P.J. Koopman
ECE Department

THE IMPACT OF RENT’S RULE ON MASSIVE PARALLELISM

D. P. Siewiorek
CS Department

Carnegie Mellon University

Pittsburgh, PA

ABSTRACT: Rent’s Rule is an empirical relationship stating
that the number of pins on a chip increases as the number of
. gates on the chip increases. In massively parallel systems,
every extra pin is multiplied by the number of processors.
- This causes a rapid increase in system complexity, cost, and
failure rate. The key to more efficient massively parallel sys-
: tems is finding a way around Rent’s Rule. By studying the
effects of re-implementing a system of fixed complexity using
 different integration levels, we have found that Rent’s rule
~ does not apply to systems which place program memory on
the same chip as the processor. This suggests that a focus for
massively parallel systems might be to use processing ele-
ments simple enough to completely fit on a single chip, rather
than faster but more complex processors that use external
memory devices.

Keywords: Rent’s Rule, integration level, system complexity.

INTRODUCTION

Rent’s Rule (Ref. 1) is an empirical relationship between the
number of gates and the number of I/O pins a single chip.
The relationship is given by:
10 = AS * GR

In this equation, 10 is the number of input/output pins on the
chip. AS is the complexity of a single logic gate on the chip
as measured by the number of inputs for the gate. G is the
number of logic gates on the chip. R is the Rent Exponent,
which is a circuit-dependent "magic" number between 0 and
1, which is often near 0.5.

The trend in VLSI processor design has been: given the
availability of more silicon real estate, put more sophisti-
cated functions or wider data paths into a single chip. Thus,
memory chips have progressed from 256K bits to 1M bits to
4M bits. Also, microprocessors have evolved from 8 bits
wide to 16 bits to 32 bits. These chips all obey the Rent’s
Rule prediction of a logarithmic increase in the number of

CH2649-2/89/0000/0059$01 .00 © 1988 |EEE

59

pins as the number of gates on the chip increases. This in-
crease in the number of pins has important implications for
the builders of massively parallel systems.

THE COST OF TOO MANY PINS

Since the innovation of standardized integrated circuits we
have progressed from the introduction of the 14-pin dual in-
line package (DIP) to common use of pin grid array packages
(PGAs) with hundreds of pins. The addition of extra pins to
a chip has some obvious as well as hidden costs.

The most obvious cost is the manufacturing cost of the chip
package itself. Small DIPs are very inexpensive to manufac-
ture since they use stamped metal pins. As chips require
more pins, DIPs become impractical, and packages such as
leadless chip carriers (LCCs) are used. Each contact on an
LCC costs more than a DIP pin, because it must be more
precisely manufactured and placed around four sides of the
package. At the high end of the spectrum, PGAs use
precision-machined round pins that are precisely placed in a
matrix on the back of the chip. It is not unusual for each pin
of a PGA to be several times more expensive than an entire
DIP package. Thus, there is a very steeply increasing cost
curve for the entire chip as the number of pins is increased.

The direct cost of the chip package only begins to describe
the costs of adding pins, however. At the on-chip level, every
pin must have an on-chip pad. This pad consumes valuable
silicon real estate. But, more importantly, each pad con-
sumes power. As geometries become smaller, the amount of
power used by a chip to drive its output pins can dwarf power
consumption for on-chip logic. The problem is especiaily
severe with CMOS technology, which is coming into favor for
high density circuits.

At the system level, the footprint of the package on the
printed circuit board increases as the number of pins on the
package increases, costing valuable printed circuit board real
estate. Increased printed circuit board sizes result in bigger
cabinets and, ultimately, more boards with expensive and

slow interconnect structures. Dense pin arrangements such
as those found on PGAs further aggravate the problem by re-
quiring expensive multi-layer boards.

Many indirect costs are associated with chips that have large
pin counts. These costs include the use of very expensive
automated chip testers when they are manufactured. Also,
every extra pin in a finished computer reduces the over-all
systemreliability, since interconnect failure is a frequent sys-
tem failure mode. (Ref. 2)

In a parallel computer, these pin costs are multiplied by the
amount of parallelism in the design. Since the premise be-
hind a massively parallel system is that more processors are
better, all massively parallel designs will ultimately be
limited in processing power by the number of processors that
can be afforded within a given space/power/cost budget. The
number of pins in each processing element within the system
can therefore directly affect the ultimate computational
power of a massively parallel processor.

BREAKING THE RULE

One should not infer from the previous discussion that the
use of VLSI chips with large pinouts is bad. These chips,
while expensive, are less expensive than the total system cost
of using a large number of less complex chips instead. The
question is: can we do better?

Rent’s Rule predicts that increased VLSI chip complexity
will lead to an inexorable increase in pin count. A key to
making massively parallel systems faster and more cost-ef-
fective is to find a way to break out of Rent’s empirical
relationship. One way to accomplish this goal is to find an
implicit assumption in the relationship that can be altered.

There is an historic relationship between chip complexity
and overall system complexity. As chips have become more
dense, computer systems have not only become more highly
integrated, but have also become more complex. Adding
more complexity to a system makes sense in a uniprocessor
environment, where the added complexity squeezes the most
possible performance from the machine. Rent’s Rule ap-
plies to computer systems as they have been built over the
years, so it accounts for this implicit assumption. But what if
we violate that assumption, and hold system complexity as a
constant?

The answer to this question may be found by conducting an
experiment that holds system complexity as a constant for
varying integration levels. In order to do this, we built a
hierarchical description of a 16-bit microprocessor system
(Ref. 3) starting at the gate level. All circuit functions were
ultimately reduced to combinations of 2-input NAND gates
for simplicity. Then, we did a redesign of the system using
six different integration levels ranging from SSI (all 2-input

60

NAND gates) to high density VLSI (entire system on a single
chip). Each integration level was chosen to correspond to a
reasonable method for partitioning the system components,
Figure 1 shows a graph of chip complexity versus pin count
for the various implementations, as well as the curve for a
Rent exponent of 0.38. There are more than six data points
in this graph, since most implementations had several chips
in the design. RAM chips are not shown as they obey a Rent
curve with a different slope that clutters the diagram. Power
supply pins are not accounted for since they vary with im-
plementation technology.

Integration Levels 1 and 2, which correspond to SSI and MSY
components, obey a classic Rent’s Rule curve with an ex-
ponent value of approximately 0.38. Integration Level 4,
which corresponds to a 3-chip system, also falls neatly on this
curve. Integration Level S, which corresponds to a standard
micro-processor 2-chip system (processor chip and memory
chip) is somewhat off the curve, but is still a reasonable fit.
Integration Level 3 turned out to be an awkward level of in-
tegration, which forced a very poor partitioning of the sys-
tem, resulting in a very high pin count for one of the chips.

The really interesting point on the graph is Integration Level
6. This design is nowhere near the curve! Integration Level
6 corresponds to a single-chip system, which incorporates
program memory and the processing logic on the same chip.
This implementation appears to break Rent’s Rule.

INTERPRETING THE RESULTS

Figure 2 shows a curve that helps us interpret the results of
the experiment. If we ignore Integration Level 3 as a "bad
data point", then what is really happening is that the designs
obey Rent’s rule quite well through Integration Level 4.
Then, as we reach very high levels of system integration, the
number of pins on the chips begins to decrease. If the entire
system is on a single chip, only a few pins for system /O are
needed. While the microprocessor seems to be near the
break in the curve, the break is not really noticeable until the
system-on-a-chip approach is taken.

The results, once one thinks about the situation, are rather
straightforward. A system-on-a-chip needs off-chip inter-
connection only for I/O, so it needs very few pins. Why hasn’t
this concept been exploited then? The reason is that it is of
limited use in the uniprocessor world. Most high-perfor-
mance uniprocessors are too complex to allow enough room
for on-chip memory.

The situation in a massively parallel processor environment
is quite different than in a uniprocessor environment. Since
massive parallelism is cost effective only in applications
which can achieve roughly linear speed improvements as
processors are added, N processors that perform at 1/Nth the

speed of a given uniproce§sor are roughly equal in process-
ing power to that same uniprocessor.

The approach that is supported by these findings is one of
building relatively simple processor/memory systems that
can fit on a single chip. Since these chips will be much less
cxpensive to manufacture and use in a system, more proces-
<ors can be included in a system.

There are several methods of implementing this strategy.
One method is to simplify a given processor implementation
as much as possible, probably sacrificing speed-enhancing
nardware features for overall system size. With current tech-
nology (1 to 2 micron CMOS), this approach can lead to
simple 16-bit processing elements with small program
memories. Of course, appropriate software techniques to
keep code size small are vitally important. This approach is
probably the most attractive for MIMD machines.

Another possible method is to reduce the word-size of each
processing element. The ultimate extension of this
philosophyis bit-serial machines which can, in fact, have mul-
tiple processing/memory elements per chip. This approach
is obviously well-suited to SIMD machines.

CONCLUSIONS

In the near term, the challenge to achieving the maximum
level of processing element integration is to find design styles
and programming methodologies that can fit enough
functionality onto available chip real estate to go beyond the

61

Rent’s Rule breaking point. Current architectures which
may be able to do this include: bit-serial processors, which
can pack several processors with memory onto a single chip;
8-bit microcontrollers, which are probably not powerful
enough to be of interest in their currently available form; and
stack-oriented processors, with their small program memory
size requirements. In the future, chip sizes may increase
enough to allow RISC processors to have a full-sized on-chip
cache and slow serial interfaces to their program memories.
CISC processors may eventually reach this point as well, but
only if they are frozen at a particular complexity level.

Some parallel processor architectures, especially SIMD ar-
chitectures, are clearly already embracing the philosophy of
simple computational elements that can fit on a single chip.
What we have explored are some of the theoretical under-
pinnings of this approach, and why it makes sense for mas-
sively parallel architectures.

REFERENCES

1. Landman, B.S. and Russo, R.L., "On a Pin Versus Block
Relationship For Partitions of Logic Graphs," IEEE Trans-
actions on Computers, December 1971, C20(12), pp. 1469-
1479

2. Siewiorek, D.P. and Swarz, R.S., The Theory and Practice
of Reliable System Design, Digital Press, Bedford MA, 1982

3. Koopman, P.J., CPU/16 Technical Reference Manual,
WISC Technologies, La Honda CA, 1986.

-0 -~o0oD03CcZ

no~00

-0 -~oU3cZ

0o~ 0

100600~
6
10000+
1000--
2 LEGEND:
2, 1 = SSi
100 22 2 = MS!
3 = LS!
4 = 3-chip system
2 5 = microprocessor
6 = 1-chip system
10-+
! i L | | |
. T T T T T
0 20 40 60 80 100 120

100000~

10000

1000+

100

10-

Number of Pins

Figure 1. Experimental data shown with a Rent curve (R=0.38)

LEGEND:

= §8!

= MSI

= LS|

3-chip system
= MICroprocessor
= 1-chip system

oOUhwWN =
i

Number of Pins
Figure 2. A different curve that better fits the data

62

Proceedings

The 2nd Symposium on the

Frontiers of Massively Parallel

Computation

October 10—12, 1988
George Mason University
Fairfax, Virginia

IEEE Computer Society Order Number 892
Library of Congress Number 88-82088
|EEE Catalog Number 88CH2649-2

ISBN 0-8186-0892-7

SAN 264-620X

@ |{EEE COMPUTER SOCIETY THE INSTITUTE OF E

LECTRICAL
> AND ELECTRONICS ENGINEERS, INC.
1EEE

COMPUTER
SOCIETY ¢ {EEE-NATIONAL CAPITAL AREA COUNCIL
PRESS .

George Mason Unlversny Natonal Aeronautics and

Space Administration

