
Embedded
Software

Licensing?
Prof. Philip Koopman

Carnegie Mellon University
koopman@cmu.edu
October 26, 2000

&Electrical Computer
ENGINEERING

Personal Background
u Experience:

• U.S. Navy computer system integration
• Embedded CPU designer (Harris Corp.)
• Embedded commercial applications R&D (United Technologies)
• Next-generation cell phone services (Gravitate Inc.)
• Research & teaching in embedded systems at Carnegie Mellon

u Ph.D. in Computer Engineering
• Books, technical papers, etc.
• 20 U.S. patents
• Embedded products in current volume production

Preview
u Embedded software licensing is going to be a mess

• Current attempts to say “software is different” may lead to
undermining consumer protection beyond desktop computing

u Fundamental problems:
• The concept of a purely “embedded” computer is obsolete
• The concept of saying “software is different” is unworkable
• Consumer choice in license acceptance is endangered

The Way The World Used To Be
u Embedded systems were anything not in a computer

equipment space (a “machine room”)
• Custom software with a single purpose, often mission-critical
• Computers added to products to provide enhanced functionality
• Products were expected to work regardless of whether they had

software or not

u “General purpose” computers were in office buildings
• Used a general purpose operating system (Unix, Windows)
• Increasingly, not expected to really work all the time

– Notion of “good enough” to reduce time to market
– Critical applications used special techniques, not off-the-shelf software

The Way The World Is Becoming
u Embedded systems are becoming “computers”

• Cell phones with built-in Web browsers
• Car computers that phone for help when an airbag deploys
• Thermostat that sends e-mail and serves web pages
• The “internet microwave oven” (yes, this is real)
• Windows CE – for embedded, but also for handheld computers

u “Computers” are becoming embedded
• Home PC to control household appliances
• “Auto-PC” – a “real computer” permanently installed in a car
• “Embedded Windows NT” (slimmed-down Windows NT)
• PCs used for embedded applications

UCITA Includes Embedded Computers
u Wording of UCITA fails to exclude embedded

computers
• The section that seems intended to exclude them won’t stand up to

technical scrutiny
• Even if it were to stand up, it could easily be worked around

u UCITA official comments don’t exclude them either
• Examples given don’t match actual technology facts
• Exclusion arguments don’t trace back to UCITA wording

u Proposed UCC Article 2 wording doesn’t do it either
• Proposed UCC is slightly stronger in attempting exclusion
• But doesn’t deal with the reality of convergence

of embedded and mainstream computing

These Are Both Web Servers
u Which one is a “computer”?

• They’re both “computers”, even if one is in a thermostat.

http://www-ccs.cs.umass.edu/
~shri/iPic.html/

Conclusion:

The term “embedded”
isn’t useful for

determining which
licensing rules to apply.

“Software” Isn’t Just Spreadsheets
u Operating systems are going everywhere

• Embedded systems have Unix & Windows operating systems
• Very soon, essentially every car will have a commercially

produced operating system (as opposed to proprietary ones)

u It’s easy to migrate hardware functions into software
• If we make a product look like a “computer,” does

the software no longer have to work?

u How do you know if software is “embedded”?
• Should it matter if the very same software is running inside a PC

or a dishwasher?

Is This “Embedded Software”?
u Single purpose computer:

Automatic speech translation: English á Croatian

u PC hardware running Windows 95
and off-the-shelf speech software

Conclusion:

Arguing
“software is different”
will distort engineering
tradeoffs in embedded

product design.

Licenses For Embedded Systems?
u Current protection based on patents

• In embedded systems, functionality is what matters, not
“software” vs. “hardware” (in fact, they can be equivalent)

• Functionality can be patented, and has been for decades
• Now, software can be patented too

u Encouraging embedded software licensing is potentially
dangerous
• Currently, embedded software is not considered “special”

– This moderates the rate of introducing new features
– This is one of the few forces acting to moderate the software safety problem

(we’re still struggling with how to measure “software safety”)

• Do you really want embedded software to be as
robust as current desktop software?

Would You Drive A Car In Which:

“THE SOFTWARE is provided ‘AS IS’
and with all faults. THE ENTIRE
RISK AS TO SATISFACTORY
QUALITY, PERFORMANCE,
ACCURACY, AND EFFORT
(INCLUDING LACK OF
NEGLIGENCE) IS WITH YOU.”

(You will.)

Embedded Operating System Licenses
u Company A: (License wording available on the Web)

• Any use constitutes agreement
• No Warranties; “As is” and with all faults and any negligence
• Any user of product of which it is a component must agree
• Reverse engineering prohibited

u Company B: (License wording available on the Web)
• Same as above, PLUS
• Leasing or sale of software prohibited; can’t leave country
• “Bugs are likely”
• But, warrants it will work per documentation for 6 months

u Company C: flatly refused to provide EULA

Will Consumers Have A Choice?
u Theory is that consumers can pick appropriate license

• Look at licensing terms before purchase (perhaps on web)
• Marketplace presumably will force reasonable license terms

u But what if there is no choice?
• All operating system vendors seem to have similar approaches
• Complex products such as cars will have many components

– If any single OS is in any component of different vehicles, the same EULA
applies!

– It would be no surprise if only one or two operating systems dominate
within a few years

• Even if only non-embedded software “is different”, vendors will
have huge incentive to make their products
be non-“embedded”

Conclusion:

Current approaches to
software licensing will
jeopardize consumer

protection and choice for
embedded systems.

Conclusions
u Fundamental problems:

• “Embedded” computers and “computers” are converging
– Any potentially useful definition can be discredited or circumvented

• The concept of saying “software is different” is dangerous
– Converting complexity into software instead of hardware is easy

• Consumers will be hurt by licensing embedded software
– This is already happening; it just hasn’t reached high market penetration yet

u Embedded software licensing is going to be a mess
• UCITA/UCC wording requires significant fixes; may be unfixable
• Even if “embedded” can be excluded from UCITA, there will be

compelling incentive to make everything look like a non-
embedded “computer”

