system [4], some ongoing client
requests may be lost and will need to be retransmitted to the new primary. However, if the server “knew”
that it was about to crash, it could gracefully migrate its current clients to a new primary and avoid the per-
formance penalty incurred by request retransmissions. In systems where the reactive fault-recovery laten-
cies are relatively low, such as actively replicated [29] systems, the performance of both the proactive and
the reactive schemes should be about the same. In this case, proactive fault-recovery may be used ensure
that a minimum level of resilience (e.g., through a minimum number of replicas) is maintained by launching

new replica processes whenever the system detects that a given replica is about to fail.

1. Quiescence is often required in dependable systems in order to ensure that one can “safely” extract a process’ state
without fear of the state undergoing modification at that point in time. Checkpointing and live software upgrades
require applications to be quiescent before the necessary mechanisms can be used.

13



3.1 Challenges Faced in Proactive Fault-Recovery

There are two main challenges faced when designing any proactive fault-recovery recovery strategy: the
first is determining “when” to initiate proactive fault-recovery, and the second is determining “how” to

propagate the proactive fault-recovery notifications through the system.

When to initiate proactive fault-recovery? If we trigger fault-recovery too often, the additional overhead
of unnecessarily failing over clients to non-faulty server replicas quickly negates the benefits of using a pro-
active strategy. On the other hand, if we wait too long to initiate recovery, the very purpose of a proactive
strategy is lost because the client does not have enough time to fail-over. In this case, the resulting fault-
recovery ends up resembling a reactive strategy. The ideal scenario is to delay proactive fault-recovery so
that the system has just enough time to initiate and complete the fault-recovery routines before the server

fails.

How to propagate proactive fault-recovery notifications? This choice is greatly influenced by both the
reactive fault-tolerance strategy adopted by the system and the current system topology. For example, in
multi-tiered distributed systems, we need to determine whether to restrict the proactive fault notifications to

neighboring tiers or whether to propagate the notifications to every tier in a given nested invocation.

Figure 3-1 further illustrates the rationale for determining “when” and “how” to initiate proactive fault-
recovery. For a system component, MEAD’s fault-predictor provides an estimated Time-to-Failure (TTF),
i.e., when the component is likely to fail based on current pre-fault indications. Based on this estimation, the
proactive-fault recovery mechanisms opt to either initiate or delay fault-recovery actions. For instance, the
fault predictor may inform MEAD that a server replica has an 80% chance of failing within the next ten
minutes. At this point, MEAD’s proactive recovery mechanisms need to decide whether to fail-over imme-
diately or to continue processing client requests for, say, another seven minutes, before handing over control

over to a new server replica.

14



Figure 3-1. Tuning proactive fault-recovery.
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A number of tunable factors (See Table 3-1) influence the proactive fault-recovery decision:

* Application-specific characteristics: These are inherent to the application, for instance, the average

time that a server takes to service a client request, as well as the client’s invocation rates.

» Fault-tolerance properties: These are influenced by the reactive fault-tolerance strategy adopted in the

system, for example, the replication style and the fault-model.

» System topology factors: These depend on how functionality is distributed across the application, for
instance, whether the application is structured as a simple two-tier hierarchy or consists of three or more

application tiers.

Table 3-1. Factors that influence proactive fault-recovery.

Decision to be made Tunable Factor Mechanism/Parameters

When to initiate recovery Application-specific Service times
Client invocation rates

Fault-tolerance strategy Accuracy of fault-predictor
Fault-recovery latencies

Topology Network propagation delays
How to perform recovery Application-specific Stateless or stateful application
Fault-tolerance strategy Replication style (Active or passive)

Fault model (Byzantine or fail-stop)
Fail-over technique (Client-side vs Server-side)

Topology Number of application tiers

15



3.2 When to Initiate Proactive Fault-Recovery

There are two aspects to the question of “when” to initiate proactive fault-recovery: (i) the actual instant in
time that we should initiate recovery; which affects how much benefit we obtain from proactive fault-recov-
ery, and (ii) “how often” we should initiate recovery, which affects the amount of overhead introduced by
the scheme. For example, we may opt to initiate proactive fault-recovery only after every third predicted
fault in order to reduce the overhead in the system. In general, we minimize the overhead of proactive fault-
recovery in a system by initiating recovery actions at the point when the system has just enough time to exe-
cute and complete all the fault-recovery routines before the faulty server crashes. This implies that, when-
ever a client request arrives at a faulty server, the proactive fault-recovery mechanisms may need to make
one of the following decisions (See Figure 3-2); based on the values of the Time-to-Failure (TTF) when the
client’s request arrives, the worst-case execution time (WCET) of the request at the server, and the proactive
fault-recovery time (PFRT).
1. Allow the server to execute the incoming request: This decision is made when based on the TTF, there is
sufficient time to execute both the client’s request and the proactive fault-recovery routines if required.
For example, if a request with WCET=2ms arrives at the server when the TTF=10ms and the

PFRT=4ms, then the server can execute the request within 2ms, still leaving enough time (8ms) to exe-

cute proactive fault-recovery routines.

2. Initiate proactive fault-recovery: This decision is made when the faulty-server does not have enough
time to execute both the current request and proactive fault-recovery routines, but has sufficient time to
execute the proactive fault-recovery routines, at least. For example, if a request with WCET=2ms
arrives at the server when the TTF=5ms and the PFRT=4ms, clearly we are better off if we discarded

the request and initiated proactive fault-recovery.

3. Do nothing: This decision is made, when based on the TTF, there is neither enough time to service the
client request or execute the proactive fault-recovery routines. In this case, the system reverts to its

reactive fault-recovery strategy. An example would be if TTF=5ms, WCET=6ms and PFRT=10ms.

16



Figure 3-2. Timing decision for proactive fault-recovery.
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A number of factors influence the estimates of the WCETSs and the proactive fault-recovery times. These

factors are discussed in detail below.

3.2.1 Application-Specific Factors
WCETs or Service times: The WCETs for the client requests may be computed through the static program

analysis of application code [31]. The results of this analysis can be stored in a dispatch table, within the
proactive fault-recovery mechanisms, that can be accessed at run-time. This approach assumes that the per-
formance of the hardware is known beforehand, and that no interrupts occur during the execution of the cli-
ent. However, because the execution time for a task can change at run-time (due to variable system load,
environment, efc.), run-time monitoring similar to that proposed in the Time-Aware Fault-Tolerant (TAFT)

scheduling system [24] might be more appropriate.

Client invocation rates: The influence of client invocation rates on proactive fault-recovery times is subtle
and is better explained with an example. The basic idea is that is if the next client invocation is scheduled
to occur at a time after the estimated Time-To-Failure, the client should be informed of the impending server
failure during the current invocation. For example, if a server receives requests from clients once every
200ms and at the time the server receives a client request, the TTF=150ms, the WCET=20ms, and the
PFRT=50ms. Clearly, even though we have enough time to execute the both the client request and the pro-
active-fault recovery routines, if we delay proactive fault-recovery until the next client invocation, it will be

too late and the system will have to run the expensive reactive fault-recovery routines.
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3.2.2 Fault-Tolerance Factors

Accuracy of the fault-predictor: We need a fault-predictor with a reasonable accuracy. However, a fault-
predictor might malfunction in two ways. The first way is by computing a TTF that is too small. In this case,
proactive fault-recovery will be initiated too late to be of any use, and the system will revert to its reactive
fault-recovery routines. A second way in which the fault-predictor might malfunction is by computing a
TTF that is too large. Although in this scenario the system may still meet its real-time deadlines because the
time needed to execute the proactive recovery routines is relatively low, the efficiency of the system is com-

promised due to the extra overhead of initiating fail-overs unnecessarily.

Fault-recovery latencies: The fault-recovery latencies include the time to find an alternative working server
replica, to restore its state consistently, and then to fail-over clients to use this working replica. These fault-
recovery latencies depend on the reactive fault-tolerance strategies that are in place within the system. For
instance, warm passively replicated applications typically experience higher recovery latencies than

actively replicated applications.

3.2.3 Topology Factors

Network propagation delays: The proactive fault-recovery mechanisms need to take into account the laten-
cies for message transmission from the server to the client. Ideally, the proactive fault-recovery mechanisms
should not allow a server to service a client request if the WCET of the request and the network propagation

delay exceed the MTTF.

3.2.4 Critique

The factors listed above are not exhaustive, but they give a good representation of the timing information
that the proactive fault-recovery mechanisms would ideally need to collect. Care must be taken to ensure
that the overhead of monitoring and extracting this timing information does not “clog” the system. The pro-
active fault-recovery mechanisms need to determine the minimum amount of information that they need in
order to make a reasonably accurate decision about when to initiate proactive fault-recovery. For instance,
if the network propagation delays in the system are minimal, they can be ignored when computing the fault-
recovery times, resulting in lower overheads. Poor timing estimates will either cause us to initiate proactive
recovery too late or too often. Initiating proactive fault-recovery too late will cause us to revert to a reactive

fault-recovery strategy, whereas initiating recovery too often will lead to increased system overheads.

18



3.3 How to Implement Proactive Fault-Recovery

The proactive fault-recovery notifications can be propagated through the system in several ways. The mech-
anisms that we outline in this section will mainly focus on passively replicated systems because implement-
ing proactive fault-recovery in actively replicated systems is the more trivial case because these systems
typically have low fault-recovery latencies. The factors that affect how proactive fault-recovery is imple-

mented in a system are outlined below.

3.3.1 Application-Specific Factors

Stateless vs. Stateful applications: For stateless applications, the proactive fault-recovery problem is very
similar to the problem of load-balancing or high availability. This is especially true if the application
assumes a fail-stop fault-model. Such stateless applications, the failing replica can continue to service client
requests for a certain “grace period” after the proactive fault recovery decision has been made. This “grace
period” gives the newly-elected primary replica some time to recover any system state so that the effect of
the fail-over is masked from the client. However, in stateful applications, the failing primary replica must
yield complete control to the newly elected primary because we need to maintain consistent state across all
of the replicas in the system. The process by which control is handed over to the new primary is listed below:
1. Take a proactive state-checkpoint: A proactive state-checkpoint involves recording the internal state
information on the failing replica, and broadcasting this information to the other replicas in the
group so that they reflect the most recent server state. Proactive checkpoints lower the fault-recov-

ery times by reducing the amount of work that needs to be done during recovery and fail-over, in the

event of a system failure.

2. Elect the new primary: The replicas then agree amongst themselves who the next primary will be.

They exclude the failing replica from consideration in the re-election process.

3.Newly-elected primary starts servicing client requests: The recovery latencies for stateful applica-
tions will be higher because the servicing of client requests will be put on hold until the newly-

elected primary attains a consistent state.
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3.3.2 Fault-Tolerance Factors

The reactive fault-tolerance strategy adopted by the system greatly influences how proactive fault-recovery

is implemented in the system. These fault-tolerance factors are as follows:

Replication style: Systems usually implement either active [33] or passive replication [4], or a variation of
these two styles, e.g., semi-active replication [30]. Passively replicated applications typically use fewer
system resources but have higher fault-recovery latencies when compared to actively replicated systems.
Proactive fault-recovery can help lower the fault-recovery latencies associated with passively replicated
systems, thereby coupling the benefits of low resource usage in passive replication with the faster fault-
recovery times associated with active replication. In actively replicated systems, proactive fault-recovery
can be used to ensure that a certain minimum resilience (through the number of replicas) by launching new

replicas whenever it detects that a given replica is about to fail.

Fault model: The types of faults that a system can handle can range from fail-silent to Byzantine faults [14].
Proactive fault-recovery systems designed under the fail-silence assumption are simpler because the fault-
recovery decision can be localized to proactive fault-recovery mechanisms collocated at a given node. How-
ever, if systems need to handle Byzantine failures, the proactive fault-recovery mechanisms on each replica
need to share information with each other, and agree on the current view of the system; any proactive fail-
over decision must be based on the output of at least 3k+ 1 nodes where £ is the number of Byzantine failures

tolerated. This scheme leads to increased system complexity.

Fail-over technique: Fail-over to a new server replica may occur either at the client-side or the server-side.
In client-side fail-over, the client is aware of the address of the new server replica and establishes an explicit
connection to it during fail-over. With server-side fail-over, the client typically addresses the server replicas
as a group, and is not explicitly made aware of the addresses of the individual server replicas. All the fail-
over mechanisms occur at the server-side (at each individual server replica), and changes in server group

membership are completely masked from the client.

3.3.3 Topology Factors

A distributed system based on the client/server model may be implemented as a simple two-tier application
or it may support nested invocations that span more than two tiers. Most distributed applications nowadays

consist of multiple tiers, and we, therefore need to extend our proactive approach to such applications. In
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multi-tiered systems, we can either limit the proactive fault-notifications to just the neighboring tiers, or take
globally proactive actions across all the tiers involved in the nested invocation. The simplest case is to
restrict the proactive fault-recovery notifications to the neighboring tiers, thereby representing the nested

invocation problem as a series of “independent” client/server pairs as shown in Figure 3-3.

If, on the other hand, we decide to invalidate the entire end-to-end operation, we need to propagate an
exception simultaneously to all of the tiers involved (as opposed to letting the exception propagate sequen-
tially from tier-to-tier at the application level). For example, when a fault occurs at tier 3, we would broad-
cast the exception to tiers 1 and 2. We would not propagate an explicit exception to tier 4 because it violates
the client/server model (an exception is a type of a Reply message, and clients do not send replies to servers).
Instead, we would propagate the exception implicitly to the server in tier 4 by resetting the connection estab-
lished between tier 3 and tier 4. To implement this scheme, we need some knowledge of the system topol-

ogy. We also need to determine if this invalidation will be transparent to the application, as discussed below:

»  Determining system topology: For instance, the proactive fault-recovery mechanisms at tier 3 need to
know that the invocation that they are dealing with was initiated by tier 1 and passed through tier 2
before reaching tier 3. We could piggyback information about the topology information on the mes-
sages that are passed from tier to tier. The disadvantage of this approach is that messages can grow arbi-
trarily long. The other option is to map the logical dependencies in an application to some type of run-
time representation that can be queried by the proactive fault-recovery mechanisms. For instance, Ensel
and Keller [7] have proposed a system that tracks service dependencies using XML (eXtensible Markup

Language). We could also envision doing this through static program analysis.

» Transparency at the application layer: We believe that global exception-handling [19] should be visible
to the programmer. This is because the programmer needs to specify how to invalidate any partial state

(at the application layer) that has been generated during the transaction.

Figure 3-3. Proactive fault-recovery in multi-tiered distributed systems.
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4 System Architecture

The proactive fault-recovery framework, which we are developing within the MEAD project, helps to lower
the impact of faults on real-time schedules. Our main objective when designing this framework was to build
a transparent fault-tolerant infrastructure that masked failures at the application, lowered the average fail-
over time, and incurred a reasonable overhead. Our framework uses replication and proactive fault-notifi-
cations to protect applications against faults. Although we use CORBA to develop our system, the concept
of proactive notifications can be extended to other types of middleware. Our system builds upon the trans-
parency provided by CORBA, and makes use of some of the notification messages already supported by the

CORBA standard.

4.1 Design Assumptions

In our development of MEAD’s proactive fault-recovery framework, we make the following assumptions:
* Operation in an asynchronous distributed system;
* Independent failures across the server replicas and the nodes;

* A fault model that covers process crash-faults, node crash-faults, message-loss faults and resource-

exhaustion faults;

» Deterministic, reproducible behavior of the application and the ORB. This also implies that there is no
multi-threading in either the server or client processes (similar to the assumptions made in the FT-
CORBA standard). This is because multi-threading may lead to different orders of execution across the

replicas in the system, and result in replica inconsistency.
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Figure 4-1. MEAD’s proactive fault-tolerance architecture.
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4.2 MEAD Proactive Fault-Recovery Architecture

The MEAD proactive fault-recovery architecture has three main components: the Interceptor, the Proactive
Fault-Tolerance Manager, and the Recovery Manager (see Figure 4-1). The MEAD Interceptor transpar-
ently modifies the behavior of the application, and serves as the insertion-point for our fault-recovery hooks.
The MEAD Fault-Tolerance Manager monitors resource usage and triggers fault-recovery actions when it
senses that a server replica is about to fail. Finally, the MEAD Recovery Manager launches new replicas
that restore the application’s resilience after a server replica crashes. MEAD exploits an underlying totally-
ordered reliable group communication system, specifically, the Spread system [1], to obtain the reliable

delivery and message ordering guarantees required for consistent node-level and process-level membership.

4.2.1 The MEAD Interceptor

Interceptors are software components that can transparently modify the behavior of the function calls
invoked by an application. CORBA provides standardized support for interception through its Portable
Interceptors [27], which requires modification of the application code to insert hooks for intercepting the
application’s request and reply messages. Due to the lack of transparency in Portable Interceptors, and due
to some limitations [ 18] in their usage, such as the inability to block server replies without raising an excep-
tion at the application, we favor a transparent library interpositioning approach [15] instead. Library inter-
positioning provides us with greater flexibility, and allows us to implement proactive recovery transparently

for an unmodified CORBA application running over an unmodified Linux kernel.
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Figure 4-2. Sequence of steps for connection establishment and communication in CORBA.
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MEAD?’s proactive recovery framework tracks GIOP messages communicated over TCP/IP sockets by
intercepting the following eight UNIX system calls: socket(), accept(), connect(), listen(), close(), read(),
writev() and select(). We keep track, locally, of each socket that either the CORBA client or server opens
based on the sequence of system calls executed (See Figure 4-2). For instance, if a specific socket file
descriptor appears within the accept() call, we associate the descriptor with a server-side socket because
only the server-side logic of a CORBA application would invoke the accept() call (in order to accept con-
nections from potential clients). Most of our proactive-recovery logic is implemented within the intercepted
read(), writev() and select() calls because all of the communication in CORBA is connection-oriented, and

these calls capture the message-exchange interface between the CORBA client and server.

4.2.2 The MEAD Proactive Fault-Tolerance Manager

The Proactive Fault-Tolerance Manager is embedded within the server-side and client-side Interceptors and
is thus collocated with the CORBA client and server respectively. At the server side, its responsibility is to
monitor resource usage and trigger proactive fault-recovery mechanisms whenever it senses that resource
usage has exceeded a predefined threshold. At the client-side, its responsibility is to redirect the client away
from the failing replica and to a non-faulty server replica. We implement proactive recovery using a two-
step threshold-based scheme similar to the soft hand-off process employed in cellular systems [39]. When
a replica’s resource usage exceeds our first threshold, e.g., when the replica has used 80% of its allocated
resources, the Proactive Fault-Tolerance Manager at that replica requests the Recovery Manager to launch
anew replica. If the replica’s resource usage exceeds our second threshold, e.g., when 90% of the allocated
resources have been consumed, the Proactive Fault-Tolerance Manager at that replica can initiate the migra-
tion of all its current clients to the next non-faulty server replica. Future implementations of the Fault-Tol-

erance Manager will incorporate adaptive, rather than preset, thresholds.
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4.2.3 The MEAD Recovery Manager

Within our proactive dependability framework, the Recovery Manager is responsible for launching new
server replicas to restore the application’s resilience after a server replica or a node crashes. Thus, the
Recovery Manager needs to have up-to-date information about the server’s degree of replication (i.e., the
number of replicas). To propagate the replicated server’s group membership information to the Recovery
Manager, we ensure that new server replicas join a unique server-specific group as soon as they are
launched. By subscribing to that group, the Recovery Manager can receive membership-change notifica-
tions. For instance, if a server replica crashes, the Recovery Manager receives a membership-change noti-
fication, too, and can launch a new replica to replace the failed one. The Recovery Manager also receives
messages from the Proactive Fault-Tolerance Manager whenever the Fault-Tolerance Manager anticipates
that a server replica is about to fail. These proactive fault-notification messages can also trigger the Recov-
ery Manager to launch a new replica to replace the one that is expected to fail. Thus, the Recovery Manager

participates in both reactive and proactive fault-recovery schemes.

4.3 Proactive Fault-Recovery Schemes

The Proactive Fault-Tolerance Manager implements proactive recovery through five different schemes:
GIOP LOCATION _FORWARD Reply messages, GIOP NEEDS ADDRESSING MODE Reply mes-
sages, MEAD’s client-side fail-over messages, MEAD’s server-side fail-over messages and finally,
through MEAD’s topology-aware messages. Each of these messages performs two functions: first, it
invokes a proactive state-checkpoint by updating state information across the server replicas using the
underlying group communication system, and second, it redirects clients (away from the failing replica) to
the newly elected primary replica. The mechanisms for proactive checkpointing are the same across all five
schemes. The schemes primarily differ in the way that they redirect clients to new server replicas as

explained below.

4.3.1 GIOP LOCATION_FORWARD Messages
CORBA’s GIOP specification [25] defines a LOCATION FORWARD Reply message that a server can use

to redirect its current clients to an alternative server location (See Chapter 2). The body of this Reply mes-
sage consists of an Interoperable Object Reference (IOR) that uniquely identifies the CORBA object at the

new server location.
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To implement this scheme, we intercept the IOR returned by the Naming Service when each server rep-
lica registers its objects with the Naming Service. We then broadcast these IORs, through the group com-
munication system, to the Fault-Tolerance Managers collocated with the server replicas. Thus, each Fault-

Tolerance Manager hosting a server replica “knows” the references of all of the other replicas of that server.

When the server-side MEAD Fault-Tolerance Manager senses that its replica is about to crash, it sup-
presses its replica’s normal GIOP Reply message to the client, and instead sends a
LOCATION_FORWARD Reply message containing the address of the next available server replica. The
client ORB, on receiving this message, transparently retransmits the client request to the new replica without

involving the hosted client application (see Figure 4-3 a).

The main advantage of this technique is that it does not require us to install an Interceptor at the client
because the client ORB handles the retransmission through native CORBA mechanisms. However, the
server-side Interceptor must maintain some system state because it needs to store the IOR entry of every
object instantiated within the server. This scheme also incurs a high overhead because we need to parse
incoming GIOP Request messages to extract the request identifier field so that we can generate correspond-
ing LOCATION_FORWARD Reply messages that contain the corresponding request identifier and the cor-
rect object key. One optimization that we add to this scheme is the use of a 16-bit hash of the object key to
facilitate the easy look-up of the IORs, as opposed to a byte-by-byte comparison of the object key (that was

typically 52 bytes for our test application).

Figure 4-3. Client-side fail-over schemes.
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4.3.2 GIOP NEEDS_ADDRESSING MODE Messages
The GIOP NEEDS ADDRESSING MODE Reply message directs the client to supply more addressing

information, and usually prompts the client ORB to resend the request. We used this scheme to investigate
the effect of suppressing abrupt server failures from the client application, in case the server does not have
enough time to initiate proactive recovery before it fails. We detect abrupt server failures when the read()
call at the client Interceptor returns an End-Of-File (EOF) response. At this point, we contact the Fault-Tol-
erance Manager at the server replicas (using the group communication system) to obtain the address of the
next available replica. The first server replica listed in the group-membership list responds to the client’s
request (see Figure 4-3 b). Ifthe client does not receive a response from the server group within a specified
time (we used a 10ms timeout), the blocking read() at the client-side times out, and a CORBA exception is
propagated up to the client application. If, on the other hand, we receive the address of the next available
replica, we then redirect the current client connection to the new replica at the Interceptor level, and fabri-
cate a NEEDS ADDRESSING MODE Reply message that causes the client-side ORB to retransmit its last

request over the new connection.

The advantage of this technique is that it masks communication failures from the client application, but
it sometimes takes the client longer to recover from the failure, as compared to a reactive scheme where we
would expose the client to the failure and let it recover on its own. We do not recommend this technique
because it sometimes increases the average fail-over time, and it is based on the assumption that an EOF
response corresponds to an abrupt server failure, which might not always the case on all operating systems

and under all conditions.

4.3.3 MEAD Client-Side Fail-over Messages

In this scheme, the Proactive Fault-Tolerance Manager intercepts the listen() call at the server to determine
the port on which the server-side ORB is listening for clients. We then broadcast this information over the
group communication system so that the Proactive Fault-Tolerance Manager at each server replica knows
the hostname and the port of the other replicas in the group. Whenever group-membership changes occur
(and are disseminated automatically over the group communication system), the first replica listed in the

group-membership message sends a message that synchronizes the listing of server replicas across the

group.
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When MEAD detects that a replica is about to fail, it sends the client-side Proactive Fault-Tolerance
Manager a MEAD proactive fail-over message containing the address of the next available replica in the
group (see Figure 4-3c). We accomplish this by piggybacking regular GIOP Reply messages onto the
MEAD proactive fail-over messages. When the client-side Interceptor receives this combined message, it
extracts (the address in) the MEAD message to redirect the client connection to the new replica so that sub-
sequent client requests are sent to the new replica. The Interceptor then transmits the regular GIOP Reply
message up to the client application. The redirection of existing client connections is accomplished by the
Interceptor opening a new TCP socket, connecting to the new replica address, and then using the UNIX
dup2()! call to close the connection to the failing replica, and point the connection to the new address (an

alternative to this scheme would be to use the migratory TCP protocol [34]).

This scheme reduces the average fail-over time because, unlike the previous two schemes, it avoids the
retransmission of client requests. The scheme also incurs a low overhead since we do not need to parse
GIOP messages and keep track of IORs. However, this scheme does not readily support replicated clients
to track the group communication messages (and would make the support of multi-tiered applications

harder).

4.3.4 MEAD Server-Side Fail-over Messages

In this scheme, all of the communication between the client and the server is channeled over the group com-
munication system ensuring a consistent ordering of messages across all the server replicas. The intercep-
tion mechanisms used in this scheme are described in detail elsewhere (specifically, in the paper on
MEAD’s versatile dependability [35]), and which support both active and passive replication styles. The
schemes that we described earlier only support passively replicated systems, so we do not need to provide
strict message ordering guarantees because the client only communicates directly with one replica. Clients
address the server using the server’s group identifier; therefore, no proactive fail-over messages are sent to
the client. Instead, the proactive fail-over simply involves invoking a proactive state-checkpoint and is

treated in a similar manner to a server replica voluntarily leaving the group.

1. dup2() is a UNIX system call that is used to create copies of file descriptors.
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Figure 4-4. Server-side fail-over scheme.
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4.3.5 MEAD Topology-Aware Messages

The previous sections (4.3.1-4.3.4) refer to two-tiered client-server applications. Here, we investigate the
effect of invalidating an entire invocation in a multi-tiered application by simultaneously broadcasting an
exception message to all the tiers involved as opposed to propagating exceptions sequentially from one tier
to the next. This global exception-handling strategy should help reduce the latency associated with excep-
tions propagating sequentially from tier-to-tier. This scheme, unlike the others described in the two-tier
case, is not transparent to the application. We introduce a GlobalException type that needs to be handled by
every CORBA object in the system. The application programmer specifies the error-handling routine that
needs to be executed once this exception is received. The GlobalException contains a field that flags the tier
that failed using a hop-count. For example, if the exception was raised at tier 3, the hop-count at tier 3 is

zero, the hop-count at tier 2 is one, and the hop-count at tier 1 is two.

The main challenge of this technique is extracting some knowledge of the system topology. At the Inter-
ceptor level, all that the Fault-tolerance Manager sees is a number of incoming and outgoing sockets. It has
no idea whether the messages on a particular socket originated from a neighboring client or one farther
downstream. To get some notion of system topology in our prototype, we prepend information about the
Spread group identifier onto each GIOP message. Because we assume that all processes are single-threaded,
if we see an incoming message on one socket followed immediately by an outgoing request on a different
socket, we assume that this is a nested invocation and attach the relevant topology information (See

Figure 4-5).

29



Figure 4-5. Learning system topology.
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A more efficient approach would be to map the logical dependencies in an application to a run-time rep-

resentation that can be consulted by the proactive fault-recovery mechanisms, as discussed in Section 3.3.3.

The method we adopted for this implementation merely serves as a proof-of-concept. When the proactive

fault-recovery mechanisms sense that a replica is about to fail, they suppress the request from the server

application, and instead broadcast a CORBA GlobalException message to all the tiers involved in the invo-

cation.

All of the proactive fault-recovery schemes discussed in this section help systems to meet real-time

deadlines by lowering the fault-recovery times for a class of predictable faults. However, they differ in the

means of accomplishing this as summarized in Table 4-1.

Table 4-1. A comparion of proactive fault-recovery schemes.

Scheme Replication Style Client-side vs. Amount of | Transparentto
Server side state kept by client
fail-over FT-manager application
LOCATION_FORWARD Passive Client-side High Yes
NEEDS_ADDRESSING MODE Passive Client-side Low Yes
MEAD client-side Passive Client-side Moderate Yes
MEAD server-side Passive and Active Server-side Moderate Yes
Topology-aware Passive Client-side High No
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5 Experimental Evaluation

We ran our initial experiments on five Emulab [38] nodes with 850MHz processors, 512MB RAM, and the
RedHat Linux 9 operating system. Our test application was a simple CORBA client implemented over the
TAO ORB (ACE and TAO version 5.4) [10] that requested the time-of-day at 10ms intervals from one of
three warm-passively replicated CORBA servers. Each experiment covered 10,000 client invocations. We
activated a specific kind of resource-exhaustion fault, namely, a memory-leak, when the primary server rep-
lica responded to its first client request. The resource-exhaustion fault led to approximately one server fail-
ure for every 250 client-invocations. The Proactive Fault-Tolerance Manager constantly monitored the
memory usage on the faulty server replica, and triggered proactive recovery when the resource usage
reached a preset threshold, for instance, when 80% of the allocated memory was consumed. Our multi-tiered
application was an extension of our two-tier application in which a client sends requests to a server furthur
upstream, e.g., a server in tier 5 (all the intermediate client/server tiers between tier 1 and tier 5 simply for-

ward messages between the client in tier 1 and the server in tier 5).

5.1 Results

We compare the jitter and performance of both the proactive and the reactive fault-recovery schemes in sys-
tems that use either client-side or purely server-side fail-over techniques. We also evaluate the impact of

throwing GlobalFExceptions in multi-tiered systems.

5.1.1 Client-Side Fail-over Systems

We investigate two different reactive schemes. In the first reactive (no-cache) scheme, the client waits until
it detects a server failure before contacting the CORBA Naming Service for the address of the next available
server replica. In our second reactive (cache-based) scheme, the client first contacts the CORBA Naming
Service and obtains the addresses of the three server replicas, and stores them in a collocated cache. When
the client detects the failure of a server replica, it moves on to the next entry in the cache, and only contacts
the Naming Service once it exhausts all of the entries in the cache. For both the reactive and proactive

schemes, we measured the following three metrics (see Table 5-1): the percentage increase in client-server
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round-trip times over the reactive schemes, the percentage of failures exposed to the client application per
server-side failure, and the fail-over times. In our proactive schemes, we additionally measured the effec-

tiveness of failing over clients at different thresholds.

Table 5-1. Overhead and fail-over times.

Recovery Strategy Increase in Client Fail-over Time
R(?und-Trlp- Failures Average | Standard | Worst-case - | % change
Time(RTT) (%) . .
%) (ms) Devia- Average + | in Worst-
tionc (ms) 3o (ms) case time
Reactive without cache baseline 100% 10.08 1.17 13.59 baseline
Reactive with cache 0% 146% 10.37 1.33 14.36 +5.7%
NEEDS_ADDRESSING MODE 8% 25% 9.68 1.03 12.77 -6.0%
LOCATION_FORWARD 90% 0% 8.66 0.38 9.80 -27.8%
MEAD message 3% 0% 2.65 0.17 3.16 -76.7%

5.1.2 Number of Client-side Failures

In the no-cache reactive fault-recovery scheme, there was an exact 1:1 correspondence between the number
of observed failures at the client and the number of server-side failures. The client-side failures that we
observed were purely CORBA COMM_FAILURE exceptions, which are raised when a replica fails after
the client has successfully established a connection with the replica. The cache-based reactive scheme expe-
rienced a higher failure rate. There was a 1:1 correspondence between the number of server-side failures
and the number of COMM_FAILURE exceptions observed by the client. In addition to COMM_FAILURE
exceptions, the client also experienced a number of CORBA TRANSIENT exceptions that occur when the
client accesses a stale replica reference. Stale cache references occurred when we refreshed the cache before
a faulty replica has had a chance to restart and register itself with the Naming Service, thereby leaving its
old invalid reference in the cache. This problem can be reduced by staggering the cache-refresh process over

time, instead of refreshing all of the cache references in one sweep.

In the NEEDS ADDRESSING MODE scheme, which is equivalent to a proactive recovery scheme
with insufficient advance warning of the impending failure, we observed eleven client-side failures. These
occurred when the client requested the next available replica at the point of the previous replica’s crash, but
before the replica’s crash had been notified to everyone in the server group; because there was as yet no
agreed-upon primary replica, the blocking read at the client timed out and the client caught a

COMM_FAILURE exception. For the proactive schemes with sufficient warning of the impending failure,
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i.e., thresholds below 100% (these correspond to the LOCATION FORWARD scheme and the MEAD pro-

active fail-over message scheme), the client does not catch any exceptions at all!

5.1.2.1 Overhead
We measured the overhead in terms of the percentage increase in client-server round-trip times (RTT). We

define round-trip time as the amount of time that elapses from the time that the client application sends a
Request to the time that it receives a Reply from the server. The overhead in the reactive schemes, which
averaged 0.75ms, served as our baseline reference. The scheme which used LOCATION FORWARD mes-
sages to trigger proactive recovery incurred an overhead of about 90% over the baseline round-trip time.
This overhead resulted from parsing GIOP messages so that we could keep track of object keys and
request _ids (see Chapter 2), and fabricate the appropriate GIOP messages that are needed to forward
requests to the next available replica. The NEEDS ADDRESSING MODE scheme’s overhead was only
8% higher than the baseline because we did not need to keep track of object keys. The scheme in which we

used MEAD messages introduced an overhead of about 3% over the baseline client-server round-trip time.

The communication overhead introduced by the proactive schemes depends on the frequency with
which proactive recovery is invoked. The additional messages sent by MEAD’s proactive fault-recovery
framework, in the event of a failure, typically add up to 100-150 bytes per client/server connection. Since
systems typically experience more non-faulty, rather than faulty, behavior, the overall communication over-
head introduced by our approach is reasonable. The differences in memory and CPU usage for our applica-
tion were not significant. However, we expect that as the server hosts more objects, the overhead of the
LOCATION FORWARD scheme will increase significantly over the other schemes because it maintains

an IOR entry for each instantiated object.

5.1.2.2 Worst-case Fail-over Times
The fail-over time includes both the fault-detection time and the fault-recovery time. The initial transient

spike shown on each graph represents the first call to the CORBA Naming Service (see Figure 5-1). In the
reactive scheme, where we did not cache server replica references, the client first experienced a
COMM_FAILURE exception when the server replica dies; the COMM_FAILURE exception takes about
1.7ms to register at the client. The client then incurred a spike of about 8.4ms to resolve the next server rep-

lica’s reference, resulting in a worst-case fail-over time of 13.59ms (average +3c ). In the case where we
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cache server references, we experienced about one TRANSIENT exception, of about 1.1ms, for every two

COMM_FAILURE exceptions. This led to an increased worst-case fail-over time of about 14.36ms.

Figure 5-1. Reactive client-side fault-recovery schemes.
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time of 9.8ms (27% lower than the no-cache reactive scheme) because when the client ORB receives the
LOCATION FORWARD, it transparently resends the request to the next server replica. When we used a
MEAD client-side message, the worst-case fail-over time was about 3.16 ms (76% below the no-cache reac-
tive scheme), because we avoided request retransmissions and incurred an overhead only when redirecting
a connection to a new server (see Figure 4). Finally, for the NEEDS ADDRESSING MODE scheme, the
worst-case fail-over time is about 12.77ms (6% below the no-cache reactive scheme), which is the time

taken to contact the server group, redirect the client connection, and retransmit the request to the new server.

Figure 5-2. Proactive client-side fault-recovery schemes.
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5.1.2.3 Effect of Varying Threshold
For the proactive schemes, we analyzed the effect of varying

the proactive-recovery threshold. Our results showed that if the Effect of varying threshold
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increases to about 10,000 bytes/sec at a 20% threshold. The increase in bandwidth happens because we are
restarting the servers more often at lower thresholds and more bandwidth is consumed in reaching consensus
on the current group membership. The best performance is achieved by delaying proactive recovery so that
our framework has just enough time to redirect clients away from the faulty server replica to a non-faulty

server replica in the system.

5.1.2.4 Jitter
In both the fault-free and the faulty (reactive and proactive) schemes, we observed spikes that exceeded our

average round-trip times by 3 standard deviations. These outliers occurred between 1% and 2.5% of the
time. In the fault-free run, the highest spike we observed was 2.3ms (these spikes are potentially due to file
system journaling and scheduling done by the operating system.). We also observed one large spike of about
30ms that occurred 0.01% of the time in the GIOP LOCATION FORWARD scheme. This spike occurred
when we set the rejuvenation threshold to below 80%.We suspect that the spike happens when a client sends
a request to a newly restarted server that is updating its group membership information. The highest spike

that we observed with the MEAD proactive messages was 6.9ms at the 20% proactive-recovery threshold.

5.1.3 Server-Side Fail-over Systems
The worst-case (i.e., average + 35 ) time needed to execute the fault-recovery routines in the reactive case

was 18.135ms, whereas the time taken by the proactive fault-recovery schemes was 4.335ms (about a 76%
reduction in fail-over latency). However, this scheme experienced a significant amount of jitter, which typ-
ically occurred whenever we launched a new server replica and joined the server replica group, as shown in
Figure 5-3 c. The worst-case replica-join time for the reactive and proactive schemes was 195ms and 187ms

respectively.

Figure 5-3. Server-side fail-over.
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Because this scheme enforces strict message-ordering guarantees between the client and the server in
order to ensure consistent behavior across all of the replicas, no messages can be delivered within the system
until all the nodes have a consistent view of current group membership. In our experiments, we observed
that the latencies experienced when a replica crashes were relatively low. However, when a new replica
(even a backup) joins the group, the delays we experienced were significant, and sometimes exceeded
100ms. We believe that this behavior may be due to the flow-control mechanisms that the Spread group
communication protocol uses to guarantee consistent message ordering. The flow-control mechanisms
adjust the message transmission rate of Spread to match the speed of the slowest receiver so the system may
experience a “hiccup” whenever a new replica connects to the group. In addition, we did not tune any of the
group communication timeouts; we expect performance improvements with the appropriate setting of

Spread’s tunable parameters.

5.1.4 Topology-Aware Systems

In this scheme, we compared the effectiveness of invalidating an operation from end-to-end as soon as we
detect that a server is about to fail, as opposed to allowing the exception to propagate sequentially from tier-
to-tier. For the multi-tiered version of our test application, we imposed a 10ms processing delay at each tier
to study the effect that service times had on the effectiveness of our system. We set the rejuvenation thresh-
old to 80%. Our results show that the propagating the exception sequentially performed better than the
global proactive notification scheme (see Figure 5-4). However, we expect that as the exception-handling

times at each tier increases, a global proactive strategy would perform better.

Figure 5-4. Exception-handling times in a multi-tiered system..
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6 Conclusion & Future Work

In this thesis, we describe the development of a transparent proactive fault-recovery framework for CORBA
applications, and show that proactive recovery can indeed provide bounded temporal behavior in the pres-
ence of certain kinds of faults, thereby enabling the development of real-time, fault-tolerant distributed sys-
tems. Our preliminary results show that the use of MEAD’s proactive fail-over messages can yield a

promising 76% reduction in worst-case fail-over times over a traditional reactive recovery scheme.

The server-side proactive fault-recovery scheme experienced a significant jitter whenever we
relaunched replica processes. We suspect that this may be due to the flow-control mechanisms exerted by
the group communication system. We also show that if we trigger proactive recovery too often, the addi-
tional overhead of migrating clients too frequently can quickly negate the benefits of proactive recovery.
The ideal scenario is to delay proactive recovery so that the proactive dependability framework has just
enough time to redirect clients and objects away from the faulty server replica to a non-faulty server replica
in the system. This thesis also describes how to exploit knowledge of the underlying system topology to

invalidate end-to-end operations in multi-tiered systems.

As part of our future directions, we plan to extend our proactive dependability framework to include
more sophisticated failure prediction and use real-world test data to evaluate the effectiveness of our
approach. We also plan to integrate adaptive thresholds into our framework rather than relying on preset
thresholds supplied by the user. Other directions for proactive fault-recovery would be to target more than

resource-exhaustion faults (the primary focus of our failure-prediction strategy in this thesis).
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