
1

Carnegie Mellon

Joseph Slember
Priya Narasimhan

Electrical & Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Living Realistically with Nondeterminism
in Fault-Tolerant, Replicated Applications

2

2

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Background & Terminology

Determinism
Two entities are considered to be deterministic if, when they start from the
same initial state and apply the same sequence of operations, they then
reach the same final state
Should hold even if entities run on completely different machines

Why are fault-tolerant, replicated distributed applications required
to be deterministic?

Consistent replication is the backbone of fault-tolerance
Determinism results in reproducible state and behavior for a replicated
component/object/process, even if replicas run on different machines

Determinism makes it possible to have consistent replication

3

3

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Sources of Nondeterminism
System or environmental Interaction

System calls that return host-specific information
gettimeofday(), gethostname(), …….
Random number generators

Environmental (third-party) interaction
Interaction with human through graphical interface
Interaction with shared memory, I/O, etc.

Scheduling/Control Flow
Multithreading
Asynchronous Events

Interrupts
Exceptions
Signals

Having this kind of
functionality in your
application can cause
problems for
consistent replication

4

4

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

The Problem

To achieve consistency, the Fault-Tolerant CORBA (FT-CORBA)
standard requires applications and ORBs to be deterministic

“If sources of nondeterminism exist, they must be filtered out.
Multi-threading in the application or the ORB may be restricted, or
transactional abort/rollback mechanisms may be used.”

Effectively forbids the use of local timers, random numbers,
multithreading, shared memory, etc.
End-result

Real-world applications that contain these kinds of nondeterministic
features cannot be made fault-tolerant!
ORBs are not deterministic according to these rules – thus, the concept of
a fault-tolerant ORB today is not meaningful

How do we get fault-tolerance while living with nondeterminism?

5

5

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Existing Options
Fault-Tolerant CORBA standard

Applications must be “born” deterministic or they will not be supported

OS and virtual machine solutions [Bressoud 96/98]
Lock-step synchronization of all system calls at the OS or VM levels

Special schedulers [Basile 03, Jimenez-Peris 00, Poledna 00,
Narasimhan 98]

Additional scheduler to handle multithreading-induced nondeterminism

Specific replication styles [Barrett 90, Budhiraja 93]
Passive or semi-active replication with one leader replica forcing its
nondeterministic state-snapshots onto follower replicas

Execution histories [Frolund 00]
Uses previous invocations to make nondeterministic correction

6

6

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Critique of Existing Options
Current approaches can be categorized as transparent or non-transparent

Transparency is defined w.r.t. the application programmer

Transparent runtime handling of nondeterminism
Doesn’t change the application source code
Doesn’t involve the application programmer
Forced synchronization or checkpointing at the middleware/VM level
Assumes that anything and everything could be nondeterministic – does not exploit
application-level insight

Non-transparent development-time handling of nondeterminism
Changes the application source code – eliminates all instances of potential
nondeterminism from the code
Involves the application programmer
No need to have any additional runtime synchronization or compensation
Eliminates normal forms of application programming, e.g., no multithreading

7

7

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Can We Improve Over This?
For the best of both worlds, an ideal technique would involve

Runtime transparency assisted by development-time non-transparent insight while
allowing application programmers to use nondeterministic calls and features in code

Why and how would this be beneficial?
Runtime transparency – will not involve the application programmer at runtime
Development-time non-transparency – will target actual nondeterminism

Will not target potential nondeterminism that might never turn into a consistency problem
Allow application programmers the freedom to use current practices
Not exclusive to one source of nondeterminism – target all forms

Our interdisciplinary approach – program analysis meets fault-tolerance
Exploit program analysis at development time

Control flow, data flow, set-check-use methodology, code generation
Exploit transparent fault-tolerance infrastructure at runtime

Replication, total order, fault detection

8

8

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Objectives of Our Approach
Allow application programmers to continue to program as before

Do not need to forbid the use of nondeterministic features, e.g., multithreading

Categorize the different forms of nondeterminism that can be present in
distributed applications

Identify solutions for each category of nondeterminism and understand the
cost/benefit associated with each solution

Targeted compensation for nondeterminism at the application level
Automatically compensating for all nondeterminism can result in significantly
increased overhead
Execution of a nondeterministic call does not automatically imply the need for
compensation
Need application-level insights to determine usage and effect on system state

9

9

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Program Analysis Meets Nondeterminism
Take substantially proven compiler techniques and adapt them to the
identification of nondeterminism
At compile time

Analyze source code to create compensation code in the event of nondeterminism

Targeted compensation – Only correct nondeterminism when it occurs
Actual vs. perceived nondeterminism (next slide)

Comprehensive compensation – Address all forms of nondeterminism
Ability to identify all nondeterminism that is known as well as future nondeterminism
that may be introduced due to emerging programming techniques

Deliberately not transparent
Requires source code…..but the process can be automated
No need to rewrite application from scratch
Can be applied to COTS software

10

10

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Perceived vs. Actual Nondeterminism
Actual: If GTOD is stored in a variable that is then used later, the
value of GTOD has an impact on the future “slice” of the client

Perceived: Value that holds nondeterministic information is never
used

gettimeofday()

time

X =GTOD();

if(x >y)
{…….}

X =GTOD();

if(x >y)
{…….}

GTOD()
{
return time
}

GTOD()
{
return time
}

gettimeofday()

time

X =GTOD();

No use of X

X =GTOD();

No use of X

GTOD()
{
return time
}

GTOD()
{
return time
}

11

11

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Multithreaded Nondeterminism (Actual vs. Perceived)
T1 T2

Independent Threads

T1 T2 T1 T2

Modification of Shared Variable X

Perceived Nondeterminism Actual Nondeterminism

Use of Shared Variable X

12

12

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Assumptions

Access to application source code to perform program analysis
Runtime compensation requires underlying fault-tolerance
infrastructure with specific guarantees

Reliable, totally ordered delivery of messages
Checkpointing for the consistent retrieval and assignment of application
state
We’re using the MEAD system (http://www.ece.cmu.edu/~mead), but any
system with similar guarantees will work

Previous Assumption:
CORBA implementation (i.e., ORB) and operating system are
deterministic

Currently: We have extended our approach to perform program analysis on
TinyOS as well as the MICO ORB to compensate for the ND they contain.

13

13

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Development-Time Preparation Phase
Automatic identification of nondeterminism
Automatic creation and insertion of compensation snippets
Program analysis to extract application-specific information and
dependencies
Discovers the actual usage (and impact on state) of
nondeterministic calls
Control-flow analysis, data-flow analysis, set-check-use
methodology
Program analysis to insert checks for consistency across
invocations and compensation, if inconsistency is determined
Can involve the application programmer at development time
(indirect benefit: programmer education in fault-tolerance issues)

14

14

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Two Distinct Analyses
System/Environmental Interaction

Track all function and system calls
Track state that passes through these calls
Store nondeterministic state information at runtime

Scheduling/Control Flow
Track all launches of threads
Determine all possible thread interweaving
Store nondeterministic information as threads execute

Both of these solutions are implemented

15

15

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Runtime Compensation Phase
Checking conditional to see if state is inconsistent
Piggybacking of sufficient nondeterministic information and
compensation information
Execution of compensation snippets
Saving of local nondeterminism
Does not involve the application programmer at runtime
Current focus on handling distributed CORBA applications

Approach can be easily extended to non-CORBA applications, too

16

16

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Combined Development-Time & Runtime Phases
Client sends out a request to a replicated object running on different
nodes
Each replica receives the request and sends its own reply

Saves local nondeterministic information
Passes back to client a message with prepended nondeterministic decisions

Client invokes replicated server again, this time prepending previous
received nondeterministic values
Each replica compares the prepended information and executes a
compensation snippet, if mismatch exists
After processing the current invocation, the replicas are consistent
for all past invocations except the current one
Amount of nondeterministic state does not increase with number of
invocations

17

17

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Implementation Details
Stage I

Automatically convert source code to intermediate language
Automatically compute external dependencies

Stage II
Combine and resolve external dependencies across entire application
Modify source code to handle nondeterministic information.
Generate new application source code

18

18

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Implementation Details

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

S1

S2

S3

Actively Replicated
Nondeterministic
Object

GIOP Request

GIOP Request

GIOP Request

Reliable
Ordered
Multicast

19

19

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Implementation Details

M
E
A
D

M
E
A
D

M
E
A
D

M
E
A
D

S1

S2

S3

Actively Replicated
Nondeterministic
Object

GIOP ReplyS1

GIOP ReplyS2

GIOP ReplyS3

Pick one reply

S2 +

20

20

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Implementation Details

M
E
A
D

S1

S2

S3

M
E
A
D

M
E
A
D

M
E
A
D

S2
S2

S2

S2

compensation

compensation

M
E
A
D

S1

S2

S3

M
E
A
D

M
E
A
D

M
E
A
D

S3

S3

S3

S3

Compensation ensures
replica consistency

21

21

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Test Application
Nondeterministic Application

Invokes local timer
Calculates how many cycles the processor has gone through since last
invocation
Stores local clock time

CORBA::Long Time_impl::get_cycles() throw (CORBA::SystemException)
{
time_t time_now = time(0);
struct tm * time_p = gmtime(&time_now);
time_p->tm_hour += (24 + this->time_zone_st);
time_p->tm_hour %= 24;
long cycles = (((time_p->tm_hour - this->past_tod.hour) *3600) +

(time_p->tm_min - this->past_tod.minute*60) + (time_p->tm_sec - this->past_tod.second) * 18000000);
this->past_tod.hour = time_p->tm_hour;
this->past_tod.minute = time_p->tm_min;
this->past_tod.second = time_p->tm_sec;
return cycles;

}

22

22

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Test Application Compensation
Test Condition Compensation No Compensation

TimeTransfer::NonDetStruct Time_impl::get_cycles_nondet_corr(const TimeTransfer::NonDetStruct & nd_pass)
throw (CORBA::SystemException)

{
time_t time_now = time(0);
struct tm * time_p = gmtime(&time_now);
TimeTransfer::NonDetStruct tod;
tod.sid = this->sid;
tod.time = time_p;
if(this->sid != nd_pass.sid)
{

int sec_diff = ((nd_pass.hour - this->past_tod.hour) *3600) + (nd_pass.minute - this->past_tod.minute*60) +
(nd_pass.second-this->past_tod.second);
tod.cycles = (((((tod.hour - this->past_tod.hour) *3600) + (tod.minute - this->past_tod.minute*60) +
(tod.second-this->past_tod.second)- sec_diff))*18000000);

this->past_tod – time_p;
return tod;

} else
{

tod.cycles = (((tod.hour - this->past_tod.hour) *3600) + (tod.minute - this->past_tod.minute*60) +
(tod.second-this->past_tod.second)*18000000);

return tod;
}

}

23

23

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Current Contributions of Approach

Demonstrated ability to handle nondeterminism
Without hampering application programmer’s ability to use programming
practices
With sufficient application-level insight through program analysis

Differentiated between perceived and actual nondeterminism
Allows for targeted and more efficient compensation
Novel contribution – this distinction has not been made before

Technique applicable to both middleware and applications
Applied this to identify and compensate for nondeterminism in applications

Quantified reasonable overheads [SRDS 2004]
Applied this to identify nondeterminism in off-the-shelf ORBs

Yes, it turns out that ORBs themselves can be nondeterministic, too!

24

24

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Current & Future Directions
Ongoing focus of nondeterminism compensation

Multithreading
Asynchronous signals

Further experimentation
Multiple clients
Multiple tiers
Increased number of replicas
Validation of consistency and correctness

Future extensions of this approach
Checkpointing

Use program analysis for more efficient checkpointing schemes
Network partitioning

Treat this problem as similar to nondeterminism
Security

Use program analysis to differentiate between nondeterminism and malice

25

25

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

Conclusions

Novel approach to handling nondeterminism
Exploiting program analysis to identify nondeterminism
Categorizing the different forms of nondeterminism
Runtime compensation for nondeterminism

Benefits
Compensates for actual (and not perceived) nondeterminism
Programmer free to continue to program and use standard techniques
Incorporates application-level insight for targeted compensation
Not focused on only one kind of nondeterminism

Next steps
Increased experimentation, catalog of solutions for every form of
nondeterminism, support for multi-tier multi-client distributed applications

26

26

Carnegie Mellon

Joseph Slember Living Realistically with Nondeterminism

For More Information

Joe Slember
Electrical & Computer Engineering Dept.
Carnegie Mellon University
Pittsburgh, PA 15213-3890
jslember@ece.cmu.edu
www.ece.cmu.edu/~jslember

