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Abstract

Large distributed systems contain multiple components
that can interact in sometimes unforeseen and compli-
cated ways; this emergent “vulnerability of complex-
ity” increases the likelihood of cascading failures that
might result in widespread disruption. Our research ex-
plores whether we can exploit the knowledge of the sys-
tem’s topology, the application’s interconnections and the
application’s normal fault-free behavior to build proac-
tive fault-tolerance techniques that could curb the spread
of cascading failures and enable faster system-wide recov-
ery. We seek to characterize what the topology knowledge
would entail, quantify the benefits of our approach and un-
derstand the associated tradeoffs.

1. Introduction

Cascading failures occur when local disturbances ripple
through interconnected components in a distributed system,
causing widespread disruption. For example, in 1990, a bug
in the failure recovery code of the AT&T switches [10] led
to cascading crashes in 114 switching nodes, 9 hours of
downtime and at least $60 million in lost revenue. A more
recent example of cascading failure is the electric power
blackout [15] of August 2003 that spread through the Mid-
west and Northeast U.S. and part of Canada, affecting 50
million people and costing $4-10 billion! Other examples
include the escalation of a divide-by-zero exception into a
Navy ship’s network failure and subsequent grounding [4],
and cascading failures in the Internet [8, 9]. Software up-
grades, although they are not considered to be faults, can
manifest themselves as cascading failures; this is because
an upgrade in one part of the system can trigger dependent
upgrades (with accompanying performance degradation and
outages [6]) in other parts of the system.
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Clearly, cascading failures involve significant downtime
with financial consequences. Given the kinds of large, inter-
connected distributed applications that we increasingly de-
ploy, system developers should consider the impact of cas-
cading failures, and mitigation strategies to address them.
The classical approach to dealing with cascading failures
is fault-avoidance where systems are partitioned so that the
behavior and performance of components in one sub-system
is unaffected by components in another subsystem. Trans-
actional systems avoid cascading aborts through atomic ac-
tions, for instance, by ensuring that no reads occur before
a write commits. Unfortunately, fault-avoidance does not
always work – systems are often put together from Com-
mercial Off-The-Shelf (COTS) components or developed
hastily to meet time-to-market pressure, leading to complex
systems with dependencies and emergent interactions that
are not very well understood and with residual faults that
manifest themselves during operation. Transactional mod-
els can also be too expensive to implement in some distrib-
uted systems due to the latency in ensuring atomicity.

Our research focuses on ways of building distributed
systems capable of detecting and recovering from cascad-
ing failures in a timely and cost-effective manner. This re-
search is novel because most dependable systems tend to
deal with independent, isolated failures; furthermore, they
do not exploit knowledge of system topology or dependen-
cies for more effective, directed recovery. We seek to un-
derstand iftopology-aware fault-tolerancecan be effective,
i.e., can we exploit knowledge of system topology to con-
tain cascading failures and to reduce fault-recovery laten-
cies in distributed systems? Here, we define topology as the
static dependencies between an application’s components,
along with the dynamic dependencies that arise when the
application’s components are instantiated onto physical re-
sources. We also seek to discover whether certain topologies
are more resilient to cascading failures than others are; this
could potentially provide system developers with “rules-of-
thumb” for structuring systems to tolerate such failures.

The paper is organized as follows: Section 2 introduces
our topology-aware fault-tolerance approach. Section 3 dis-



Failure Class Description Examples

Malicious faults Deliberate attacks that exploit system vulnerabili-
ties to propagate from one system to the next

Viruses and worms

Recovery Escalation Failures during execution of recovery routines
lead to subsequent failures in neighboring nodes

AT&T switch failure [10], cas-
cading abort in transactional
systems

Unhandled exceptions Unanticipated failure conditions result in cascad-
ing exceptions

Unhandled system exception

Cumulative, progressive error
propagation

Severity of the failure increases in magnitude as
failure propagates from node-to-node.

Cascading timeouts, value-fault
propagation (Ariane5)

Chained reconfiguration Transient errors leading to slew of reconfigurationRouting instability in BGP, live
upgrades in distributed systems

Table 1. A taxonomy of cascading failures

cusses our proposed framework. Section 4 presents a pre-
liminary case study which motivates the use of topology-
aware fault-tolerance approaches. Section 5 critiques our
current system and discusses our future directions. Section 6
discusses related work and Section 7 concludes.

2. Our Approach in a Nutshell

Topology-aware fault-tolerance aims to exploit knowledge
of the system’s topology and the application’s normal fault-
free behavior to build proactive fault-tolerance techniques
that curb the spread of cascading failures and enable faster
system-wide recovery. For instance, if we provided each
component in the system with some knowledge of other
components in its dependency path (beyond its immediate
neighbors), could this knowledge enhance the component’s
resilience to cascading failures? We outline below some of
the key research questions that we are hoping to address in
this research. While our preliminary results will only ad-
dress a sub-set of these questions, through our participation
in the HotDep Workshop, we hope to receive feedback on
our preliminary results and the potential of our approach to
influence dependable systems development.

2.1. Key Research Questions

Classification of cascading failures:We need to understand
the classes of cascading failures that can occur in distrib-
uted systems. We need to explore if there are any similar-
ities between the classes of failures, and if so, whether we
can develop a generic approach to curb the spread of fail-
ures and ensure faster system-wide recovery. Table 1 illus-
trates our initial taxonomy of cascading failures.

Dependency characterization:Dependencies in distributed
systems arise due to the invocation (or static-call) graph and
the dynamic mapping of application processes to resources.
We need to determine the “strength” of these dependencies,

i.e., the likelihood that a component is affected if its “par-
ent” fails. Another question is how much information about
the dependency graph a component would need in order
to become more resilient to cascading failures, e.g., should
the component be aware only of other components that are
within 2 hops from it, or does it need to know the entire
dependency graph? How does the underlying system topol-
ogy influence the spread of cascading failures, and are some
topologies more resilient to cascading failures than others?

Failure-detection:What information, if any, would we
need to disseminate through the system to detect/diagnose
cascading failures? How accurate should this informa-
tion be? Also, what is the consequence of disseminating
inaccurate information through the system?

Fault-recovery:How effective are existing fault-recovery
strategies in curbing cascading failures? How can we coor-
dinate recovery across multiple distributed components in
a way that preserves system consistency? Can we develop
bounds for topology-aware fault-recovery latencies?

Evaluation: How do we inject cascading faults in large dis-
tributed systems for the purpose of evaluation? What met-
rics should we use to evaluate the effectiveness of our ap-
proach? For instance, would response times and throughput
be sufficient, or would the metric depend on the class of cas-
cading failure that we aim to tolerate?

3. Proposed Framework

We envision a system where each node is equipped with
a middleware layer that monitors the “health” of the node
based on local and external data. (see Figure 1). Local data
supplies system-level and application-level metrics specific
to that node,e.g., workload, resource usage and error logs.
External data supplies metrics from other nodes on the de-
pendency path. When the middleware layer suspects that a
problem has occurred at a node, it first tries to pinpoint the
cause of the failure using local data. However, for cascad-
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Figure 1. Framework for topology-aware fault-tolerance.

ing failures, the local data might not be sufficient to diag-
nose the problem since the source of the failure might be
several nodes away (see Section 4). In this case, the node
leverages external data to gain a more global perspective
of the system for better fault-diagnosis and directed fault-
recovery. External data consists of dependency graphs, fail-
ure signatures and fault-recovery signatures.

Dependency Graph:This graph represents the dependen-
cies between nodes, and the “strength” of these dependen-
cies. Dependencies may arise due to shared resources and/or
shared messages. Several approaches have been proposed
to track dependencies in distributed systems. We classi-
fied these approaches into three categories namely: fault-
free/normal dependencies, failure-driven dependencies and
recovery-driven dependencies (see Figure 2).

• Fault-free/normal dependencies:The dependency
graph typically captures dependencies that arise dur-
ing the fault-free invocation of components in a sys-
tem. The “strength” of the dependency in this graph
may be characterized by the frequency with which a
component is invoked. For example, Sailer et al [1] ex-
ploit application-level dependencies for problem de-
termination in e-commerce systems.
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e.g., application 
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path
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propagation
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Dependencies
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Figure 2. System Dependencies.

• Failure-driven dependencies:The dependency graph
captures the error propagation paths in a system. For
example, Candea et al [3] use reflective middleware
to discover exception propagation paths in compo-
nentized Internet applications. Jhumka et al [7] use a
white-box approach to compute the probability that an
input error will propagate from the source node to the
target node. These probabilities serve as weights on
their dependency graph.

• Recovery-driven dependencies:These dependencies
arise due to the need to properly sequence fault re-
covery actions so that interdependency conditions are
met, e.g., resource A can be recovered only after re-
source B is up and running. Buskens et al [13] present
a dependable model that properly sequences recov-
ery actions across components to achieve faster system
initialization.

The approach adopted for characterizing dependencies
depends on the failure model used. For example, track-
ing fault-free/normal dependencies might be more appropri-
ate for diagnosing performance slowdowns, whereas track-
ing failure-driven dependencies might be more appropriate
when dealing with application exceptions. An interesting
question would be to determine which approach provides
the largest coverage for diagnosing failures.

Failure signatures:A node also receives information on
failures which have occurred in other nodes along its de-
pendency graph,e.g., node 6 has crashed. Nodes might also
share their suspicions on failures,e.g., node 4 thinks node
6 has crashed, and warnings based on resource usagee.g.,
node 5 has unusually high CPU utilization. These failure
signatures might improve the chances correctly assigning
blame to nodes and localizing the root cause of failures to
a list of likely suspects. In addition to assigning blame, the
failure signatures could also allow nodes to declare their in-
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nocence. This would eliminate them from the list of sus-
pects, and furthur drill down on the cause of the failure. We
would need a mechanism to ensure that the information in
the failure signatures is trustworthy.

Fault recovery: Once the problem has been diagnosed, a
node can then take the appropriate fault-recovery action and
propagate information on the recovery action it has taken to
other nodes along its dependency path. The node also uses
recovery-driven dependencies to properly sequence its re-
covery actions so that it does not take recovery actions that
conflict with the recovery actions taken by other nodes.

3.1. Coping with Complexity

Nodes in large distributed systems currently maintain
a great deal of system-level and application-level metrics.
Topology-aware fault-tolerance appears to aggravate the
problem by requiring that nodes maintain information about
other nodes along their dependency path (beyond their im-
mediate neighbors)! Part of the problem with today’s sys-
tems is that system administrators can be overloaded with
metrics and may experience great difficulty sifting out the
relevant metrics to diagnose the problem. We believe that
the strength of a topology-aware fault-tolerance approach
would be to quantify the influence of failures in one node
on other nodes in the system, for certain classes of failures.
This information could highlight problem areas in a system
and provide insight on how distributed systems can be built
from scratch to be intrinsically robust in the face of com-
plex, cascading failures.

4. Case Study: Overload in Sensor Network

This case study outlines a scenario where topology-aware
fault-tolerance can be applied. We consider a simple sensor
network [12] consisting of a collection of sensors, interme-
diate hubs and a centralized smart hub. The sensors collect
environmental data and periodically push this data to the
smart hub via the intermediate hubs. Hubs can locate other
hubs through a naming service, while sensors can only com-
municate with the hubs closest to them due to their limited
communication range. We consider the case where a sen-
sor malfunctions and floods the network with meaningless
data. Ideally, the hub nearest to the faulty sensor should de-
tect this failure and shut this sensor down. If this hub does
not have sufficient time, resources or intelligence to contain
the failure, other nodes in the system will experience net-
work congestion. The smart hub might be most adversely
affected by the failure because most of the system traffic is
aggregated at this hub.

There are two approaches that the system could take to
isolate the faulty sensor namely: (i) traversing from hub-
to-hub to identify the path whose traffic deviates the most

from the norm –(we refer to this as our baseline); or (ii) the
hub might know enough of the system topology, beyond its
immediate neighbors, to pinpoint the sensor with the high-
est deviation from the norm and shut it down directly. We
refer to this scheme as ourtopology-aware scheme. This
study represents our first attempt at characterizing merely
one kind of distributed applications that would benefit from
topology-aware fault-recovery.

4.1. Test Application

We modeled the sensor network as a distributed multi-
staged CORBA [11] application.1 We implemented the
sensors as CORBA clients. The sensors send asyn-
chronous CORBAoneway requests every 10ms to the
smart hub via an arbitrary number of intermediate hubs.
Theseonewaymessages are best-effort requests that can
be silently dropped if network congestion or other re-
source shortages occur. We designate the client as stage0

and servers as stages1,..., N, where stageN is the maxi-
mum number of servers in the chain. We derive the system
topology for our topology-aware approach by prepend-
ing the dependency information to the CORBA request
as it passes from stage-to-stage, for instance, a mes-
sage from sensor1 may indicate that it passed through hub2
and hub3 before reaching hub4.

We inject faults by periodically inducing a faulty sensor
to send a burst of requests that congest the entire network.
The smart hub detects a failure when 15 or more consec-
tive request latencies exceed a predetermined threshold, and
uses the dependency information it has stored to locate the
sensor whose traffic deviates the most from the norm. The
smart hub then triggers a “reconfiguration” (which will, of
course, be specific to the fault source and manifestation; in
our case, this is the smart hub sending a synchronous mes-
sage that causes the faulty sensor to reduce its request rate
back to one request every 10ms).

4.2. Preliminary Results

We ran our experiments on seven Emulab [17] nodes with
the following specifications: 850MHz processor, 512MB
RAM, and TimeSys Linux/NET 3.1 running RedHat Linux
9. We implemented the CORBA application over the TAO
ORB (ACE and TAO version 5.4). We used NTP to keep
the clocks on the nodes synchronized to 1 ms of each other.
Each experiment consisted of 2000 client invocations dur-
ing which we injected a fault about every 150 invocations.

Comparison of fault-recovery schemes.We measured the
following parameters for both the baseline and topology-
aware schemes see Table 2:

1 CORBA is a set of standard specifications designed to support plat-
form and language-independent, object-oriented distributed comput-
ing.
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• Fault-free request latency, i.e., the amount of time it
takes for aonewayrequest from a sensor to reach the
smart hub under fault-free conditions;

• Reconfiguration latency, i.e., the amount of time be-
tween the detection of the failure and the reconfigura-
tion of the faulty sensor;

• Reconfiguration jitter, i.e. the standard deviation (σ)
in the reconfiguration latencies;

• Overhead of tracking topology informationas the per-
centage increase in fault-free request latencies and the
number of additional bytes sent per message;

We found that the reconfiguration latency and jitter in
our baseline application became very significant as we in-
creased the number of stages in the system. This is because
the reconfiguration process involved communication with
a larger set of hubs thereby increasing the data traffic in
an already congested system! The average latencies for the
baseline scheme increased almost exponentially as we in-
creased the number of stages in the application (see Fig-
ure 3). However, the average reconfiguration latencies for
the topology-aware scheme increased linearly because we
limited the reconfiguration notification to a smaller, and rel-
evant, set of nodes. The overhead introduced by topology
tracking was minimal. However, sample application was
trivial and furthur investigation of the performance over-
head introduced in larger systems is needed to obtain con-
clusive results.

One possible approach for building a scalable system is
to limit the tracking/storage of topology information to criti-
cal components, as opposed to storing information for every
component in the system. The amount of information that a
node maintains also increases with the number of stages.
For a large number of stages, we might decompose the
system into segments, and apply the topology-aware fault-
tolerance routines on an segment-wise basis. For instance,
a 10-stage application can be structured into two segments
of 5 stages each so that topology-aware reconfiguration no-
tifications need not traverse more than 5 stages at a time –

STAGES 2 3 4 5

Avg. Fault free
Latency (ms)

0.42 1.03 1.66 2.25

Top. Overhead
(% of latency)

+6% +3% +2% +2%

Top. Overhead
(bytes/message)

25 50 75 100

Reconfig. Jitter
baseline (σ) (ms)

1.38 5.21 80.24 103.3

Reconfig. Jitter
topology (σ) (ms)

1.42 1.70 2.08 2.22

Table 2. Summary of Experiment
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Figure 3. Reconfiguration Latencies.

each node in a segment would know about all the nodes in
its segment, as well as the node at the edge of its neighbor-
ing segments.

5. Future Work

To evaluate the effectiveness of our approach, we intend to
apply our approach to real-world distributed benchmarks,
such as TPC-W [14]. We would also like to explore and
experimentally evaluate strategies to handle other kinds of
cascading failures, e.g., timeouts, propagating resourceex-
haustion, live upgrades. In this paper, we have investigated
but one fault-recovery strategy – we are yet to implement
and compare the effectiveness of other recovery schemes.
We also aim to cope with multi-dimensional failures, e.g.,
what if subsequent failures occur during recovery from a
cascading failure? Most of all, in the long term, we believe
that our contribution will be greatest if we are able to ex-
tract higher-level insights into how systems can be designed
and implemented so that they are “born” resistant to cascad-
ing failures of various kinds.

6. Related Work

Issarny et al [5] discuss a forward error-recovery approach
that uses coordinated atomic actions (CAA) to handle con-
current exceptions in composite web services. The partic-
ipants of a CAA are aware of their immediate callers and
callees. Our system, on the other hand investigates fault-
recovery strategies where nodes exploit knowledge of the
dependency graph (beyond their immediate neighbors) to
achieve faster recovery.

The routing protocol community has also conducted ex-
tensive research in containing cascading failures. They cen-
ter on developing scaleable routing protocols where the ex-
tent of disruption caused by a fault depends on the sever-
ity of the fault rather than the size of the system. Arora
and Zhang [2] present a protocol for local stabilization in
shortest path routing (LSRP), which uses diffusing waves
to contain fault propagation. Our research, on the other
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hand, focuses on how we can transparently apply similar no-
tions of fault-containment to middleware environments like
CORBA. These environments present unique challenges
since unlike routing protocols, which typically have a lim-
ited set of variables and algorithms, middleware environ-
ments can host large numbers of processes running diverse
software algorithms.

The MAFTIA [16] middleware architecture uses
topology-awareness to enhance security through the sep-
aration of concerns, for instance, the separation of com-
munication from processing. MAFTIA selects a topol-
ogy at design-time that enhances certain system properties.
In our system, we learn about the underlying topol-
ogy at run-time based on the application-level data
flow, and use this information to send early fault warn-
ings to nodes.

7. Conclusion

This paper highlights the need for components in distrib-
uted systems to have some awareness of the system topol-
ogy, specifically to tolerate cascading failures. We outline
the research questions worth addressing in our topology-
aware fault-tolerance approach. Through a case study on
overload in a sensor network, we highlight a situation where
making decisions solely on the basis of local information
can aggravate a cascading failure, and show that topology
information can provide for targeted, faster recovery. In fu-
ture work, we hope to quantify the tradeoffs between the
expected benefit of better fault detection/containment and
the additional complexity of topology-tracking. Our prelim-
inary results suggest some promise for our topology-aware
approach, particularly for large distributed systems where
cascading failures ought to be considered. Our ultimate aim
is to understand how distributed systems (i) can be built
from scratch to be intrinsically robust in the face of com-
plex, cascading failures, and (ii) can efficiently maintain,
and readily exploit, topology information for many pur-
poses, including faster reconfiguration.
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