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Abstract 
The Middleware for Embedded Adaptive Dependability 
(MEAD) infrastructure enhances large-scale 
distributed real-time embedded middleware 
applications with novel capabilities, including (i) 
transparent, yet tunable, fault tolerance in real time, 
(ii) proactive dependability, (iii) resource-aware 
system adaptation to crash, communication, 
partitioning and timing faults with (iv) scalable and 
fast fault-detection and fault-recovery. 
 
1. Introduction 
 
Middleware, such as CORBA and Java, have come to 
incorporate support for many “-ilities” (e.g., reliability, 
real-time, security).  Unfortunately, both the CORBA 
and the Java middleware standards can support only 
either real-time or fault tolerance in isolation.  This is 
due to a deeper fundamental problem - the fact that 
real-time and fault tolerance often impose conflicting 
requirements on a distributed system.  While real-time 
requires a priori knowledge of the system's temporal 
operation, fault tolerance must necessarily deal with 
faults that occur unexpectedly, and with possibly 
unpredictable fault recovery times.  Our preliminary 
measurements [5] show that faults can disrupt a Real-
Time CORBA application, and do lead to unbounded 
and variable fault-detection and fault-recovery times. 
When both real-time and fault-tolerance are required to 
be satisfied within the same system, it is rather likely 
that trade-offs [2] are made during the composition. 

Today's middleware applications (including most 
kinds of mission-critical applications) that require 
multiple simultaneous “-ilities”, such as reliability and 
real-time, end up adopting some combination of the 
standardized solution for one “-ility” along with an ad-
hoc proprietary mechanism for the other “-ility”. The 
end result is a system that is often brittle, and one that 
is not easy to maintain or to upgrade, because it does 
not fully capture the trade-offs and the interactions 
between real-time and fault tolerance.  

This research attempts to identify and to reconcile 
the conflicts between real-time and fault tolerance in a 
resource-aware manner. The novel ideas underlying 
this research are captured in the scalable, transparent, 

tunable, real-time, fault-tolerant MEAD1 infrastructure. 
Although MEAD is described in the context of 
CORBA, its transparency allows it to support other 
middleware platforms, including Real-Time Java. The 
real-time fault-tolerant resource-aware MEAD 
infrastructure combines the strengths of:  

 Informed development-time tools to assist the 
application programmer in making the critical 
choices and trade-offs between real-time and fault 
tolerance,  

 Multi-level resource-aware feedback loops for the 
system to (learn to) adapt to new run-time 
situations,  

 Profiling trends and events to predict faults even 
before they occur, and  

 Proactive measures to compensate for, and recover 
from, faults before they impact the system.  

MEAD extends its capabilities and protection to its 
own components, making it a truly self-healing system.  
 

2. The MEAD Infrastructure 
 
MEAD achieves its goals through a number of 
collaborating distributed reliable components, as shown 
in Figure 1, including the following. 
 
Replication Manager: This component replicates the 
objects and the processes of the middleware 
application, and distributes the replicas across the 
processors in the system. The application deployer can 
select fault tolerance properties for each application 
object using a graphical user interface to the 
Replication Manager. This enables the Replication 
Manager to decide how many replicas to create for 
each object, where to place the replicas, and which 
replication style to enforce for the replicated object. 
The MEAD Replication Manager also assumes 
responsibility for maintaining a certain level of 
dependability by ensuring a pre-specified minimum 
degree of replication for each object. 

                                                      
1 Mead, the legendary ambrosia of the Vikings, was believed to 
endow its imbibers with immortality (i.e., dependability), 
reproductive capabilities (i.e., replication), the wisdom for weaving 
poetry (i.e., cross-cutting aspects of real-time and fault tolerance) 
and a happy and long married life (i.e., partition-tolerance).  
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Figure 1: MEAD’s scalable real-time fault-tolerant run-time infrastructure. 

 
Hierarchical Fault Detection-Reporting-Analysis: 
On each processor, there exists a Local Fault Detector 
that detects the crash of objects and processes on that 
processor. The MEAD Local Fault Detectors feed their 
fault notifications into the Replication Manager, 
thereby allowing it to restore the degree of replication 
if a replica has crashed. The Local Fault Detectors and 
the Replication Manager additionally do the work of 
fault analysis. The fault analysis serves to conserve 
bandwidth (in the case of multiple fault reports that can 
be collated into a single fault report) and to provide a 
more accurate diagnosis of the source of the fault. For 
instance, if a processor hosting 100 objects crashes, a 
single processor-crash fault report might save 
bandwidth and provide more utility than 100 individual 
object-crash fault reports. The MEAD fault detection-
reporting-analysis framework is structured 
hierarchically for reasons of scalability. 
  
Hierarchical Resource Management Framework: 
On each processor in the distributed system, there runs 
a Local Resource Manager that monitors the resource 
usage of the replicas on that processor. Note that the 

MEAD Local Resource Manager, as shown in Figure 1, 
has instrumentation and profiling hooks at the 
operating system, the ORB and application levels in 
order to monitor the respective resource usage of each 
of these local components. The Local Resource 
Managers communicate this information to the MEAD 
Global Resource Manager. This system-wide Global 
Resource Manager is aware of the processor and 
communication resources, and their interactions, across 
the entire distributed system. The Global Resource 
Manager has a system-wide perspective of the current 
resource availability and resource usage across all of 
the processors. Thus, the Global Resource Manager is 
uniquely positioned to make decisions about migrating 
objects/processes from heavily loaded processors onto 
relatively lightly loaded processors, in order to meet the 
application's timing requirements, or to isolate 
resource-intensive tasks onto relatively idle processors. 
It can also make decisions about selectively shedding 
load (based on task criticality) under overload 
conditions.  
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Figure 2: MEAD’s development-time Reliability Advisor. 

 
RT-FT Scheduler: On each processor, there runs a 
Local RT-FT Scheduler (physically collocated with the 
Local Resource Manager in Figure 1) that monitors the 
scheduling and the performance of tasks on that 
processor. An offline scheduler (not shown) computes 
a real-time schedule of the application's tasks ahead of 
run-time; this schedule provides the sequence of 
operations in the absence of faults. The MEAD Global 
RT-FT Scheduler then starts to execute the application 
according to this pre-determined schedule. To 
withstand runtime conditions, the Global Scheduler 
inspects the schedule, computes the available slack 
time, and reallocates work to selective replicas of an 
object so that the object continues to meet its original 
deadlines, and is yet able to accommodate dynamic 
situations (e.g., faults, loss of resources, object 
migration, recovery) that arise.  Thus, the pre-computed 
schedule does not necessarily change, at run-time, in 
the presence of faults; instead, the RT-FT Scheduler 
works with the proactive dependability framework to 
determine the least disruptive point in the schedule for 
initiating fault-recovery. Working with the FT-Hazard 
Analyzer, the RT-FT Scheduler knows the worst-case 
object recovery times and “safe” checkpointing and 
recovery instants in the lifetime of the object. The RT-
FT Scheduler is also responsible for triggering the 
dynamic scheduling of two key operations, 

object/process migration and recovery. 
Proactive Dependability Framework: Proactive 
dependability involves predicting, with some 
confidence, when a fault might occur, and 
compensating for the fault even before it occurs. For 
instance, the knowledge that there is an 80% chance of 
a specific processor crashing within the next 5 minutes 
could allow the MEAD system a chance to survive the 
crash with far less penalty than waiting for the crash to 
occur; in this case, MEAD might elect to migrate all of 
the processes/objects on the moribund processor within 
the remaining 5 minutes. The important aspect of this 
proactive recovery action is that it is less disruptive on 
the real-time deadlines and the normal operation of the 
system because the recovery can be staggered out 
within the currently fault-free functional version of the 
system. Furthermore, anticipatory recovery from a fault 
places fewer demands on the system than reactive 
recovery.  

Proactive dependability hinges on the ability 
to predict when a fault can occur. This is possible 
because a fault is typically preceded by a visible pattern 
of abnormal behavior just prior to the fault. For 
instance, looking through the Windows NT error log, 
one can see that a disk fault is usually preceded by a 
pattern of what might appear to be relatively minor 
errors and warnings. Recognizing this pattern, along 
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with the source of, and the temporal separation 
between, consecutive errors/warnings in this pattern 
allows us to compute the “slack-time” available before 
the fault. Using statistical and heuristic techniques [1], 
the occurrence of any individual error/warning, along 
with a “window” spanning its adjacent errors/warnings, 
we can predict, with some confidence level, the time at 
which a fault might follow.  

This requires a Local Error Detector to record 
all of the errors/warnings into a Log, a Fault Analyzer 
to sift through the log entries and to forward 
predictions to the Global Proactive FT-Manager. The 
Proactive FT-Manager collects all of these predictions, 
assesses the severity and the likelihood of the predicted 
faults, and communicates impending “doom” (i.e., 
impending loss of resources or of replicas or 
processors) to the Resource Manager and the 
Replication Manager. These components, in their turn, 
work quickly with the Global RT-FT Scheduler to close 
the feedback loop by triggering object/process 
migration, load balancing, load shedding, or any one of 
several other fault-recovery decisions. One example of 
fault-recovery involves proactively restarting, or 
injecting new life into, applications that might have 
memory leaks in them, through a process called 
software rejuvenation. The Local Resource Managers, 
through their profiling information, communicate an 
object’s memory-leak trend to the Local Error 
Detectors, which then communicates it to the rest of the 
proactive dependability framework. Another example 
involves “poison requests”, i.e., requests that always 
cause the system to crash or to miss deadlines. MEAD 
profiles the communication and execution patterns of 
all of the requests in order to identify such “poison 
requests”, and to cause them to be discarded as a 
preventive measure before they can damage the system.  
Chain of Interceptors: Interception [4] allows us to 
insert the MEAD infrastructure transparently 
underneath any unmodified middleware application, 
and under any unmodified CORBA ORB. Interception 
also allows us to be language-neutral because the 
interceptor relies only on the existence of the (IIOP) 
protocol interface of any middleware platform. 
Underneath the ORB, MEAD inserts a chain of 
interceptors, with each additional interceptor 
transparently enhancing the ORB with some new 
capability. The value of interceptors is two-fold. For 
one, interceptors can be installed at run-time, into the 
process address space, of an unmodified CORBA 
application.  

By being readily installable and uninstallable 
at run-time, interceptors allow MEAD’s mechanisms to 
“kick in” only when a fault occurs, or when a resource 
is lost or depleted. This prevents MEAD from 
adversely impacting the application’s performance in 
the absence of faults or in the presence of sufficient 
resources. 

Secondly, interceptors can be chained together 
to produce even more interesting cross-cutting 
functionality. We envision the real-time fault-tolerant 
MEAD infrastructure using a number of interceptors, 
each providing some additional assurances of 
dependability, e.g., there would exist interceptors for 
reliable multicast, TCP/IP, real-time annotations of 
messages, task profiling, checkpointing, resource 
monitoring.  Installing or uninstalling such an 
interceptor would then increase, or reduce, 
respectively, the infrastructure's offered dependability. 
Interceptors are analogous to the concept of aspect-
oriented programming (AOP), where the cross-cutting 
concerns of a system are represented by different 
aspects, which are then woven together to capture the 
system interactions. We intend to embody the concepts 
of AOP into our interception technology to capture and 
to resolve the real-time vs. fault tolerance trade-offs, 
and to provide for different runtime-customizable 
levels of real-time and fault tolerance.  
Reliability Advisor: This development-time tool 
allows the application deployer to select the right 
reliability configuration settings for his/her application, 
as shown in Figure 2. These settings include the fault 
tolerance properties for each of the objects of the 
application that requires protection from faults. The 
properties for each object include (i) degree of 
replication, i.e., the number of replicas, (ii) replication 
style, i.e., one of the active, active with voting, warm 
passive, cold passive and semi-active replication styles, 
(iii) checkpointing frequency, i.e., how often state 
should be retrieved and stored persistently, (iv) fault 
detection frequency, i.e., how often the object should 
be “pinged” for liveness and (v) the physical 
distribution, or the precise location, of these replicas. 
Unlike current dependability practices, we do not 
decide on these properties in an ad-hoc unsystematic 
manner. Instead, MEAD makes these property 
assignments through the careful consideration of the 
application’s resource usage, the application’s 
structure, the reliability requirements, the faults to 
tolerate, etc. The novel aspect of the MEAD reliability 
advisor is that, given any application, the advisor will 
profile the application for a specified period of time to 
ascertain the application’s resource usage (in terms of 
bandwidth, processor cycles, memory, etc.) and its 
rate/pattern of invocation. Based on these factors, the 
advisor makes recommendations [7] to the deployer on 
the best possible reliability strategy to adopt for the 
specific application. Of course, at run-time, multiple 
different applications might perturb each other’s 
performance, leading to erroneous development-time 
advice. Keeping this in mind, the MEAD reliability 
advisor has a run-time feedback component that 
updates the development-time component with run-
time profiling information in order to provide 
corrections to the original “advice”. This feedback 

 



  
 

component is nothing but the Local Resource Managers 
operating in concert with the Global Resource 
Manager. 
 

3. Key Concepts and Strategies 
 
Replication – Not Just for Reliability, But for Real-
Time: Replication has primarily used to obtain fault 
tolerance, i.e., having multiple copies, or replicas, of an 
object/process distributed across a system can allow 
some replicas to continue to operate even if faults 
terminate other replicas. MEAD goes beyond this in 
exploiting replication, a common fault tolerance 
technique, to derive better real-time behavior! With 
replication, there always exist redundantly operating 
replicas which receive and process the same 
invocations, and deterministically produce the same 
responses. The invocations and responses are 
synchronized across the different replicas of the same 
object in logical time; of course, the 
invocations/responses might be received at individual 
replicas at different physical times. Thus, a faster 
replica might produce a response more quickly, but 
nevertheless in the same order as a slower replica of the 
same object. If we send an invocation to two replicas of 
the same object, where one replica is faster and the 
other is slower, the faster replica will return the 
response faster, and can move onto the next scheduled 
invocation more quickly. In this case, the slower 
replica’s response is a duplicate and can probably be 
safely discarded. In any case, it might be late, or miss 
the deadline for producing the response. The faster 
replica’s result can be fed back to the slower replica’s 
FT-infrastructural support, thereby suppressing the 
duplicate response. By staggering the times at which 
invocations are released to replicas of different speeds, 
we can always ensure that we have at least one replica 
that beats the others in terms of meeting the specified 
deadline for producing the response. This technique is 
effective in that we exploit the duplicate responses of 
the replicas, as well as their redundant processing, in 
order to meet deadlines and to tolerate faults. This 
technique is effective when triggered with due 
consideration of the network topology. 
Partition-Tolerance: Large-scale systems are 
particularly vulnerable to insidious network 
partitioning faults, where the system partitions into 
disconnected components. With additional 
mechanisms, MEAD could also sustain continuous, 
albeit degraded, operation in a partitioned system, and 
could facilitate remerging and recovery when the 
partition heals. The problems of network partitioning 
are aggravated by replication. When a partition occurs, 
some of the replicas of an object might reside in one 
component, while the other replicas of the same object 
are “trapped” in the other, disconnected, component. In 

the partitioned, or disconnected, mode of operation, the 
two sets of replicas of the same object might make 
different decisions which cause their respective states 
to diverge. When the partition heals, these diverging 
states and actions might be difficult, if not impossible, 
to reconcile. Application programmers are ill-equipped 
to deal with this reconciliation, and there needs to be 
some automated support for network remerging in a 
dependable system. The MEAD infrastructure contains 
key building-blocks [3] that can be exploited to support 
partition-tolerant systems and to facilitate replica 
consistency during remerging.  
Support for Nested Operations: Nested, or chained, 
operations are the bane of every fault tolerance 
developer. A nested operation involves a multi-tiered 
chain of objects, where one tier invokes the following 
tier down the chain. Thus, a nested operation could 
span objects that act simultaneously as both client and 
server (server to the preceding tier in the chain and 
client to the following tier in the chain), and has the 
potential to lead to cascaded faults.  Nested operations 
require imposing different real-time deadlines [6] from 
normal operations, and different infrastructural 
timeouts need to be set on them. For instance, suppose 
that we have a three-tiered nested application, with 
object A (tier 1) invoking object B (tier 2) which then 
invokes object C (tier 3). If object A invokes object B 
in a non-nested fashion, then, B would process the 
invocation and return a response immediately. If object 
A invokes object B in a nested fashion, then, object B 
processes the invocation, invokes object C, in its turn; 
object C returns a response to object B’s invocation, 
after which B responds to A. The problem here is that 
the timeout for A’s invocation to B varies in the non-
nested and nested cases. However, object A might not 
know ahead of time, without any knowledge of object 
B’s internal operation, if its invocation of object B 
might lead to a nested invocation of object C. 
Secondly, if a fault occurs in some stage/tier of a nested 
operation, we do not necessarily want to restart the 
entire nested operation, which could span multiple 
stages/tiers. 

MEAD’s underlying infrastructure knows 
whether a specific invocation triggers a further, nested, 
invocation. This information is useful when 
determining the precise value of the timeout to set on 
the deadline for receiving a response across the tiers of 
a nested operation. MEAD stores information about 
partially complete operations and caches their state-
updates and response in order to disseminate these 
changes, and to recover more quickly, in the case of 
nested operations with faults. 
Incremental Checkpointing: Checkpointing, or 
saving the state, of applications with a large amount of 
state, is a non-trivial exercise. It involves the retrieval 
of the application’s state, the transfer of this state 
across the network, and the logging of this state onto 

 



  
 

some persistent stable storage.  When the state of an 
application is large, checkpointing consumes both CPU 
cycles and bandwidth, and can choke up the entire 
system. MEAD employs a differential, or incremental, 
checkpointing scheme, analogous to the way in which 
versioning systems, such as CVS, operate. CVS stores 
incremental “diffs” between different versions of the 
same file, rather than store the entire file for each new 
version; the advantage is that less information is stored, 
although some price has to be paid for reconstructing 
each version. Incremental checkpointing operates on 
the same principle; instead of checkpointing the entire 
state, MEAD checkpoints “diffs”, or state-increments, 
between two successive snapshots of the state of an 
object/process. The state-increments are usually smaller 
than the entire state itself, and can be transferred more 
quickly, leading to faster recovery times and more RT-
deterministic behavior, under faulty and recovery 
conditions. The mechanisms for incremental 
checkpointing involve understanding the application 
code sufficiently to extract state-increments. We are 
currently investigating the development of tools to 
assist the application programmer in identifying “safe” 
incremental-checkpointing points in the code, as well 
as the size and the structure of each state-increment. 
Self-Healing Mechanisms: Components of the MEAD 
infrastructure are also replicated in the interests of fault 
tolerance. Their resource usage is equally monitored, 
along with that of the application. Typical fault 
tolerance issues include the “Who watches the 
watchers?” problem, e.g., how the Replication Manager 
replicates itself, and recovers a failed replica of itself, 
how the Proactive FT-Manager deals with a fault-report 
predicting a fault within one of its replicas, how the 
Resource Manager reacts to one of its replicas being 
migrated, etc. MEAD handles this by having the 
replicas of its own components employ a “buddy-
system” approach, i.e., the replicas of each of MEAD’s 
own components watch over each other, recover each 
other, and maintain their own degree of replication. At 
the same time, replicas that are “buddies” should not 
adversely impact each other’s performance or 
reliability under either fault-free or recovery 
conditions, and must be able to pair up with an 
operational “buddy” if their existing “buddy” fails. 
Bootstrapping (i.e., starting up from scratch) such a 
self-monitoring and self-healing system is tricky 
because it requires bringing the system up to a certain 
initial level of reliability and functionality before 
allowing the application to execute.  
Fault Prediction: The algorithms for fault prediction 
and dependability forecasting are tricky as they depend 
on knowing the pattern of abnormal behavior that 
precedes different kinds of faults. MEAD will employ, 
and extend, algorithms for data mining in order to look 
through error logs that it maintains (in addition to the 
system error-logs themselves) to forecast the 

occurrence of faults. For each prediction, MEAD needs 
to associate a confidence level in order to allow the 
adaptation framework to determine whether or not to 
take proactive action.  Low confidence levels assert 
that proactive action might be an overkill because the 
chances of the fault occurring are low; high confidence 
levels might require urgent processing and high 
priority. Statistical and heuristic techniques are 
valuable in making predictions and in ascertaining our 
confidence in those predictions. 
 

4. Conclusion 
 

The MEAD infrastructure aims to provide resource-
aware real-time support to middleware applications, 
with protection against crash, communication, 
partitioning and timing faults. MEAD novel capabilities 
include mechanisms for proactive dependability, a 
reliability advisor for making critical performance vs. 
reliability trade-offs at development-time, and 
interceptors for transparent, yet tunable fault tolerance. 
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