
Carnegie Mellon

OMG Real-Time and Distributed Object Computing Workshop, July 2002, Arlington, VA

Providing Real-Time and Fault Tolerance
for CORBA Applications

Priya Narasimhan
Assistant Professor of ECE and CS

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Sponsored in part by the CMU-NASA High Dependability Computing Program (HDCP)

2

Carnegie Mellon

Outline

Motivation
Two standards for quality of service in CORBA

Real-Time CORBA and Fault-Tolerant CORBA

Conflicts between real-time and fault tolerance
Trade-offs between real-time and fault tolerance
Resolving the trade-offs

Architecture
Mechanisms

Conclusion

3

Carnegie Mellon

Motivation

CORBA is increasingly used for applications, where dependability
and quality of service are important

The Real-Time CORBA (RT-CORBA) standard
The Fault-Tolerant CORBA (FT-CORBA) standard

But ……
Neither of the two standards addresses its interaction with the other
Either real-time support or fault-tolerant support, but not both
Applications that need both RT and FT are left out in the cold

Focus of talk
Why real-time and fault tolerance do not make a good “marriage”
Overcoming these issues to build support for CORBA applications that
require both real-time and fault tolerance

4

Carnegie Mellon

Quality of Service for CORBA Applications

The Real-time CORBA (RT-CORBA) standard
Scheduling of entities (threads)
Assignment of priorities of tasks
Management of process, storage and communication resources
End-to-end predictability

The Fault tolerant CORBA (FT-CORBA) standard
Replication of entities (CORBA objects or processes)
Management and distribution of replicas
Logging of messages, checkpointing and recovery
Strong replica consistency

5

Carnegie Mellon

The RT-CORBA Standard
Scheduling

Service

ThreadpoolRT-Current

CORBA Server
CORBA Client

RT-ORB

RT-POAPOA

ORB

Priority Mapping

RT-ORBORB

Priority Mapping

6

Carnegie Mellon

End-to-End Predictability

The most important property of an RT-CORBA system
Priorities attached to threads (execution entities) and invocations

Maps to native priorities on the operating system

Bounds on temporal properties of application
Bounded message transmission latency across network
Bounded message processing time within ORB and application

Schedule of various tasks computed ahead of time (offline)
Schedule respects task priorities and task deadlines
Fixed-priority scheduling

Priority banding
Multiple client-to-server connections, each at a different priority
Client-dictated or server-dictated priority

7

Carnegie Mellon

is_alive()

CORBA ORBCORBA ORB

Fault
Notifier

Fault
Detector

Server

S1

Server

S2

Factory Fault
Detector

Recovery
Mechanism

Logging
Mechanism

Factory Fault
Detector

Recovery
Mechanism

Logging
Mechanism

fault reports

The FT-CORBA Standardcreate_
object()

set_
properties()

Replication
Manager notifications
create_
object()

CORBA ORB

Client

C

Logging
Mechanism

8

Carnegie Mellon

Strong Replica Consistency

The most important property of an FT-CORBA system

Requires deterministic behavior of application objects

Guarantees on message transmission and delivery
Same sequence of messages in the same order
No loss of messages over the communication medium
No delivery of duplicate invocations or responses

State transfer to new and recovering replicas

Essential for both active and passive replication
Debunks the myth that passive replication can cure non-determinism

9

Carnegie Mellon

Real-Time vs. Fault-Tolerance

Not necessarily synchronousSynchronous

Determinism prohibits the use of
local processor time

Use of timeouts and timer-based
mechanisms

Determinism prohibits the use of
multithreading

Multithreading for concurrency and
efficient task scheduling

Operations ordered to preserve data
consistency (across replicas)

Operations ordered to meet task
deadlines

No advance knowledge of when
faults might occur

Requires a priori knowledge of
events

Fault-Tolerant SystemsReal-Time Systems

10

Carnegie Mellon

Real-Time vs. Fault-Tolerance - 1

RT and FT communities disagree even on basic terminology

Determinism in the real-time sense
Equivalent to predictability
Real-time invocation is deterministic if its execution and processing times
are bounded and predictable ahead of time
Lack of RT determinism can result in missed deadlines

Determinism in the fault tolerance sense
Equivalent to reproducibility
Fault-tolerant invocation is deterministic if its execution, by different
replicas starting from the same initial state, on different processors,
produce the same state changes and the same responses
Lack of FT determinism can result in replica inconsistency

11

Carnegie Mellon

Real-Time vs. Fault-Tolerance - 2

Real-time systems use multi-threading
To allow concurrent tasks to execute simultaneously

Multi-threading is problematic for a fault-tolerant system
Unrestricted multi-threading can lead to non-determinism
Server with two replicas S1 and S2 on two different processors
S1 and S2 might run two tasks on two different concurrent threads
Threads modifying shared state within the server can lead to inconsistency
Yes, shared state exists, inside the ORB (if not in the application)!
Need special scheduler to enforce single-threading for determinism

Task management
Multithreading for task scheduling vs. single-threading for determinism

12

Carnegie Mellon

Real-Time vs. Fault-Tolerance - 3

Real-time systems use the notion of wall-clock time
Timeouts and timers used to finesse real-time consensus issues
Clients can run a timeout if server doesn’t respond in time

Wall-clock time is problematic in a fault-tolerant system
Use of timeouts and timers can lead to non-determinism & inconsistency
Replicated (middle-tier) client with two replicas C1 and C2
C1’s and C2’s timeouts might expire at different times
C1 might think operation missed its deadline; C2 might think otherwise
Fault-tolerant systems use clock synchronization & global time service

Time management
Maintaining determinism without making global time service a bottleneck

13

Carnegie Mellon

Real-Time vs. Fault-Tolerance - 4

Ordering in the real-time sense
Tasks and invocations ordered to meet application deadlines

Ordering in the fault tolerance sense
Tasks and invocations ordered to meet replica consistency

What if the two orders conflict?
Processor P1 hosts replicas of objects A, B and C
Processor P2 hosts replicas of objects A and D
Schedules on the two processors might vary with current resources
P1’s replica of A and P2’s replica of A might see different orders

What if different machines need different task mixtures?
Some tasks ordered a la real-time; others ordered a la fault tolerance

14

Carnegie Mellon

Real-Time vs. Fault-Tolerance - 5

Real-time assumes mostly synchronous operation
Events, tasks, operations known ahead of time
Bounded latencies, bounded response time

Fault tolerance considers asynchronous environment
Distributed asynchronous system
Unbounded latency, unbounded response time, unreliable fault detection

Fault tolerance assumes inherent unpredictability
Faults cannot be predicted ahead of time; they are asynchronous events
What if faults “upset” the pre-computed real-time schedule?

Can we get synchronous operation in an asynchronous setting?
Especially in the presence of transient faults

15

Carnegie Mellon

Real-Time vs. Fault-Tolerance - 6

Real-time requires bounded operation time
What about operations such as fault detection and recovery?

Time-consuming fault detection
What of common-mode (correlated) faults?

Crash of processor hosting 100 objects can lead to 100 fault reports

Time-consuming recovery
Recovery must account for ORB, application and infrastructure state
Recovery of trivial objects is straightforward (state=simple data structure)
What if recovery involves object instantiation?

Recovery of a process that requires 100 objects to be instantiated
FT-CORBA talks about object-centric recovery; shared state requires
process-centric recovery

16

Carnegie Mellon

Combining Real-Time and Fault-Tolerance

Trade-offs between RT and FT for specific scenarios
Effective ordering of operations to meet both RT and FT requirements
Resolution of non-deterministic conflicts (e.g., timers, multithreading)

Impact of fault-tolerance and real-time on each other
Impact of a fault on real-time behavior
Impact of recovery (reboot) on real-time behavior
Replication of scheduling/resource management components
Scheduling (and bounding) recovery to avoid missing deadlines

17

Carnegie Mellon

RT-FT Architecture

Real-Time CORBA

Replication
Mechanisms

Replication
Mechanisms

Replication
Mechanisms

Replication
Mechanisms

Replication
Manager

Replication
Manager

Replication
Mechanisms

Fault
Detector

Fault
Detector

Resource
Manager

Resource
Manager

Real-Time CORBA Real-Time CORBA Real-Time CORBA Real-Time CORBA

Scheduler

Scheduler
Resource
Manager

Resource
Manager

Resource
Manager

Global Resource
Manager

18

Carnegie Mellon

Architectural Overview
Use replication to protect

Application objects
Scheduler and global resource manager

Special RT-FT scheduler
Real-time resource-aware scheduling service
Fault-tolerant-aware to decide when to initiate recovery

Resource management framework
Local resource managers feed into a replicated global resource manager
Global resource manager coordinates with RT-FT scheduler

Ordering of operations
Keeps replicas consistent in state despite faults, missed deadlines,
recovery and non-determinism in the system

19

Carnegie Mellon

RT-FT Scheduler

Requires ability to predict and to control resource usage
Needs input from the local and global resource managers

Resources of interest: load, memory, network bandwidth
Parameters: resource limits, current resource usage, usage history profile

Uses resource usage input for
Proactive action

Predict and perform new resource allocations
Migrate resource-hogging objects to idle machines before they start executing

Reactive action
Respond to overload conditions and transients
Migrate replicas of offending objects to idle machines even as they are
executing invocations

20

Carnegie Mellon

RT-FT Scheduler

Requires prediction of faults and of recovery
Needs input from a fault predictor

To determine when, and what kinds of, faults can occur
To schedule fault detection time based on prediction

Needs input from a recovery predictor
Offline predictor: Source code analysis for worst-case recovery time

Look at each object’s data structures
Looks at the object’s containing process and ORB interactions
Not comprehensive: unable to predict dynamic memory allocations

Runtime predictor: Object execution and memory allocation profile
Intercepts and observes runtime memory allocations (e.g., object instantiation,
library loading), connection establishment, etc.
Prepares for the worst-case replica recovery time

21

Carnegie Mellon

Conclusion

Real-time and fault tolerance don’t always make a good “marriage”
Use of time and multithreading (non-determinism)
Ordering of tasks to meet replica consistency and task deadlines
Bounding fault detection and recovery times in asynchronous environment

RT-FT CORBA architecture requires
Online fault profiler and predictor
Online and offline recovery predictor
FT-aware real-time scheduler that schedules recovery actions
New mechanisms to sanitize non-determinism

Ongoing research work with RT-CORBA implementations
(TAO and Orbacus) and RTSJ reference implementation (Timesys)

22

Carnegie Mellon

Thank You!

http://www.cs.cmu.edu/~priya
priya@cs.cmu.edu

Priya Narasimhan
Assistant Professor of ECE and CS

Carnegie Mellon University
Pittsburgh, PA 15213-3890

	OMG Real-Time and Distributed Object Computing Workshop, July 2002, Arlington, VAProviding Real-Time and Fault Tolerance
	Outline
	Motivation
	Quality of Service for CORBA Applications
	The RT-CORBA Standard
	End-to-End Predictability
	The FT-CORBA Standard
	Strong Replica Consistency
	Real-Time vs. Fault-Tolerance
	Real-Time vs. Fault-Tolerance - 1
	Real-Time vs. Fault-Tolerance - 2
	Real-Time vs. Fault-Tolerance - 3
	Real-Time vs. Fault-Tolerance - 4
	Real-Time vs. Fault-Tolerance - 5
	Real-Time vs. Fault-Tolerance - 6
	Combining Real-Time and Fault-Tolerance
	RT-FT Architecture
	Architectural Overview
	RT-FT Scheduler
	RT-FT Scheduler
	Conclusion
	Thank You!

