

Fault-Tolerant CCM

Middleware for Embedded Adaptive Dependability (MEAD)

Real-Time Fault-Tolerant Middleware Support

Contract #: F33615-03-C-4110

Thomas D. Bracewell Dave Sperry, Maureen Mayer Raytheon Priya Narasimhan Carnegie Mellon University

CCM Workshop, Nashville, TN December 10, 2003

Areas of Investigation

- Current Areas of Investigation
 - Defining the Fault Tolerant CORBA Component Model precursor to a real-time fault tolerant CCM

- Real-Time Fault Tolerant CORBA Standard RFP

launched at London OMG meeting

- Fault Injector for Middleware Applications (FIMA)

a CORBA-based software fault injector

Collaborators

- Dr. Priya Narasimhan, Carnegie Mellon University (MEAD)
- Nanbor Wang, Vanderbilt (Real-Time CCM)
- Dr. Douglas Blough, Georgia Tech (FIMA)
- Boeing OEP

Defining a Fault Tolerant CORBA Component Model

Tom Bracewell, Maureen Mayer, David Sperry

Raytheon

Background

In the beginning...

OOP let us encapsulate related data and operationsCORBA linked distributed objects, hid platform dependenciesFT CORBA added fault tolerant (FT) support for distributed objects

Then came...

Components - assemble/deploy objects into larger applications

CORBA Component Model (CCM) distributed component model

Model Integrated Computing (MIC) - tools & process to implement/package/assemble/deploy distributed components

PCES Challenge:

How can we add fault tolerant support for distributed components ?

Why Have a FT CCM ?

- CCM and MIC can support fault tolerant (FT) systems
- Weave fault tolerance into component-based designs
- Leverage benefits of component model in FT designs
 - separation of concerns at the right levels

e.g. component, container, server level run-time configurations, connections

- composition-based FT assembly and deployment

build fault tolerant configurations and connections separate logical from physical deployment automate fault tolerant assembly and deployment

- metadata captures FT properties/policies
- First step towards a Real-Time Fault Tolerant CCM a CIAO that goes with MEAD !

FT CCM Goals

- Application-transparent fault tolerance
- Fault tolerant design by composition
- Apply MDA principles
 - One fact in one place
 - Separate design from platform
- Automate fault tolerant component assembly & deployment
 Hide the details of FT assembly and deployment
- Minimize edits to FT components
- Minimize impact to existing standards

Approach to FT CCM

Do I exist? Only the ORB needs to know...

- Make container (not object) entity of redundancy
 - proper separation of concerns
 - handle container state
 - affects FT CORBA
- Add FT services component to containers
 - link components to FT services at the container level
 - fault monitoring
 checkpoint (log) components
 log container state
 implement in CIAO daemon

Approach to FT CCM, ctd.

- Use metadata to express FT properties/policies
 - e.g. replication
- Divide logical and physical assembly in CCM process
 - Currently a one-step process
 - Number of replicas is logical
 - Replica placement is physical
 - A Replication Manager deploys replicas during runtime, using deployment rules (.ftmap) resource declarations (.ftcad) container definitions (.cad)

Current assembly/deployment process

Combines physical and logical assembly

FT CCM assembly/deployment process

XML Schemas: FT MAP file

FT MAP file maps containers to FT Domains, host ports

```
- <domain name="basicSP">
```

```
- <host name="first">
```

```
- <port number="7001">
<container name="locator" />
```

```
</port>
```

```
<portrange low="7501" high="7599" />
</host>
```

```
- <host name="second">
    cond" >
    cond = "second" >
```

```
 <port number="7003">
```

```
<container name="locator" />
```

</port>

```
<port number="7005" />
```

```
<port number="7007" />
```

</host>

```
+ <host name="third">
```

```
</domain>
```

- Logical to physical mapping
- Replication Manager (RM) assigns container replicas to daemons running on host ports
- If a container name is mapped to a port, the RM may only allocate a replica of that container to that port
- If only a port is specified, RM is free to use that port for any container replica
- One FT MAP file per system replaces one .dat file per host

XML Schemas: FT CAD file

FT CAD file defines FT container & component properties

• Applies FT marks atop Component Assembly Descriptor (.cad) files

```
<ftproperties>
```

- <!-- Properties defined at the container level are defaults for the components in the container and the general

```
container behavior -->
```

<container name="locator" replication-style="active" initial-no-of-replicas="3" min-no-of-replicas="2" membership-style="memb_inf_ctrl" consistency-style="cons_inf_ctrl" fault-monitoring-style="push" faultmonitoring-interval="100" fault-monitoring-timeout="500" fault-monitoring-granularity="container" heartbeatpolicy="48" heartbeat-enabled-policy="49" request-duration-policy="47" checkpoint-interval="200" />

<container name="viewer" replication-style="stateless" initial-no-of-replicas="1" min-no-of-replicas="1" membership-style="memb_inf_ctrl" consistency-style="cons_inf_ctrl" fault-monitoring-style="pull" fault-monitoring-interval="10000" fault-monitoring-timeout="20000" fault-monitoring-granularity="container" heartbeat-policy="48" heartbeat-enabled-policy="49" />

-<!-- Properties defined at the component level override defaults set at the container level -->

- <component name="display" />
- <component name="rategen" />
- <component name="gps" />
- </ftproperties>

Applying FT properties and policies

		may be applied to	
		Container	
	FT properties and policies	Components	Groups
	replication style		X
	initial no of replicas		X
	min no of replicas		X
	membership style		X
	consistency style		X
	fault monitoring style	X	X
	fault monitoring interval	X	X
	fault monitoring timeout	X	X
	fault monitoring granularity	X	X
	heartbeat policy	X	X
	heartbeat enabled policy	X	X
	checkpoint interval (logging)	X	X
	factories	homes	
	FT domain ID		X
	obj container group ID	n/a	X
	obj container group ref version	n/a	X
	request duration policy	X	
metapolicy	mode_ID (mode driven FT)	X	X
metapolicy	knob settings (various)	X	X

FT CCM Services Component

- provides FT services to its container
- provides FT services to application components in its own container fault detection, logging
- requires an FT ORB that supports container-level redundancy

• FT CCM Replication Manager

- redeploys and reconnects container applications
- no single point of failure

must be able to replicate / reconfigure itself

- handles container-level property management, groups, factories

Redeploying container applications

- Replication Manager must support dynamic reconnections after fault detection
 - try to restore the failed replica; or
 - reclaim failed replica's resources and create a new physical replica somewhere else;
 - update the IOGR version with the new replica.
 - CCM-level FT CORBA would use FT CCM Assembly Deployer and FT CCM Assembly Manager

"Aspects" make us refactor what's CORBA, what's CCM

- e.g. a new CORBA standard would use a new CCM standard

Plain FT CORBA under a CCM won't do

• FT CORBA must treat containers as entity of redundancy

Container & CCM issues

- Container-level IOGR is needed supports transparent client redirection at the container level
- Container state must be logged even stateless components have stateful containers
- Containers are OS-version-specific and language-specific design hard to move containers to arbitrary hosts which part of container must be replicated what to checkpoint and restore
- Container thread scheduling
- Container quiescence
- Lifecycle issues e.g. FT cookies

In Summary

• FT CCM provides FT support to distributed components

• FT CCM doesn't come for free

- FT CORBA must support containers as entity of redundancy
- "aspects" lead us to refactor what's CORBA, what's CCM

• FT CCM offers real payback

- FT systems will be able to use components, CCM and MIC tools
- FT assembly and deployment will be easier
- FT properties/policies will be managed at appropriate levels

FT CCM Demonstration

David Sperry, Amanda Kelly, Al Butturini

- Demonstrate fail-over to active replica at container level
- Use the CIAO example\$CIAO_ROOT/examples/OEP/Display
- Try not to modify existing components
 - Changed some files to work around value type factory problem in CIAO
- Discover FT issues unique to CCM

Demonstration Strategy

- (use CIAO example)
- Active replication of GPS component
 - add 1 new component to assembly
 - deploy 3 active replicas of GPS
- Fault is detected by missed update from active GPS
 - Expected update rate = 1 Hz
 - Fail over at no update for 3 seconds
- Recovery by switching to healthy component-level replica
 - Fault detection and replica selection performed by new component.
 - All connections are static and setup at assembly time.

• CCM assembly layout for Original CIAO Display Example

- CCM assembly layout for FT Display as conceived...
 - we'd have built this, but for an undesirable CCM event service condition if any GPS replica fails, the Rate Gen ORB hangs; fix the CCM standard!

CCM assembly layout for FT Display - as deployed

OMG RFP for Real Time Fault Tolerant CORBA

Tom Bracewell

Real-Time Fault Tolerant CORBA RFP

Mandatory Requirements

- Application-transparency
- Object, crash, msg, timing faults
- Container failover
- Component FT properties
- Bounded recovery times
- Fast fault detection / fault isolation
- End-to-end predictability
- Scalability
- Policy-driven dependability
- Configurable real-time FT
- Order tasks, events, operations
- Multithreading
- Nested operations
- Proactive dependability

Mandatory Requirements, ctd.

- Platform heterogeneity
- Incremental checkpointing
- ORB interoperability
- Clock synchronization
- New replication styles
- Self-healing ORB

Optional Requirements

- Extendable fault model
- Software rejuvenation
- Real-Time Java
- Security and survivability hooks
- Live software upgrades
- Partition tolerance

RFP Timetable

- TC votes to issue RFP
- LOI to submit to RFP due
- Initial Submissions due
- Voter registration closes
- Initial Submission presentations
- Revised Submissions on OMG server
- Revised Submission presentations
- TC votes to recommend specification
- BoD votes to adopt specification

- April 2004
- June 29, 2004
- August 20, 2004
- October 25, 2004
- November 1, 2004
- February 9, 2005
- March 2, 2005
- May 2005
- June 2005

MEAD - CCM Roadmap

Tom Bracewell, Dr Priya Narasimhan

Raytheon

MEAD - CCM Roadmap

- Identify CCM issues for fault tolerance (today)
- Demonstrate fault tolerant CCM (tomorrow)
- Upcoming capabilities
 - Proactive Dependability for CCM applications
 - Fault Tolerant Configuration Advice for CCM applications
 - Real-time Fault Tolerant CCM
- Standardization efforts
 - Based on insights from MEAD-CCM and MEAD-CORBA, Raytheon-CMU team intends to: participate in QoS4CCM standardization respond to OMG RFP for Real-Time Fault Tolerance

Showcasing MEAD

- MEAD-CCM demonstration
 - Tom Bracewell, Dave Sperry, Maureen Mayer (Raytheon)
 - Active replication; fault detection and failover
- MEAD-CORBA demonstration
 - Priya Narasimhan, Joe Slember (CMU)
 - Active and warm passive replication
 - Fault-detection, failover and recovery
 - Proactive fault-tolerance
 - Resource monitoring and fault-tolerance advice
- Come see us tomorrow!