

Middleware for Embedded Adaptive Dependability

P. Narasimhan, C. Reverte, S. Ratanotayanon and G. Hartman
Carnegie Mellon University, Pittsburgh, PA 15213-3890.

{priya@cs, cfr@andrew, sratanot@andrew, gghartma@cs}.cmu.edu

Abstract
The Middleware for Embedded Adaptive Dependability
(MEAD) infrastructure enhances large-scale
distributed real-time embedded middleware
applications with novel capabilities, including (i)
transparent, yet tunable, fault tolerance in real time,
(ii) proactive dependability, (iii) resource-aware
system adaptation to crash, communication,
partitioning and timing faults with (iv) scalable and
fast fault-detection and fault-recovery.

1. Introduction

Middleware, such as CORBA and Java, have come to
incorporate support for many “-ilities” (e.g., reliability,
real-time, security). Unfortunately, both the CORBA
and the Java middleware standards can support only
either real-time or fault tolerance in isolation. This is
due to a deeper fundamental problem - the fact that
real-time and fault tolerance often impose conflicting
requirements on a distributed system. While real-time
requires a priori knowledge of the system's temporal
operation, fault tolerance must necessarily deal with
faults that occur unexpectedly, and with possibly
unpredictable fault recovery times. Our preliminary
measurements [5] show that faults can disrupt a Real-
Time CORBA application, and do lead to unbounded
and variable fault-detection and fault-recovery times.
When both real-time and fault-tolerance are required to
be satisfied within the same system, it is rather likely
that trade-offs [2] are made during the composition.

Today's middleware applications (including most
kinds of mission-critical applications) that require
multiple simultaneous “-ilities”, such as reliability and
real-time, end up adopting some combination of the
standardized solution for one “-ility” along with an ad-
hoc proprietary mechanism for the other “-ility”. The
end result is a system that is often brittle, and one that
is not easy to maintain or to upgrade, because it does
not fully capture the trade-offs and the interactions
between real-time and fault tolerance.

This research attempts to identify and to reconcile
the conflicts between real-time and fault tolerance in a
resource-aware manner. The novel ideas underlying
this research are captured in the scalable, transparent,

tunable, real-time, fault-tolerant MEAD1 infrastructure.
Although MEAD is described in the context of
CORBA, its transparency allows it to support other
middleware platforms, including Real-Time Java. The
real-time fault-tolerant resource-aware MEAD
infrastructure combines the strengths of:

 Informed development-time tools to assist the
application programmer in making the critical
choices and trade-offs between real-time and fault
tolerance,

 Multi-level resource-aware feedback loops for the
system to (learn to) adapt to new run-time
situations,

 Profiling trends and events to predict faults even
before they occur, and

 Proactive measures to compensate for, and recover
from, faults before they impact the system.

MEAD extends its capabilities and protection to its
own components, making it a truly self-healing system.

2. The MEAD Infrastructure

MEAD achieves its goals through a number of
collaborating distributed reliable components, as shown
in Figure 1, including the following.

Replication Manager: This component replicates the
objects and the processes of the middleware
application, and distributes the replicas across the
processors in the system. The application deployer can
select fault tolerance properties for each application
object using a graphical user interface to the
Replication Manager. This enables the Replication
Manager to decide how many replicas to create for
each object, where to place the replicas, and which
replication style to enforce for the replicated object.
The MEAD Replication Manager also assumes
responsibility for maintaining a certain level of
dependability by ensuring a pre-specified minimum
degree of replication for each object.

1 Mead, the legendary ambrosia of the Vikings, was believed to
endow its imbibers with immortality (i.e., dependability),
reproductive capabilities (i.e., replication), the wisdom for weaving
poetry (i.e., cross-cutting aspects of real-time and fault tolerance)
and a happy and long married life (i.e., partition-tolerance).

mailto:priya@cs, cfr@andrew, sratanot@andrew, gghartma@cs}.cmu.edu

Figure 1: MEAD’s scalable real-time fault-tolerant run-time infrastructure.

Hierarchical Fault Detection-Reporting-Analysis:
On each processor, there exists a Local Fault Detector
that detects the crash of objects and processes on that
processor. The MEAD Local Fault Detectors feed their
fault notifications into the Replication Manager,
thereby allowing it to restore the degree of replication
if a replica has crashed. The Local Fault Detectors and
the Replication Manager additionally do the work of
fault analysis. The fault analysis serves to conserve
bandwidth (in the case of multiple fault reports that can
be collated into a single fault report) and to provide a
more accurate diagnosis of the source of the fault. For
instance, if a processor hosting 100 objects crashes, a
single processor-crash fault report might save
bandwidth and provide more utility than 100 individual
object-crash fault reports. The MEAD fault detection-
reporting-analysis framework is structured
hierarchically for reasons of scalability.

Hierarchical Resource Management Framework:
On each processor in the distributed system, there runs
a Local Resource Manager that monitors the resource
usage of the replicas on that processor. Note that the

MEAD Local Resource Manager, as shown in Figure 1,
has instrumentation and profiling hooks at the
operating system, the ORB and application levels in
order to monitor the respective resource usage of each
of these local components. The Local Resource
Managers communicate this information to the MEAD
Global Resource Manager. This system-wide Global
Resource Manager is aware of the processor and
communication resources, and their interactions, across
the entire distributed system. The Global Resource
Manager has a system-wide perspective of the current
resource availability and resource usage across all of
the processors. Thus, the Global Resource Manager is
uniquely positioned to make decisions about migrating
objects/processes from heavily loaded processors onto
relatively lightly loaded processors, in order to meet the
application's timing requirements, or to isolate
resource-intensive tasks onto relatively idle processors.
It can also make decisions about selectively shedding
load (based on task criticality) under overload
conditions.

ORB

Local
Fault Detector

Interceptor

Interceptor

Interceptor

Operating
System

Application

HOST

ORB

Local
Fault Detector

Interceptor

Interceptor

Interceptor

Operating
System

Application

HOST

Replication
Manager

RT-FT
Scheduler

Resource
Manager

ORB

Local
Fault Detector

Interceptor

Interceptor

Interceptor

Operating
System

Application

Local
Resource
Manager

HOST

Figure 2: MEAD’s development-time Reliability Advisor.

RT-FT Scheduler: On each processor, there runs a
Local RT-FT Scheduler (physically collocated with the
Local Resource Manager in Figure 1) that monitors the
scheduling and the performance of tasks on that
processor. An offline scheduler (not shown) computes
a real-time schedule of the application's tasks ahead of
run-time; this schedule provides the sequence of
operations in the absence of faults. The MEAD Global
RT-FT Scheduler then starts to execute the application
according to this pre-determined schedule. To
withstand runtime conditions, the Global Scheduler
inspects the schedule, computes the available slack
time, and reallocates work to selective replicas of an
object so that the object continues to meet its original
deadlines, and is yet able to accommodate dynamic
situations (e.g., faults, loss of resources, object
migration, recovery) that arise. Thus, the pre-computed
schedule does not necessarily change, at run-time, in
the presence of faults; instead, the RT-FT Scheduler
works with the proactive dependability framework to
determine the least disruptive point in the schedule for
initiating fault-recovery. Working with the FT-Hazard
Analyzer, the RT-FT Scheduler knows the worst-case
object recovery times and “safe” checkpointing and
recovery instants in the lifetime of the object. The RT-
FT Scheduler is also responsible for triggering the
dynamic scheduling of two key operations,

object/process migration and recovery.
Proactive Dependability Framework: Proactive
dependability involves predicting, with some
confidence, when a fault might occur, and
compensating for the fault even before it occurs. For
instance, the knowledge that there is an 80% chance of
a specific processor crashing within the next 5 minutes
could allow the MEAD system a chance to survive the
crash with far less penalty than waiting for the crash to
occur; in this case, MEAD might elect to migrate all of
the processes/objects on the moribund processor within
the remaining 5 minutes. The important aspect of this
proactive recovery action is that it is less disruptive on
the real-time deadlines and the normal operation of the
system because the recovery can be staggered out
within the currently fault-free functional version of the
system. Furthermore, anticipatory recovery from a fault
places fewer demands on the system than reactive
recovery.

Proactive dependability hinges on the ability
to predict when a fault can occur. This is possible
because a fault is typically preceded by a visible pattern
of abnormal behavior just prior to the fault. For
instance, looking through the Windows NT error log,
one can see that a disk fault is usually preceded by a
pattern of what might appear to be relatively minor
errors and warnings. Recognizing this pattern, along

Run-time
profile of
resource

usage

CORBA
Application

Operating system, network speed/type
Configuration, workstation speed/type

Reliability requirements
Recovery time
Faults to tolerate

Size of state
Quiescence points

Number of replicas
Replication style
Checkpointing rate
Fault detection rate

Reliability
Advisor

with the source of, and the temporal separation
between, consecutive errors/warnings in this pattern
allows us to compute the “slack-time” available before
the fault. Using statistical and heuristic techniques [1],
the occurrence of any individual error/warning, along
with a “window” spanning its adjacent errors/warnings,
we can predict, with some confidence level, the time at
which a fault might follow.

This requires a Local Error Detector to record
all of the errors/warnings into a Log, a Fault Analyzer
to sift through the log entries and to forward
predictions to the Global Proactive FT-Manager. The
Proactive FT-Manager collects all of these predictions,
assesses the severity and the likelihood of the predicted
faults, and communicates impending “doom” (i.e.,
impending loss of resources or of replicas or
processors) to the Resource Manager and the
Replication Manager. These components, in their turn,
work quickly with the Global RT-FT Scheduler to close
the feedback loop by triggering object/process
migration, load balancing, load shedding, or any one of
several other fault-recovery decisions. One example of
fault-recovery involves proactively restarting, or
injecting new life into, applications that might have
memory leaks in them, through a process called
software rejuvenation. The Local Resource Managers,
through their profiling information, communicate an
object’s memory-leak trend to the Local Error
Detectors, which then communicates it to the rest of the
proactive dependability framework. Another example
involves “poison requests”, i.e., requests that always
cause the system to crash or to miss deadlines. MEAD
profiles the communication and execution patterns of
all of the requests in order to identify such “poison
requests”, and to cause them to be discarded as a
preventive measure before they can damage the system.
Chain of Interceptors: Interception [4] allows us to
insert the MEAD infrastructure transparently
underneath any unmodified middleware application,
and under any unmodified CORBA ORB. Interception
also allows us to be language-neutral because the
interceptor relies only on the existence of the (IIOP)
protocol interface of any middleware platform.
Underneath the ORB, MEAD inserts a chain of
interceptors, with each additional interceptor
transparently enhancing the ORB with some new
capability. The value of interceptors is two-fold. For
one, interceptors can be installed at run-time, into the
process address space, of an unmodified CORBA
application.

By being readily installable and uninstallable
at run-time, interceptors allow MEAD’s mechanisms to
“kick in” only when a fault occurs, or when a resource
is lost or depleted. This prevents MEAD from
adversely impacting the application’s performance in
the absence of faults or in the presence of sufficient
resources.

Secondly, interceptors can be chained together
to produce even more interesting cross-cutting
functionality. We envision the real-time fault-tolerant
MEAD infrastructure using a number of interceptors,
each providing some additional assurances of
dependability, e.g., there would exist interceptors for
reliable multicast, TCP/IP, real-time annotations of
messages, task profiling, checkpointing, resource
monitoring. Installing or uninstalling such an
interceptor would then increase, or reduce,
respectively, the infrastructure's offered dependability.
Interceptors are analogous to the concept of aspect-
oriented programming (AOP), where the cross-cutting
concerns of a system are represented by different
aspects, which are then woven together to capture the
system interactions. We intend to embody the concepts
of AOP into our interception technology to capture and
to resolve the real-time vs. fault tolerance trade-offs,
and to provide for different runtime-customizable
levels of real-time and fault tolerance.
Reliability Advisor: This development-time tool
allows the application deployer to select the right
reliability configuration settings for his/her application,
as shown in Figure 2. These settings include the fault
tolerance properties for each of the objects of the
application that requires protection from faults. The
properties for each object include (i) degree of
replication, i.e., the number of replicas, (ii) replication
style, i.e., one of the active, active with voting, warm
passive, cold passive and semi-active replication styles,
(iii) checkpointing frequency, i.e., how often state
should be retrieved and stored persistently, (iv) fault
detection frequency, i.e., how often the object should
be “pinged” for liveness and (v) the physical
distribution, or the precise location, of these replicas.
Unlike current dependability practices, we do not
decide on these properties in an ad-hoc unsystematic
manner. Instead, MEAD makes these property
assignments through the careful consideration of the
application’s resource usage, the application’s
structure, the reliability requirements, the faults to
tolerate, etc. The novel aspect of the MEAD reliability
advisor is that, given any application, the advisor will
profile the application for a specified period of time to
ascertain the application’s resource usage (in terms of
bandwidth, processor cycles, memory, etc.) and its
rate/pattern of invocation. Based on these factors, the
advisor makes recommendations [7] to the deployer on
the best possible reliability strategy to adopt for the
specific application. Of course, at run-time, multiple
different applications might perturb each other’s
performance, leading to erroneous development-time
advice. Keeping this in mind, the MEAD reliability
advisor has a run-time feedback component that
updates the development-time component with run-
time profiling information in order to provide
corrections to the original “advice”. This feedback

component is nothing but the Local Resource Managers
operating in concert with the Global Resource
Manager.

3. Key Concepts and Strategies

Replication – Not Just for Reliability, But for Real-
Time: Replication has primarily used to obtain fault
tolerance, i.e., having multiple copies, or replicas, of an
object/process distributed across a system can allow
some replicas to continue to operate even if faults
terminate other replicas. MEAD goes beyond this in
exploiting replication, a common fault tolerance
technique, to derive better real-time behavior! With
replication, there always exist redundantly operating
replicas which receive and process the same
invocations, and deterministically produce the same
responses. The invocations and responses are
synchronized across the different replicas of the same
object in logical time; of course, the
invocations/responses might be received at individual
replicas at different physical times. Thus, a faster
replica might produce a response more quickly, but
nevertheless in the same order as a slower replica of the
same object. If we send an invocation to two replicas of
the same object, where one replica is faster and the
other is slower, the faster replica will return the
response faster, and can move onto the next scheduled
invocation more quickly. In this case, the slower
replica’s response is a duplicate and can probably be
safely discarded. In any case, it might be late, or miss
the deadline for producing the response. The faster
replica’s result can be fed back to the slower replica’s
FT-infrastructural support, thereby suppressing the
duplicate response. By staggering the times at which
invocations are released to replicas of different speeds,
we can always ensure that we have at least one replica
that beats the others in terms of meeting the specified
deadline for producing the response. This technique is
effective in that we exploit the duplicate responses of
the replicas, as well as their redundant processing, in
order to meet deadlines and to tolerate faults. This
technique is effective when triggered with due
consideration of the network topology.
Partition-Tolerance: Large-scale systems are
particularly vulnerable to insidious network
partitioning faults, where the system partitions into
disconnected components. With additional
mechanisms, MEAD could also sustain continuous,
albeit degraded, operation in a partitioned system, and
could facilitate remerging and recovery when the
partition heals. The problems of network partitioning
are aggravated by replication. When a partition occurs,
some of the replicas of an object might reside in one
component, while the other replicas of the same object
are “trapped” in the other, disconnected, component. In

the partitioned, or disconnected, mode of operation, the
two sets of replicas of the same object might make
different decisions which cause their respective states
to diverge. When the partition heals, these diverging
states and actions might be difficult, if not impossible,
to reconcile. Application programmers are ill-equipped
to deal with this reconciliation, and there needs to be
some automated support for network remerging in a
dependable system. The MEAD infrastructure contains
key building-blocks [3] that can be exploited to support
partition-tolerant systems and to facilitate replica
consistency during remerging.
Support for Nested Operations: Nested, or chained,
operations are the bane of every fault tolerance
developer. A nested operation involves a multi-tiered
chain of objects, where one tier invokes the following
tier down the chain. Thus, a nested operation could
span objects that act simultaneously as both client and
server (server to the preceding tier in the chain and
client to the following tier in the chain), and has the
potential to lead to cascaded faults. Nested operations
require imposing different real-time deadlines [6] from
normal operations, and different infrastructural
timeouts need to be set on them. For instance, suppose
that we have a three-tiered nested application, with
object A (tier 1) invoking object B (tier 2) which then
invokes object C (tier 3). If object A invokes object B
in a non-nested fashion, then, B would process the
invocation and return a response immediately. If object
A invokes object B in a nested fashion, then, object B
processes the invocation, invokes object C, in its turn;
object C returns a response to object B’s invocation,
after which B responds to A. The problem here is that
the timeout for A’s invocation to B varies in the non-
nested and nested cases. However, object A might not
know ahead of time, without any knowledge of object
B’s internal operation, if its invocation of object B
might lead to a nested invocation of object C.
Secondly, if a fault occurs in some stage/tier of a nested
operation, we do not necessarily want to restart the
entire nested operation, which could span multiple
stages/tiers.

MEAD’s underlying infrastructure knows
whether a specific invocation triggers a further, nested,
invocation. This information is useful when
determining the precise value of the timeout to set on
the deadline for receiving a response across the tiers of
a nested operation. MEAD stores information about
partially complete operations and caches their state-
updates and response in order to disseminate these
changes, and to recover more quickly, in the case of
nested operations with faults.
Incremental Checkpointing: Checkpointing, or
saving the state, of applications with a large amount of
state, is a non-trivial exercise. It involves the retrieval
of the application’s state, the transfer of this state
across the network, and the logging of this state onto

some persistent stable storage. When the state of an
application is large, checkpointing consumes both CPU
cycles and bandwidth, and can choke up the entire
system. MEAD employs a differential, or incremental,
checkpointing scheme, analogous to the way in which
versioning systems, such as CVS, operate. CVS stores
incremental “diffs” between different versions of the
same file, rather than store the entire file for each new
version; the advantage is that less information is stored,
although some price has to be paid for reconstructing
each version. Incremental checkpointing operates on
the same principle; instead of checkpointing the entire
state, MEAD checkpoints “diffs”, or state-increments,
between two successive snapshots of the state of an
object/process. The state-increments are usually smaller
than the entire state itself, and can be transferred more
quickly, leading to faster recovery times and more RT-
deterministic behavior, under faulty and recovery
conditions. The mechanisms for incremental
checkpointing involve understanding the application
code sufficiently to extract state-increments. We are
currently investigating the development of tools to
assist the application programmer in identifying “safe”
incremental-checkpointing points in the code, as well
as the size and the structure of each state-increment.
Self-Healing Mechanisms: Components of the MEAD
infrastructure are also replicated in the interests of fault
tolerance. Their resource usage is equally monitored,
along with that of the application. Typical fault
tolerance issues include the “Who watches the
watchers?” problem, e.g., how the Replication Manager
replicates itself, and recovers a failed replica of itself,
how the Proactive FT-Manager deals with a fault-report
predicting a fault within one of its replicas, how the
Resource Manager reacts to one of its replicas being
migrated, etc. MEAD handles this by having the
replicas of its own components employ a “buddy-
system” approach, i.e., the replicas of each of MEAD’s
own components watch over each other, recover each
other, and maintain their own degree of replication. At
the same time, replicas that are “buddies” should not
adversely impact each other’s performance or
reliability under either fault-free or recovery
conditions, and must be able to pair up with an
operational “buddy” if their existing “buddy” fails.
Bootstrapping (i.e., starting up from scratch) such a
self-monitoring and self-healing system is tricky
because it requires bringing the system up to a certain
initial level of reliability and functionality before
allowing the application to execute.
Fault Prediction: The algorithms for fault prediction
and dependability forecasting are tricky as they depend
on knowing the pattern of abnormal behavior that
precedes different kinds of faults. MEAD will employ,
and extend, algorithms for data mining in order to look
through error logs that it maintains (in addition to the
system error-logs themselves) to forecast the

occurrence of faults. For each prediction, MEAD needs
to associate a confidence level in order to allow the
adaptation framework to determine whether or not to
take proactive action. Low confidence levels assert
that proactive action might be an overkill because the
chances of the fault occurring are low; high confidence
levels might require urgent processing and high
priority. Statistical and heuristic techniques are
valuable in making predictions and in ascertaining our
confidence in those predictions.

4. Conclusion

The MEAD infrastructure aims to provide resource-
aware real-time support to middleware applications,
with protection against crash, communication,
partitioning and timing faults. MEAD novel capabilities
include mechanisms for proactive dependability, a
reliability advisor for making critical performance vs.
reliability trade-offs at development-time, and
interceptors for transparent, yet tunable fault tolerance.

References

[1] T. Lin and D. Siewiorek, “Error log analysis:

statistical modeling and heuristic trend analysis”,
IEEE Transactions on Reliability, vol. 39, no. 4, pp.
419-432, October 1990.

[2] P. Narasimhan, “Trade-Offs in Providing Both
Real-Time and Fault Tolerance to Middleware
Applications”, Workshop on Foundations of
Middleware Technologies, Irvine, CA, November
2002.

[3] P. Narasimhan, L. E. Moser and P. M. Melliar-
Smith, “Replica Consistency of CORBA Objects in
Partitionable Distributed Systems,” Distributed
Systems Engineering Journal, vol. 4, no. 3, pp. 139-
150, September 1997.

[4] P. Narasimhan, L. E. Moser and P. M. Melliar-
Smith, “Using Interceptors to Enhance CORBA,”
IEEE Computer, pp. 62-68, July 1999.

[5] P. Narasimhan and S. Ratanotayanon, “Evaluating
the (Un)Predictability of Real-Time CORBA Under
Fault-Free and Recovery Conditions,” submitted for
review.

[6] S. Ratanotayanon and P. Narasimhan, “Quantifying
the Impact of Faults and Recovery on Nested
Middleware Applications”, submitted for review.

[7] C. F. Reverte and P. Narasimhan, “Performance and
Dependability Trade-Offs for Varying
Checkpointing Frequencies”, submitted for review.

	Introduction
	The MEAD Infrastructure
	Key Concepts and Strategies
	Conclusion
	References

