SIGForth ’90

Embedded Control as a Path to Forth Acceptance

PHILIP KOOPMAN JR., PhD.
Harris Semiconductor, 25254 Wexford Run Rd., Wexford, PA 15090
(Internet) koopman@greyhound.ece.crmu.edu

ABSTRACT:

This paper presents a strategy for promoting Forth acceptance based on a narrow focus of concentration on a
larget application area. The proposed goal is to make Forth the language of choice for embedded real time control
systems, and thus establish a foothold in the general computing community.

INTRODUCTION + Abelief that Forth is a fundamentally better tool

...l . to solve problems. Many of us believe that Forth is
The opinionsiin this article are those of the afundamentally better way to solve problems. There
author, and do not necessarily reflect the are advantages to the interactive, incremental
views of Harris Semiconductor. compilation environment used by most Forths.

piscussions on the USENET Forth bulletin M2 of us would simply like 0 sec Forth in more
board and other arenas often concentrate on the widespread usage because we believe it is better.

theme of improving the acceptance of Forth - Using Forth at the workplace. Many of us write
amang those not currently using it. I propose a programs in Forth as a hobby or for minor projects,
strategy to accomplish this, which involves yetare unable to use Forth in our regular jobs. Others
striving to make Forth the language of choice for can use Forth for production programming, but only
embedded real time control. This essay is underunusual circumstances, usually involving tight
meant to stir up discussion in the community deadlines or naive supervisors. One serious obstacle
with where we are really going, and focus to using Forth is the lack of trained Forth
attention on why Forth should become more programmers to maintain code. If Forth were a more
popular, and how this may be done. It is socially acceptable language, such obstacles would
intended as a starting point in a continuing be reduced and we could all use our favorite
discussion, not as a final word on the subject. programming language for work as well as play.

- Language support and development. If Forth

WHY WORRY ABOUT FORTH POPULARITY? were to come into wider use, greater support would
. . be available for it. The Forth market is small, so

Why are any °.f us worried abou.t th‘? popularity commercial Forth vendors can only afford to put
(or unpopularity) of programming in Forth? | relatively little effort into development and
would categorize the reasons for desiring that maintenance (compared to the resources used to
Forth become popular as follows: support something like an Ada compiler). Even

— - - — though Forth environments traditionally need much
P""'""""I " '?lmm"‘;"‘ o i‘:“’;: 3f this by s less support and maintenance than environments for
direct commercial advantage, the ACM copyright notice and the other languages, the involvement of an order of
title of the publication and its date appear, and notice is given magnitude more active Forth programmers would
that cops .‘ el of the o for Computing surely make available better tools, utilities, and

and/or specific permission. environments.
©1991 ACM 0-89791-462-7/90/0200-0023 $1.50

-23.

SIGForth '90

. Ego. Many ardent Forth advocates want (o
eventually receive praise for their wisdom and
foresight in choosing Forth as their favorite
programming language. Forth programmers tend to
be the best programmers (just ask them!).

But, how compelling are these reasons? Are
they sufficient to justify spending time and
effort winning wider acceptance for the
language? Before we begin the attack we should
satisfy ourselves that Forth is worth fighting
for. Gut feel and emotion are not enough for
this; we must understand why we want Forth to
succeed before we commit ourselves to the goal
of having it succeed.

THE IMPORTANCE OF BEING A LANGUAGE
OF CHOICE

Forth is not a major force in the programming
language scene. It is not taught in most schools.
It is poorly represented in or absent from the
computer section of bookstores. It is seldom
presented at computer science and computer
engineering conferences. It is not openly used
most companies. It is not used by a
significant number of programmers in most
disciplines. Yet, this lack of use is certainly not
because of a lack of inexpensive software, nor
any other simple reason.

-

There is a long litany of reasons why Forth isn’t
used by more people. I won’t indulge in an
enumeration of why Forth is not popular now,
since the list is well known. Most of the
problems boil down to a lack of
professional-quality software development
tools, lack of appreciation for the strengths and
weaknesses of the language for different
application areas, and the fact that it isn’t
already popular. (Most managers have a
well-founded fear of using novel technology to
solve problems that can be solved using familiar
tools.)

One of the strengths of Forth is that it can be
used in many applications. Since it is flexible
and extensible, the language itself can be
modified to incorporate many requirements.
One of the schools of thought to gain greater

acceptance for Forth is to extend the language
so that it comes ready-made to solve any
problem. Then, potential users will see the
power of the language revealed, and will use it
for all their programming needs.

This approach of developing “fat” Forth systems
will not gain acceptance to Forth. Don’t get me
wrong — this is not to say that such Forth
systems are bad or useless, but rather to say
that they are not the means to the end of Forth
acceptance. The primary problem is not one of
whether or not particular Forth standards or
systems are “fat” or “thin”. It is not what
standard a Forth conforms to. It is not any
technical reason at all.

The problem is one of marketing.

Ask almost any programmer what language is
the best to use for numerical applications. The
answer is FORTRAN. The best programming
language for UNIX-based applicationsis C. The
best programming language for exploring
language implementation techniques and
artificial intelligence is LISP. The best
programming language for business programs
on IBM mainframes is COBOL. The best
programming language for a neophyte with a
personal computer is BASIC (or, perhaps,
LOGO for youngsters). Outside the Forth
community, these statements will generally
receive little argument.

Why can we say something like FORTRAN is
the “best” language for numerical applications
and find almost universal agreement? Because
FORTRAN is the language of choice for those
numerical applications. It is not necessarily the
provably best language. It is the one that most
people use. This means that there are libraries,
development environments, programmers, and
massive amounts of installed code which all
presuppose the use of FORTRAN for certain
classes of scientific and engineering
applications.

Why not make Forth the language of choice for
embedded real time control applications? This
would create an installed base of applications

-24 -

and programmers. It would also give an air of
acceptability to Forth not only for embedded
systems, but for other application areas as well.

The key is to market Forth as the best solution
available to a restricted set of applications, and
not as just a good solution to everyone’s
problems. No one will believe that one language
can doit all. But, the idea of a flexible language
which is well adapted to a single class of
applications has considerable appeal. This is
not to say that Forth shouldn’t continue to
evolve to support non-embedded applications,
but rather that such evolution should not
compromise Forth’s abilities in its major area of

strength.

EMBEDDED CONTROL AS A TARGET
APPLICATION AREA

There i8 a vacuum in the embedded control
marketplace. Until recently, almost all
programming in the small embedded control
systems (eg. 8051 and other 8bit
microcontroller systems) was done in assembly
language. Now, with the advent of more
powerful 16- and 32-bit controller chips, that is
changing. More and more programmers are
using or evaluating high level languages to ease
the burden of software development.

Embedded control systems are the ideal
application area for which to make Forth the
language of choice. Their tightly constrained
environments with demanding response
requirements are ideally suited to the
capabilities of classical Forth systems.

Forth has always had a strong foothold in
embedded systems. But, it has never been used
by a majority. Because there is a vacuum and
no consensus, a wide variety of programming
languages are being pressed into service. The
dominant language is C. This is not because C
is inherently better for this application (or even,
for that matter, very good at all). It is because
that is the language most programmers are
familiar with, having been trained in its use by
universities and workstation-based
programming projects.

SIGForth "90

If events are left to progress by themselves, C
will become the language of choice for embedded
control. Most of the user community will be
happy with this, since C will be usable for many
applications. Managers will be happy, since C
has a lower risk and lower perceived cost than
Forth. It always seems easier to pay the
deferred, intangible costs for suboptimal
programming environments than the
immediate and concrete costs of programmer
training to switch to a new language.

Large vendors of embedded control products
and systems are not likely to change all this.
They see the trend to using C, and will fall in
line with the results of the market surveys and
polls. Even makers of so-called “Forth chips”,
which includes but is certainly not limited to
Harris, will probably support Forth just as an
alternative language. Successful companies
will have to spend most of their time and money
supporting C to please their large number of
C-based customers. C may well become the
most used language by popular demand, even if
it makes suboptimal use of the hardware.

A CHALLENGE

The reality of the situation is that the spark for
making Forth the de facto standard language
for embedded control will have to come from
within the Forth community itself. Vendors
and customers, if convinced of a trend towards

 Forth, will probably jump onto the bandwagon.

But, someone has to build the bandwagon, fuel
it, and pilot it. The members of the Forth
interest groups are probably the only ones who
can do this.

What is needed is a concerted marketing effort
to promote Forth as the language of choice for
embedded control, and in particular real time
control. This effort must incorporate articles in
major periodicals (especially application-based
articles), educational campaigns, and
participation in mainstream events. For the
purposes of Forth acceptance, one paper in a
general computer application conference is
worth two dozen at SIGForth, Rochester or

SIGForth ’90

Asilomar. One article in Byte, IEEE Computer
or EDN is worth an issue or two of Forth
Dimensions. One application written in Forth
in a company previously using C is worth a staff
full of FIG members at a Silicon Valley company
(or a staff full of SIGForth members at a Texas
company). The point is to increase visibility,
and make Forth look respectable to the outside
world.

If we spend time and resources trying to
convince programmers in the UNIX world that
they should be using Forth to write their
window programs, Or programmers oOn
supercomputers that they should adapt
LINPACK to run in a Forth environment, or
developing do-it-all Forth systems in hopes that
outsiders will be impressed based on technical
merit alone, we are wasting our time. And, we
have little time to waste. The window of
opportunity for embedded systems is closing
fast, driven by the optimizing C compilers and
fancy development environments of the 32-bit
RISC processors. As this window closes, not
only will we lose our chance to make Forth the
language of choice, but we may well lose the

ability to sell Forth to most customers for these
tasks at all. So, we need to act now, or resign
ourselves to using a language that will forever
be associated with APL and SNOBOL: neat
ideas that never really caught on, but seem to
never quite die either.

None of this is meant to say that steps in this
direction have not been taken in the past, nor to
say that many of the facets of a successful Forth
promotion are not already in place. However,
the Forth community is internally fractured (or
perhaps it was never unified). What is needed
is a unity of purpose: a common vision. What
we need is a champion to make it happen. We
have not one but two special interest groups
now: FIG and SIGForth. We also have a more
academically oriented organization in the
Institute for Forth Applications and Research.
Among these three organizations, we should be
able to come up with a structure and method to
seriously market Forth for the next year or two.
If we don’t, we had better brush up on our C and
FORTRAN to feed our families in the coming
years.

- 926 -

