
Proactive Problem Determination in Transaction-Oriented Applications

Soila Pertet and Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{spertet,priyan}@ece.cmu.edu

Anca Sailer and Gautam Kar
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

{gkar,ancas}@us.ibm.com

System performance gets a lot less publicity than “hard”
downtime. However, recent studies [3] indicate that per-
formance problems in e-commerce systems are about five
times more likely than unavailability problems. Determin-
ing the root cause of a performance problem can be a
daunting task for system administrators, especially when
the system overwhelms them with application and perfor-
mance metrics that provide little insight or no insight on the
cause of the failure. We present ongoing work which inves-
tigates the minimal level of system monitoring required to
adequately diagnose performance problems in transaction-
oriented applications. We plan to exploit system monitor-
ing to identify pre-fault“symptoms” and initiate proac-
tive (rather than reactive) fault-recovery. Proactive fault-
recovery could significantly lower the impact of application
performance problems.

1. Background

This research extends work done by Sailer et al [1]
that presents a 3-tier performance monitoring archi-
tecture for identifying the root cause of end-to-end re-
sponse time Service Level Objective (SLO) violations in
transaction-oriented applications. Their 3-tier architec-
ture is described below:

• Tier 1: Monitoring agents specific to server platforms,
e.g., HTTP servers, Web Application Servers (WAS),
messaging servers, and databases, extract component-
specific monitoring data and send it to the second tier.

• Tier 2: A management service extracts dependencies
between components, assigns weights to the extracted
dependencies, and stores them in a repository. For ex-
ample, the service may determine Transaction T1 de-
pends fully on Servlet S1, and S1 depends on query Q1
for 30% of the time1 (see Figure 1).

• Tier 3: This tier localizes the root cause of prob-
lems by decomposing Transaction-SLOs (T-SLOs)
into component-SLOs (c-SLOs)2

1 S1 may call Q1 or Q2, or Q1 and Q2

When an SLO monitor observes an end-to-end response-
time violation, the individual components associated with
that transaction are automatically ranked by the degree to
which they violate their constructed c-SLO. A system ad-
ministrator can then scan the limited set of ranked compo-
nents and quickly determine the actual root cause through
more detailed examination.

Additionally, we will incorporate key research ideas
from Pertet and Narasimhan [4], which describe proactive
fault-recovery strategies for distributed middleware sys-
tems in the presence of resource-exhaustion faults. They
analyze the effect of different proactive fault-recovery
schemes on client/server response times, and demon-
strate that proactive fault-recovery can significantly reduce
jitter and the number of user-visible failures.

Legend:

A B
x

Implies Resource A depends

on Resource B with strength x

T1

T2

1.0 0.3

Q2
1.0 1.0

0.7
Q1S1

S2

Figure 1. Dependency Graph.

2. Related Work

In the past, problem determination techniques have concen-
trated on network, and system-level fault management. Our
work focuses on pinpointing application performance prob-
lems. Steidner and Sethi [6] review existing approaches to
fault localization and highlight the key challenges facing
them. Rish et al [5] describe an active probing technique
for real-time problem determination which selects probes
on-demand and reduces the time spent localizing problems.
Chen et al [2] use eBay’s Centralized Application Log-
ging (CAL) and decision trees to diagnose application-level
failures. Through our research, we plan to identify a near-
optimal monitoring-granularity for problem determination
in transaction-oriented applications.

2 The c-SLO is the threshold for the time spent by a transaction locally
at a component out of the end-to-end T-SLO threshold allowedfor that
individual transaction.



Module Metric Granularity Level of Monitoring

Web application
Number of servlets loaded per Web application Low
Number of concurrent requests per servlet High

Database connection pool
Total number of faults,e.g., timeouts per connection pool Low
Average waiting time per connection pool Medium

Table 1. Sample Metrics from Websphere’s Performance Monitoring Infrastructure(PMI).

3. Our Approach

Sailer et al [1] used the available middleware instrumenta-
tion and a single metric,i.e., end-to-end response time vi-
olations, for problem determination. We are extending their
system to to achieve more fine-grained problem determina-
tion and to incorporate proactive fault-tolerance by exploit-
ing the additional metrics available in today’s systems.

We investigate what level of monitoring will allow us to
pinpoint a large class of application performance problems,
and yet introduce minimal overhead. Finding the smallest
set of performance metrics required is NP-hard, therefore,
we will use approximation techniques to find near-optimal
monitoring levels for problem determination. The key re-
search challenges we seek to address are outlined below:

Decomposing transaction-SLOs (T-SLOs) to component-
SLOs (c-SLOs):Sailer et al [1] manually profiled their sys-
tem and found that groups of transactions exhibited similar
behavior and could share the same c-SLO threshold. This
simplified the task of managing c-SLOs in large, complex
systems. We are investigating ways to automatically detect
similarities between transaction behavior.

Identifying fault injection strategies:We need to iden-
tify the representative faults, which yield a wide cover-
age of the typical performance problems in experienced in
transaction-oriented applications,e.g., locking database ta-
bles, reducing the database buffer size, limiting thread
pools on the application server,etc.

Localizing the most likely causes of the failure:When a
transaction violates its SLO, the individual components are
automatically ranked by the degree to which they violate
their constructed c-SLO. This yields a set of likely sus-
pects. We would like to assess the effectiveness of differ-
ent fault-localization techniques,e.g., decision trees, espe-
cially when faced with noisy data.

Drilling down on faulty component using system metrics:
Most systems have monitors that collect information on typ-
ical metrics. Table 1 gives a sample of the metrics avail-
able in IBM’s Websphere Application Server. We would
like to correlate these metrics with constructed SLOs for
more fine-grained problem determination. For partial fail-
ure models, we first identify the likely set of faulty compo-
nents before examining the system metrics. However, when
dealing with system-wide failures, it might be more effi-

cient to examine the system metrics first. Since monitoring
can introduce significant overhead, we need to determine
the granularity and frequency of monitoring that is suffi-
cient for problem determination.

System evaluation:We will measure the overheads associ-
ated with instrumentation in the context of realistic appli-
cations,e.g., the TPC-W benchmark. We will also evalu-
ate the effectiveness of the problem determination mecha-
nisms that we develop in terms of (1) the number of failures
correctly diagnosed, (2) the number of false positives con-
tained in the candidate set of faulty componenents, and (3)
the suitability of these mechanisms for online problem de-
termination.

Proactive fault-tolerance:We plan to use either artificial
intelligence or statistical techniques to identify patterns of
abnormal behavior in the performance metrics. If these pat-
terns exist for certain kinds of faults, we can apply proac-
tive fault-recovery techniques to reduce the probability that
a user experiences a performance slowdown.

References

[1] M. K. Agarwal, A. Neogi, K. Appleby, J. Faik, G. Kar, and
A. Sailer. Threshold management for problem determination
in transaction based e-commerce systems. InTo appear in
the International Symposium on Integrated Network Manage-
ment, Nice, France, May 2005.

[2] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.
Failure diagnosis using decision trees. InInternational Con-
ference on Autonomic Computing, pages 36–43, New York,
NY, May 2004.

[3] T. Kuegler. The billion-dollar question: The impact of web
site performance on e-commerce.MarketingProfs.com, Feb-
ruary 2005.

[4] S. Pertet and P. Narasimhan. Proactive recovery in distributed
CORBA applications. InInternational Conference on De-
pendable Systems and Networks, pages 357 – 366, Florence,
Italy, June 2004.

[5] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik.
Real-time problem determination in distributed systems using
active probing. InNetwork Operations and Management Sym-
posium, pages 133–146, Seoul, Korea, April 2004.

[6] M. Steidner and A. S. Sethi. The present and future of event
correlation: A need for end-to-end service fault localization.
In World Multicongerence on Systemics, Cybernetics and In-
formatics, pages 124–129, Orlando, FL, July 2001.


