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Abstract—This paper introduces a checksum algorithm that 

provides a new point in the performance/complexity/effectiveness 
checksum tradeoff space. It has better fault detection properties 
than single-sum and dual-sum modular addition checksums. It is 
also simpler to compute efficiently than a cyclic redundancy check 
(CRC) due to exploiting commonly available hardware and 
programming language support for unsigned integer division. The 
key idea is to compute a single running sum, but introduce a left 
shift by the size (in bits) of the modulus before performing the 
modular reduction after each addition step. This approach 
provides a Hamming Distance of 3 for longer data word lengths 
than dual-sum approaches such as the Fletcher checksum. 
Moreover, it provides this capability using a single running sum 
that is only twice the size of the final computed check value, while 
providing fault detection capabilities even better than large-block 
variants of dual-sum approaches that require larger division 
operations. A variant that includes a parity bit achieves Hamming 
Distance 4 for the same size check value, approximating the fault 
detection capabilities of a good CRC for about half the data word 
length attainable by such a CRC. 

Keywords—checksum, Fletcher checksum, Koopman checksum, 
error detection, large-block checksum, hash function, modular 
reduction 

I. INTRODUCTION 
Modular addition checksums and Cyclic Redundancy Check 

(CRC) error codes are ubiquitous for guarding the integrity of 
data against non-malicious corruption, such as faults that occur 
during data transmission on networks. A perennial tradeoff 
involves algorithmic complexity, computational cost, and fault 
detection effectiveness. This work provides a new point in the 
tradeoff space of better fault detection effectiveness compared 
to other checksum approaches, with moderate computational 
cost and algorithmic complexity. 

A detailed description of terminology can be found in 
[Koopman23]. In the interest of brevity the reader is referred to 
that earlier work for background and terminology details. Earlier 
work and a more thorough literature review can be found in 
[Maxino09]. 

A. Terminology recap 
A brief recap of terms, shortened from [Koopman23] 

follows: 

• Code word: a tuple of data containing a data word (the data 
for which integrity checking is desired) and a check value 
(the result of a checksum calculation). The purpose of using 
a checksum is to detect whether one or more bit faults in the 
code word have occurred since it was created. Binary 

symmetric bit inversion faults (bit flips) can occur in either 
or both of the data word and the check value. 

• Block: a chunk of data from the data word processed at each 
step of a summing operation. For a Koopman checksum the 
block size is the same as the check value size. 

• Modulus: the unsigned integer used in the checksum 
calculation kernel to produce a remainder from a division 
operation. The modulus must be less than or equal to 2k for 
a k-bit check value to ensure that the result fits within the 
number of bits used for the check value. Modulus selection 
can affect checksum effectiveness. 

• Modular checksum: computes the check value via a 
summing operation across all the blocks of the data word. 
Each step in the sum adds a current running sum to the next 
block value modulo a predefined modulus. 

• Single-sum checksum: a checksum algorithm that performs 
a single running modular checksum to compute a check 
value. 

• Dual-sum checksum: a checksum algorithm that computes 
a pair of two running sums in the manner of a Fletcher or 
Adler checksum and concatenates those sums to produce a 
check value. (See: [Fletcher82] [Adler].) 

• Large-block checksum: a checksum algorithm that uses a 
block size larger than the number of bits in the modulus. For 
example, a 4-byte block size with a one-byte sized modulus 
of 255 would be called “d255_b4” to denote it is a dual 
checksum with modulus 255 and block size 4 bytes. 

Modular Single-Sum Checksum: 
          sum = (sum + block[index]) % modulus 
 
Modular Dual-Sum Checksum: 
          sumA = (sumA + block[index]) % modulus 
          sumB = (sumA + sumB) % modulus 
 
Koopman Checksum: 
          sum = ((sum<<k) + block[index]) % modulus          

Figure 1. Checksum computational kernels. Modulus selection 
affects fault detection capabilities; k is bits in check value. 

Koopman checksum moduli are 253, 65519, and 4294967291. 
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• Hamming distance: the lowest number of faulty bits that 
has at least one undetectable fault in a code word. HD=2 
means all 1-bit faults are detected, but at least one possible 
2-bit fault is undetectable. HD=3 means that all 1-bit and 2-
bit faults are detected, but there is at least one undetectable 
3-bit fault. HD=3 performance for the longest code word 
possible is desirable for better checksum fault detection 
effectiveness. Cyclic redundancy checks can often achieve 
even higher HD values, but are beyond the scope of this 
paper. 

• Bit Error Ratio (BER): the fraction of code word bits that 
are subject to a value inversion corruption (a “bit flip”) on 
a per bit basis. A BER of 10-6 means that each bit in a code 
word has an independent one-per-million chance of being 
flipped. Longer code words have a higher probability of 
corruption simply because they contain more bits that are 
each individually subject to the BER. 

• Pud: the probability of an undetected fault for a particular 
code word given the code word length, the BER, and the 
checksum algorithm being used. A lower Pud means that 
fault detection effectiveness is better. All things being 
equal, longer code words have a higher Pud at the same BER 
simply because they are more likely to accumulate enough 
bit faults to meet or exceed the checksum’s HD. 

B. Approach 
In this work we introduce a computational wrinkle on a 

single-sum checksum approach based on insight gained in 
studying large-block checksums. The result is a modification of 
a single-sum checksum computational kernel that provides 
large-block checksum fault detection capabilities via changing 
the computation into a data-word-long modular reduction 
operation with a carefully chosen modulus. However, this is 
done without requiring the use of large integer division 
arithmetic operations. 

The key to the approach is replacing this modular addition 
core algorithmic step: 

  sum = (sum + block) mod m 

with a step that promotes better mixing of bits and avoids 
leakage of single-bit faults from a corrupted block into the sum 
as a single-bit fault: 

  sum = ((sum + block)*2k) mod m 

where k is the number of bits required to represent the result of 
applying modulus m. 

The multiplication by 2k is efficiently implemented by a left-
shift of k bits, where k is the number of bits in the modulus, 
typically 8, 16, or 32. From a pseudo-code point of view, the 
computational kernel is an optimized version of: 

  sum = ((sum + block) << k ) % m 

where “<<” is a left bit shift and “%” denotes remainder after 
division. 

This formulation is prone to generating carry-out bits that 
exceed the size of an integer register (e.g., for a 16-bit check 
value a carry-out bit might result in a 33-bit value). We resolve 

this issue by reorganizing the computation to pipeline the 
modular reduction and addition steps, yielding this 
computational kernel with an additional first set-up step to prime 
the pipeline and a final clean-up step to wind down the pipeline: 

  sum = ((sum<<k) + block) % m 

This formulation is not subject to carry-outs from the 
addition, and can fit well into typical-size machine words and 
programming language integer types (e.g., 32-bit integer for a 
16-bit check value). A rationale for this approach and analysis 
are contained in later sections of this paper. 

This checksum algorithm provides a new point in the 
checksum tradeoff space, with algorithmic complexity 
approaching that of a single-sum checksum and yet having fault 
detection capability of Hamming Distance (HD) three for useful 
data word lengths. To be sure, a cyclic redundancy check (CRC) 
should be used for life critical applications to provide an even 
higher HD. However, this checksum approach may be attractive 
where better performance than a regular checksum is desired but 
the computational cost and algorithmic complexity of 
implementing an efficient CRC calculation is not warranted. 

The remainder of this paper briefly reviews different 
checksum approaches including this new proposed approach in 
Section II. Section III explains the conceptual underpinnings of 
the new approach. Section IV presents fault detection 
experimental results, and Section V provides conclusions. This 
paper is intended to be read in conjunction with a previous paper 
on large-block checksums [Koopman23], and therefore provides 
only a minimum of context and terminology. The experimental 
methodology and simulation platform are the same as in that 
previous work, updated to include this new algorithm. 

II. PREVIOUS CHECKSUM ALGORITHMS 
Checksum computations of interest for this paper break a 

data word into blocks, perform modular addition across all the 
data blocks within the data word to create a check value, and 
store that check value with the data word to create a code word. 
That code word can later be checked for integrity by 
recomputing the checksum from the data word and comparing 
that result to the stored check value. 

Previous checksum algorithms considered include single-
sum, dual-sum, and large block size versions of those two 
algorithms. These are compared against the effectiveness of the 
newly proposed Koopman checksum algorithm that uses a 
modified single-sum approach to pipeline a single large modular 
reduction operation. 

Initialize Suminitial = InitialSeed 
 
Iterate across each block i in data word: 
     Sumnew = ( Sumold + Blocki ) mod M 
 
Check Value is the final Sumnew 

Algorithm 1: Single-sum checksum. 
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A. Single-Sum Checksums 
Classical checksum algorithms involve computing a single 

modular sum of block values drawn in sequence from the entire 
length of the data word. A generic description is shown as 
Algorithm 1. 

In Algorithm 1, M is a predetermined algorithm-dependent 
modulus. Using a k=16 check value (16 bits) as an example, 
some possible values for the modulus are two’s complement 
addition (65536), one’s complement addition (65535), largest 
prime less than 2k (65521), and a modulus that is suitable for 
large-block checksums (65525) [Koopman23].  

Single sum checksum algorithms can generate any desired 
k-bit sized check value, with typical values of k being 8, 16, and 
32. They provide HD=2 fault detection performance. 

B. Dual-Sum Checksums 
A more advanced class of checksums was introduced by 

Fletcher’s work [Fletcher82]. A generic description is shown as 
Algorithm 2. 

In the Fletcher approach, a pair of running modular sums is 
used instead of a single sum. The first sum, which we denote 
SumA, is the same as a single-sum checksum, except sized at 
only k/2 bits (e.g., an 8-bit running modular sum for a 16-bit 
check value). 

The second sum in Fletcher’s algorithm, SumB, is another 
k/2 bit running sum that is updated not by summing block 
values, but rather by summing the old version of SumB with the 
new version of SumA for each block being processed. The check 
value result is the concatenation of SumA and SumB, each of 
which are k/2 bits in size, to create a single k-bit check value. 

As with Algorithm 1, for Algorithm 2 the modulus is M, with 
the same modulus being used for both sums. All blocks from the 
data word are processed in a running sum approach, with the pair 
of sums updated as each block is processed. 

The Fletcher dual-sum checksum algorithm uses a modulus 
of 2k-1 [Fletcher82]. The Adler dual-sum checksum uses a 
modulus of the largest prime integer less than 2k [Adler]. Large-
block checksums can benefit from using an empirically-
determined modulus, such as 253 for an 8-bit large-block dual-
sum algorithm and 65525 for a 16-bit large-block dual-sum 
algorithm [Koopman23]. 

Dual-sum checksums provide HD=3 up to the “rollover” 
length of the checksum. That rollover length is (((modulus-1)* 

blocksize)+1) based on the summation process. The longest 
known 16-bit dual sum checksum rollover point is ((239-1)*14) 
= 3332 bytes for a 14-byte block size and modulus 239 
[Koopman23]. That HD=3 capability comes at the cost of 
needing to perform a 128-bit integer division operation to 
generate a division remainder for each 14-byte block of data in 
the modular reduction process. 

C. Koopman Checksums 
This paper introduces the Koopman checksum algorithm 

shown as Algorithm 3. It is a single-sum modular checksum 
approach that adds a left-shift by k bits into the running sum 
process. Since k is typically 8, 16, or 32 bits in practice, this left 
shift is really just a byte alignment change, making the operation 
particularly cheap to perform on most computation hardware. 
(The algorithmic approach should work with any value of k, but 
k being a multiple of 8 is most likely to be useful in practice.) 

As with Algorithms 1 and 2, M is the modulus. All blocks 
from the data word are processed in a running sum approach. 
Since this is a single-sum approach, the value k determines the 
number of bits in the check value, and the modulus must be less 
than or equal to 2k. In practice, effective moduli choices are 253, 
65519, and 4294967291. 

This checksum provides HD=3 up to a significant length, 
longer than that provided by dual-sum checksum approaches. 
Specifics depend critically on the modulus selected, and will be 
discussed in a later section. 

D. Checksum Effectiveness Comparison 
The experimental framework and Pud calculation approach 

from [Koopman23] were used. Briefly, specific numbers of bit 
inversion faults were injected into randomized data word values. 
The fraction of undetected faults was determined for each m-bit 
fault (m=1, 2, 3, …) across a sweep of data word lengths 
spanning 1 to 5120 bytes. That data was used to create a 
weighted sum of undetected fault probability Pud for each data 
word length based on the probability of faults with different 
numbers of bit inversions and the data indicating fraction of 
undetected m-bit faults. 

As can be seen in figure 2, a 16-bit Koopman checksum is 
dramatically better (lower Pud) than either a single-sum 
checksum or a dual-sum checksum of the same size, detecting 
all 1-bit and 2-bit faults up to almost 4K byte data words. A 15-
bit Koopman checksum combined with a single parity bit 
provides fault detection capability on a par with a good cyclic 

Initialize SumAinitial = SumBinitial = InitialSeed 
 
Iterate across each block i in data word: 
 SumAnew = (SumAold + Blocki) mod M  
 SumBnew = (SumBold + SumAnew) mod M 
 
Check Value is: 
 SumAnew concatenated with SumBnew 

Algorithm 2: Dual-sum checksum. 

Initialize Suminitial = Blockfirst ⊕ InitialSeed 
 
Iterate across remaining blocks i in data word: 
           Sumnew = ((Sumold<<k) + Blocki)) mod M  
 
Check Value based on final sum: 
  CheckValue = ((Sumnew<<k) mod M) 

Algorithm 3: Koopman checksum. “<<k” is left shift by k bits. 
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redundancy check (CRC) [CRC2023] up to almost 2K bytes, 
detecting all 1-bit, 2-bit, and 3-bit faults up to that length. 

In figure 2, there is no substantial difference between a 
Fletcher dual-sum checksum with modulus=255 and an Adler 
dual-sum checksum with modulus=251 at the scale of this plot, 
so only Fletcher16 is shown. The “Simple HD=4” curve 
presented as a reference line is a hypothetical idealized 
checksum with perfect detection of all 1-bit, 2-bit, and 3-bit 
faults, and 1/2k fraction of undetected faults for all other 
numbers of bit faults. The Simple HD=2 and HD=3 lines are 
corresponding idealized curves for Hamming Distances of 2 and 
3, respectively. 

The following sections of this paper describe the mechanics 
and theory of operation of the Koopman checksum. They also 
compare and contrast it to our previous work on large-block 
checksums. The short version is that a Koopman checksum 
provides longer HD=3 capability to exploit the full potential of 
a large-block approach without requiring cumbersome 
extended-precision integer division operations. 

III. KOOPMAN CHECKSUM ALGORITHM ANALYSIS 
Decades of increased computer clock speeds and an ever-

widening gap between computation speed and memory access 
delay have fundamentally changed the tradeoffs relevant to 
computing a checksum value. In particular, the cost of a division 
operation has been dramatically reduced as a proportion of the 
time it takes to fetch data from memory, making division 
comparatively cheaper than it used to be. This is due to a 
combination of improved native hardware support for division 

and CPUs that can perform arithmetic faster than memory 
devices can return large amounts of data – cache memory 
hierarchies notwithstanding. Additionally, it is more common to 
see more capable CPUs used in embedded applications that 
provide efficient support for 32-bit or even 64-bit division 
operations. 

These trends argue that there is a place in the checksum 
speed/effectiveness tradeoff space for an algorithm that uses a 
division operation more aggressively than traditional modular 
checksum approaches, while being more streamlined than large-
block approaches recently discovered. The result is something 
that provides better bit mixing than addition-centric approaches, 
does not require using huge integer division operations, and yet 
avoids the full complexity of a Cyclic Redundancy Check 
(CRC) computation. Notably, the proposed algorithm makes use 
of hardware support for integer division operations to perform 
bit mixing rather than requiring software-only support for CRC-
based bit mixing. 

An explanation of the algorithm is presented in two parts: (1) 
using an offset to mitigate 2-bit fault vulnerabilities for large-
block checksums, and (2) an iterative approach to performing 
modular reduction operation on an unbounded length data word. 

A. Mitigating large-block 2-bit faults 
As shown in our previous work, large-block checksums can 

significantly improve the fraction of undetected faults, but are 
limited to HD=2 in practice unless combined with another 
technique such as a dual-sum approach [Koopman23]. 

 
Figure 2. Comparable 16-bit single-sum, dual-sum, Koopman checksum, and CRC fault detection capabilities. Lower is better. 
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Further exploration has revealed that the HD=2 behavior for 
large-block single-sum checksums was largely attributable to 
poor mixing of the lowest few bits of the block by the modulus. 
We illustrate this with a concrete example using an 8-bit 
modulus and a 32-bit block in Table 1. (“0x” denotes a 
hexadecimal value.) 

It is useful to consider the implications of Table 1 for a data 
word that is all zero, with the one set bit in the values in that 
table representing how a single bit flip injected fault affects the 
modular reduction result. (The principles apply more generally 
to other values in practice.) 

In Table 1, a one-bit fault in block positions larger than the 
modulus (bit positions 8 through 31) is mixed sufficiently well 
that no single-bit result is generated. This means that at least 
three bits will need to be flipped to create an undetectable fault 
if there is only one block in the data word: one bit flip in the data 

block and two corresponding bits in the check value. No two-bit 
fault can go undetected, again assuming there is only this one 
block in the data word. 

However, bits in the block that are in positions smaller than 
the modulus (bit positions 0 through 7) are not mixed at all, and 
go through the modular reduction unchanged. This creates a 
significant HD=2 vulnerability mechanism for single-sum 
checksums. 

While this pass-through behavior for low order bit positions 
is exactly as expected per the mathematical properties of 
modular reduction, it makes any operation of this type 
vulnerable to two-bit faults, albeit with reduced probability 
compared to a small-block approach. The vulnerability is 
reduced proportionally with larger block sizes, accounting for 
somewhat better fault detection effectiveness for larger block 
sizes seen in figure 2 for Add65525_b4 (single-sum addition 
with modulus of 65525 and block size of 4 bytes).  

A similar effect occurs for large-block dual-sum checksums, 
but is complemented by the HD=3 effectiveness of the dual-sum 
approach. For dual-sum checksums, the use of larger blocks 
extends the HD=3 distance as shown by the difference between 
the Fletcher checksum (modulus of 255, block size of 1 byte) 
and the Dual253_b4 checksum (modulus of 253, dual-sum, 
block size of 4 bytes). 

The more important observation is that we are actually 
getting HD=3 for all the bytes without needing a dual-sum 
approach – except that pesky low order byte. All the results for 
single-bit values in higher order bit positions result in two or 
more bits in the modular reduction result, ensuring HD=3 or 
better so long as the checksum operation only involves a single 
block. 

We can remove this HD=2 vulnerability by avoiding the use 
of the lowest eight bits of the block, and forcing them to zero 
regardless of the data word. This means that what was formerly 
a 4-byte block in the stated example now holds 3 bytes from the 
data word and a low byte value that has been forced to be zero. 
In other words, we are changing to a 3-byte block from the point 
of view of the checksum, while using a 4-byte modular addition 
computation. 

Making this concrete, for a byte-organized data word starting 
at byte i, a single step in the checksum calculation used to be for 
a 4-byte block: 

block = (dwi * 0x1000000) + (dwi+1 * 0x10000)  
    + (dwi+2 * 0x100) + (dwi+3 * 0x1) 
sum = (sum + block) % modulus 

In this notation dwi is the ith byte of the data word, with i 
incremented by the block size of 4 for each iteration through the 
summation kernel. 

To avoid the vulnerability to bit faults affecting the lowest 
byte, this changes to a 3-byte block calculation: 

block = (dwi * 0x1000000) + (dwi+1 * 0x10000)  
    + (dwi+2 * 0x100) 
sum = (sum + block) % modulus 

Block Value  Mod M  Result 
0x80000000  % 0xFD  0xA7 
0x40000000  % 0xFD  0xD2 
0x20000000  % 0xFD  0x69 
0x10000000  % 0xFD  0xB3 
0x08000000  % 0xFD  0xD8 
0x04000000  % 0xFD  0x6C 
0x02000000  % 0xFD  0x36 
0x00100000  % 0xFD  0x1B 
0x00800000  % 0xFD  0x8C 
0x00400000  % 0xFD  0x46 
0x00200000  % 0xFD  0x23 
0x00100000  % 0xFD  0x90 
0x00080000  % 0xFD  0x48 
0x00040000  % 0xFD  0x24 
0x00020000  % 0xFD  0x12 
0x00010000  % 0xFD  0x09 
0x00008000  % 0xFD  0x83 
0x00004000  % 0xFD  0xC0 
0x00002000  % 0xFD  0x60 
0x00001000  % 0xFD  0x30 
0x00000800  % 0xFD  0x18 
0x00000400  % 0xFD  0x0C 
0x00000200  % 0xFD  0x06 
0x00000100  % 0xFD  0x03 
0x00000080  % 0xFD  0x80 ** 
0x00000040  % 0xFD  0x40 ** 
0x00000020  % 0xFD  0x20 ** 
0x00000010  % 0xFD  0x10 ** 
0x00000008  % 0xFD  0x08 ** 
0x00000004  % 0xFD  0x04 ** 
0x00000002  % 0xFD  0x02 ** 
0x00000001  % 0xFD  0x01 ** 

Table 1. Example 4-byte block with one-bit values modulo 253. 
Block values with a single non-zero bits in the lowest byte are 

unchanged. Rows marked with “**” are unchanged by a 
modular reduction operation. 
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where the byte dwi+3 that used to be included in this block is now 
moved into the next block instead, and the bottom eight bits are 
left as a value of zero. The index is incremented by 3 for each 
block processed, resulting in an effective block size of 3. No 
bytes are skipped, but more iterations of the checksum are 
required to process all blocks. 

Making this change results in an HD=3 checksum algorithm 
up to the limit of the modulus’ capability to support large blocks. 
In the case of modulus 253, that limit is 13 bytes. To be sure, we 
are throwing away one byte of capability by not using one byte 
in the block, so this approach scales to 12-byte blocks from the 
data word, using a 13-byte modular addition operation having a 
zero value for the lowest byte. A modulus of 239 has the 
maximum rollover limit of a 13-byte block using a 14-byte 
block, but is further away from being able to use the full range 
of 8 bit check values. 

B. Unbounded length modulus computation 
While setting the lowest byte to zero in the checksum kernel 

is a nice idea, it doesn’t really help for longer data words that 
require multiple blocks. It is possible in general for two single-
bit faults, each in a different block, to induce multi-bit changes 
to the sum that end up canceling each other out when added 
within a checksum computation. 

To reap the full benefit of zeroing the bottom block byte we 
need to ensure that the checksum operation uses only a single 
block. The block size must be the same as the data word size, 
even for large data words. For 8-bit checksums this is less of an 
issue, since 13-byte blocks is the upper limit of HD=3 
performance, and that can fit in an admittedly large 128-bit 
integer. However, managing integers larger than that becomes 
inconvenient in most software environments, making this 
approach as it is not particularly useful for 16-bit or 32-bit check 
values that might guard the integrity of data words having 
thousands or millions of bytes of data. 

This issue can be resolved by restructuring the computation 
to be scalable to an unbounded data word sizes without needing 
software support for large-precision division operations. We do 
this by breaking the modular reduction operation down into an 
iterated process. 

Consider the example 32-bit integer value 0x12345600. This 
value has been chosen so that each 4-bit value and its position is 
distinctive without loss of generality. The bottom 8 bits have 
been set to zero in keeping with the strategy of avoiding pass-
through of single bit faults, so this represents three bytes of the 
data word in a block with value “123456” and a byte of zeros at 
the bottom to ensure HD=3 fault detection effectiveness when 
undergoing modular reduction. 

The progression below is simply a reorganization of the 
modular reduction operation to reduce it in size from a single 
32-bit division to a set of three 16-bit divisions, exploiting the 
modulus operation property that (A+B) mod M = ((A mod M) + 
(B mod M)) mod M.  Note that “0x” is omitted after the first line 
below for cleaner notation, but all values in the example are 
hexadecimal values. 

 
 

 
 0x12345600 mod 0xFD = 0xC8 
 
=  (   (12000000 mod FD) 
  + (00340000 mod FD) 
  + (00005600 mod FD) 
  + (00000000 mod FD)) mod FD 
 
=      ((12 * 1000000) mod FD 
         +  (34 * 10000) mod FD 
         +      (56 * 100) mod FD 
         +               (00) mod FD) mod FD 
 
=    ( (((12 * 100) * 100) * 100) mod FD 
   +            ((34 * 100) * 100) mod FD 
   +                        (56 * 100) mod FD 
       +                                  (00) mod FD) mod FD 
 
This can be rearranged to: 
= ((((((((12  
      * 100) + 34) mod FD) 
                 * 100) + 56) mod FD) 
                 * 100) + 00) mod FD 

Rewriting this into the style of source code, the computation 
becomes: 

 sum = 0x12; 
 sum = ((sum * 0x100) + 0x34) % 0xFD; 
 sum = ((sum * 0x100) + 0x56) % 0xFD; 
 sum = ((sum * 0x100) + 0x00) % 0xFD; 

This is a specific example of a computation expressed more 
generally as a 16-bit implementation that generates an 8-bit 
check value shown in Appendix A. The first and last line of code 
are performed only once, but the middle lines are iterated as 
many times as necessary to process all the block in the data 
word. The example is arranged so that the reader can easily see 
how the original block value of 0x12345600 has been distributed 
across the computation into a byte-by-byte modular addition 
operation.  

Given that multiplication by 0x100 is the same as an 8 bit 
left shift, from a software implementation point of view, this 
reformulation amounts to repeated applications of a shift left by 
8 bits and add in the next byte, sketched out below: 

 sum = 0x12; 
 sum = ((sum << 8) + 0x34) % 0xFD; 
 sum = ((sum << 8) + 0x56) % 0xFD; 
     sum = ((sum << 8)) % 0xFD; 

The last byte being processed is always zero to avoid 
vulnerability to a one-bit fault evading the modular reduction 
process, so the last step omits the addition of zero, underscoring 
that it is a clean-up step to wrap up the pipelined 
implementation. 

This example never requires more than 16 bits to hold an 
intermediate value (twice the check value size of 8 bits). 
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Moreover, the only division required is an unsigned 16-bit 
divided by 8 bit division resulting in an 8-bit remainder value. 

From a carry-out and overflow point of view, the modulo 
operation forces each sum to fit into an 8 bit range. That ensures 
there will be no overflow when the sum from a previous step is 
shifted left. Additionally, since each block is limited to 8 bits, 
there can be no overflow from the 16 bit value resulting from the 
addition, nor any carry-out from the low 8 bits into the high 8 
bits of the addition operation. 

The computational cost for generating a k-bit check value is 
one addition and one division operation per k-bit processed 
element of the data word. Both operations require a k*2 bit 
holding register for the sum. In some systems a 2*k bit dividend 
with a k bit divisor such as the one required can be computed 
more cheaply than a full 2*k-bit division.  

More generally, the processing block size can be 
independent of the check value size [Koopman24]. The left shift 
in each iteration needs to match the block size, but that need not 
match the check value size. For example, a 7-bit check value can 
be processed 8 bits at a time with an 8-bit shift in each iteration. 
The holding register size in this case must be k bits plus the size 
of one block so as to fit both the modulo result and the next block 
to be processed without overlapped bits. The main constraint is 
that at least k bits of zeros must be included at the end of the 
computation even if the block size is less than k. 

IV. FAULT DETECTION EFFECTIVENESS 

A. Rollover limit 
Any Koopman checksum has a rollover length that limits its 

HD=3 effectiveness. 

There are two mechanisms that affect the rollover length. 
The first is a pair of bit flips in the data word that just happen to 
“cancel” each other out, resulting in no change to the modulo 
result. The second mechanism is a single bit flip in the data word 
that just happens to result in a single bit changed in the check 
value, which might also be subject to a second bit flip, resulting 
in a corrupted check value matching the modulo result of the 
corrupted data word. Every modulus will eventually suffer one 
of these two issues with increasing data word length. The 
question is, which moduli to choose to provide the longest HD=3 
capability. 

 Note that this is a different rollover mechanism than the one 
present in dual-sum checksums, which is based overflows of 
accumulated values from being represented by the sumB value 
in that computation [Fletcher82]. 

Modulus evaluation was done by using a screening tool that 
tried all possible combinations of two-bit faults at all lengths up 
to the reported HD=3 length. For moduli of 16 bits and smaller, 
all possible moduli were screened. For larger moduli the highest 
several hundred moduli were screened, so it is possible that a 
better modulus exists, but the moduli reported are very likely to 
be among the best, and are possibly the best. 

B. Koopman8 checksum effectiveness 
Figure 3 shows the fault detection effectiveness of an 8-bit 

check value implementation. The best 8-bit modulus is 239, with 
a rollover length of 14 bytes. This provides HD=3 performance 
up to 13 byte data words. However, the modulus of 253 is also 
viable. It is slightly less appealing due to its rollover length of 
13 bytes. However, it has a benefit of more effective use of the 
check value by supporting a range of values {0..252} rather than 
the smaller range of {0..238}. We recommend 253 unless it is 

 
Figure 3. 8-bit checksum performance comparison including large-block algorithms. 
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crucial to have that one byte longer HD=3 data word length 
afforded by modulus 239. These moduli recommendations are 
the result of brute-force screening campaign of all moduli 128 
through 255. 

Data was not available for plotting an 8-bit Fletcher 
checksum due to the dual 4-bit sums not being compatible with 
our byte-oriented simulation tooling. However, a Fletcher 
checksum with a modulus of 15 would have a rollover length of 
fifteen 4-bit nybbles, providing 7 bytes of HD=3 capability. That 
means a Koopman8 checksum provides HD=3 performance for 
longer data word lengths than an 8-bit Fletcher checksum. 

Comparing the 8-bit Koopman checksum to a large-block 8-
bit single-sum checksum reveals that for long data word lengths 
the Pud is close to a very large block checksum – which makes 
sense. Both are achieving HD=2 for large data word lengths with 
the Koopman checksum effectively being the maximum 
possible block length, equal to the data word length. Thus, even 
at long data word lengths, a Koopman checksum provides the 
benefits of a large-block checksum without the need to perform 
large integer division operations. 

C. Koopman16 checksum effectiveness 
The 16-bit version of the Koopman checksum uses a 

modulus of 65519. This provides HD=3 up to data words of 
4092 bytes. At 4094 and higher data word lengths it provides 
HD=2. This modulus was selected as providing the longest 
HD=3 length based on an exhaustive search of all 16-bit moduli. 

Figure 4 shows simulation results for fault detection 
effectiveness. Koopman16 checksum performance is better than 
even the maximum-length large block dual sum checksum 
(modulus of 239, block size of 14), even though it only needs a 

16-bit division instead of the 128-bit division required in 
practice by the dual checksum algorithm. The much larger Pud 
gap between the Dual253_b4 and Koopman16 Pud curves is 
more of a fair comparison in terms of implementation, because 
both use 32-bit division operations. 

D. Koopman32 checksum effectiveness 
The recommended 32-bit modulus is 4294967291 (which is 

0xFFFFFFFB, and thus close to 2k). This has a maximum HD=3 
length of 134,217,720 bytes. 

While simulation resources do not permit comprehensive 
experimental confirmation of the 32-bit modulus, some limited 
experiments failed to find any undetected 2-bit faults, including 
50 million trials at a 1 MB data word length, and one million 
trials at the cancellation length. This suggests that the modulus 
is worth provisional use pending further investigation. 

 
Figure 4. 16-bit checksum performance comparison including large-block algorithms. 
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Figure 5. Comparison of Koopman8 and Koopman8P checksums. 

 
Figure 6. Comparison of Koopman15, Koopman16 and Koopman16P checksums. 
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V. CHECKSUM PLUS PARITY VARIANT 
A variant of the Koopman checksum concatenates a k-1 bit 

checksum with a parity bit to achieve an HD=4 k-bit check 
value, albeit at shorter lengths than an HD=3 checksum for a 
given check value size. 

The data word is still processed in k-bit blocks. The 
checksum kernel is doing in effect one very large modulo 
operation processed k bits at a time, so a smaller-than-k-bit 
modulus does not change this aspect of the algorithm. A k-1 bit 
modulus is used to leave one bit unused in the check value for a 
parity bit.  

Using the same selection criteria as for a k-bit modulus, good 
7, 15, and 31 bit moduli are as follows: 

• Modulus 125: Provides HD=4 up to 5 byte data 
word. 

• Modulus 32749: Provides HD=4 up to 2044 byte 
data word 

• Modulus 2147483629: Provides HD=4 up to 
134217720 bytes.  

The reason this works is that parity detects all odd number 
of bit faults. Using an HD=3 k-1 bit Koopman checksum 
modulus (e.g., 15-bits), produces a check value that fits into k-1 
bits. The remaining kth can then hold a parity bit, bumping the 
composite HD=3 up to HD=4 by having the parity bit catch all 
the three-bit faults missed by the Koopman checksum. 

Using k=16 bits as an example, the Koopman16P HD=4 
performance is only about half as long as Koopman16 checksum 
HD=3 performance, because a 15-bit modulus rolls over at about 
half the length of a 16-bit modulus, giving HD=2 above that 
rollover length. However, HD=4 gives dramatically better fault 
detection Pud for a BER-based fault model, so having an HD=4 
checksum can be useful for some applications that only need 
integrity checks for that somewhat shorter data word length. 

The implementation shown in Appendix A.c XORs the 
block bits together to compute parity of each bit position for 
speed, and defers boiling the result down to a single parity bit 
until the end. The final one-bit shift left of the sum value is to 
make room to place the parity bit in the bottom bit of the check 
value. (The placement of the parity bit might instead be at the 
top of the check value without changing fault detection 
effectiveness.) An important detail is that the final check value 
from the checksum calculation proper must be included in the 
parity computation to catch any bit flips that occur to the check 
value itself. This provides a complete HD=4 integrity check at 
appropriately-sized data word lengths. 

Figure 5 shows the comparative performance of Koopman8 
(8-bit) vs. Koopman8P (7-bit Koopman checksum with a parity 
bit placed in the 8th bit of the check value) checksums. Figure 6 
shows the comparative performance of Koopman16 and 
Koopman16P checksums. In both cases the Koopman+parity 
checksum achieves HD=4 for approximately half the HD=3 
length of the non-parity checksum with the same check value 
size. 

VI. CONCLUSIONS 
This paper makes the following contributions: 

1. A novel single-sum modular checksum approach with 
unbounded block size provides fault detection 
effectiveness of HD=3 for useful data word lengths. A 
key idea is inserting zeros in the bottom bits of the block 
before the modulo operation so that all non-zero bits are 
in bit positions higher than the modulus value. 

2. The HD=3 capabilities of Koopman checksums are 
longer than dual-sum checksums such as the Fletcher 
checksum, even when a large-block approach is used. 
This is accomplished while using smaller sized integers 
that are only twice the check value size. 

3. An efficient iterated algorithm computes a modulo 
operation up to an unbounded data word length. The 
computational kernel requires an iterated 2*k bit 
unsigned division producing a k-bit remainder for each 
k-bit block processed (typically k=8, 16, or 32). 

4. The following moduli are identified as good candidates 
for use with this checksum approach: 253, 65519, and 
4294967291 for Koopman8, Koopman16, and 
Koopman32 checksums, respectively. Modulus 239 is a 
useful alternative in special cases that require its HD=3 
capability of 13 bytes. 

5. A hybrid strategy, using a k-1 bit Koopman checksum 
and an additional parity bit, is identified that provides 
HD=4 fault detection effectiveness for approximately 
half the length of a comparable k-bit checksum HD=3 
fault detection capability. Good candidate moduli are: 
125, 32749 and 2147483629 for Koopman8P, 
Koopman16P, and Koopman32P checksums, 
respectively. 

It is important to remember that Cyclic Redundancy Checks 
(CRCs) can provide superior fault detection mechanisms to even 
these improved checksum approaches. Nonetheless, for 
situations in which CRCs are too complex or too slow, this new 
checksum approach can provide better fault detection 
effectiveness than previously known modular checksum 
approaches.  

A more extensive treatment of the Koopman Checksum 
algorithm can be found in Chapters 7, 8 and 11 of [Koopman24]. 
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Editorial notes: 
• This version of the paper recommends different 

moduli than some previous versions due to the 
availability of a more precise evaluation approach. 
The moduli recommended in previous versions 
remain effective as advertised. These new moduli 
are better. 

• The naming convention has been updated: 
Koopman16P refers to a 16-bit check value with a 
15-bit modulus plus one parity bit. 

• The use of a non-zero initial seed has been added 
to algorithm descriptions. 

 

https://doi.org/10.1109/TDSC.2007.70216
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APPENDIX A: EXAMPLE CODE 
The below C code fragments are intended to illustrate the 

key idea behind the use of Koopman checksums. They are 
written in a way to make the key ideas obvious. They are not 
intended as an illustration of portability or otherwise-desirable 
code structure. 

Variable typing is per <cstdint>, <stdint.h>, or a similar 
definition approach [C++]. The variable dwSize is assumed to 
be the number of relevant elements in an 8-bit data word array, 
although any size block can be processed so long as the 
intermediate sum variable is large enough to hold the next block 
plus the current modulo result without overlap. 

A. Koopman8 checksum 

uint8_t Koopman8(uint8_t dataWord[], 
  uint32_t dwSize, uint32_t modulus) 
{ 
  assert((modulus == 253) || (modulus == 239)); 
  assert(dwSize > 0); 
  assert(initialSeed <= 0xFF); 
 
  uint32_t sum = dataWord[0] ^ initialSeed; 
 
  for(uint32_t index = 1; index < dwSize; index++) 
  {  
    sum = ((sum<<8) | dataWord[index]) % modulus; 
  } 
 
  // Append implicit zero 
  sum = (sum<<8) % modulus; 
  return((uint8_t)sum); 
} 
 

B. Koopman16 checksum; 8-bit blocks 

uint16_t Koopman16(uint8_t dataWord[], 
  uint32_t dwSize, uint32_t modulus) 
{ 
  assert(modulus == 65519); 
  assert(dwSize > 0); 
  assert(initialSeed <= 0xFF); 
 
  uint32_t sum = initialSeed ^ dataWord[0]; 
 
  for(uint32_t index = 1; index < dwSize; index++) 
  {  
    sum = ((sum<<8) + dataWord[index]) % modulus; 
  } 
 
  // Append two bytes of implicit zeros 
  sum = (sum<<8) % modulus; 
  sum = (sum<<8) % modulus; 
  return((uint16_t)sum); 
} 
 

C. Koopman16P checksum 
This implementation assumes there is a function “Parity()” 

which returns a 1-bit parity value of the input. 

uint16_t Koopman16P(uint8_t dataWord[],  
  uint32_t dwSize, uint32_t modulus) 
{ 
  assert(modulus == 32749); 
  assert(dwSize > 0); 
  assert(initialSeed <= 0xFF); 
 
  uint32_t sum = initialSeed ^ dataWord[0]; 
  uint32_t psum = sum; // Initialize parity sum 
 
  for(uint32_t index = 1; index < dwSize; index++) 
  {  
    sum = ((sum<<8) + dataWord[index] ) % modulus; 
    psum ^= dataWord[index]; 
  } 
 
  // Append two bytes of implicit zeros 
  sum = (sum<<16) % modulus; 
 
  // Pack sum with parity 
  sum = (sum<<1) | Parity((uint8_t)psum); 
 
  // Append parity as bottom bit of check value 
  return((uint16_t)sum); 
} 
 

D. Koopman32 checksum 

 
uint32_t Koopman32(uint8_t dataWord[], 
  uint32_t dwSize, uint32_t modulus) 
{ 
  assert(dwSize > 1); 
  assert(modulus == 4294967291); 
  assert(initialSeed <= 0xFF); 
 
  uint64_t sum = initialSeed ^ dataWord[0]; 
 
  for(uint32_t index = 1; index < dwSize; index++) 
  { 
    sum = ((sum<<8) + dataWord[index]) % modulus; 
  } 
 
  // Append four bytes of implicit zeros 
  sum = (sum<<32) % modulus; 
  return((uint32_t)sum); 
} 
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E. Koopman32P checksum 
This implementation assumes there is a function “Parity()” 

which returns a 1-bit parity value of the input. 

uint32_t Koopman32P(uint8_t dataWord[], 
   uint32_t dwSize, uint32_t modulus) 
{ 
  assert(dwSize > 1); 
  assert(modulus == 0x7FFFFFED); 
 
  uint64_t sum = initialSeed ^ dataWord[0]; 
  uint32_t psum = (uint32_t)sum; // Initialize parity sum 
 
  for(uint32_t index = 1; index < dwSize; index++) 
  { 
    sum = ((sum<<8) + (uint64_t)dataWord[index] )  
    % modulus; 
    psum ^= dataWord[index]; 
  } 
 
  // Append four bytes of implicit zeros 
  sum = (sum<<32) % modulus; 
 
  // Pack sum with parity 
  sum = (sum<<1) | Parity((uint8_t)psum); 
 
  // Append parity as bottom bit of check value 
  return((uint32_t)sum); 
} 
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