Homan-Centered Computing

Work-arounds, Make-worlk,

Philip Koopman, Carnegie Mellon University
Robert R. Hoffman, Institute for Human and Machine Cognition

P aradigms are often defined partly in terms of what
they are not, or in terms of what they are reacting
against. The paradigm of human-centered computing is no

exception. In response to an essay in the Jan./Feb. 2002

Human-Centered Computing column “The State of Cog-
nitive Systems Engineering,”! we had a lengthy discussion
on the question, What is a user-hostile system? The fol-

lowing quote is from that essay:

The road to user-hostile systems is paved with user-centered
intentions on the part of the designers. Even smart, clever,
well-intentioned people can build devices that are fragile and
hostile, devices that force the human to adapt and build local
kludges and work-arounds. Worse still, even if one is aware of
this trap, one will still fall into it.

We decided that the terms kludge and work-around,
and also the related concept of make-work, have yet to be
clearly defined for the intelligent systems community.
Human-centered systems are different from user-hostile
systems as well as from systems based on a designer-
centered approach.? In this essay, we try to clarify the
senses of these three terms and suggest ways we might
study work-arounds, make-work, and kludges as an inte-
gral part of human-computer systems—rather than as
embarrassing necessities that are best swept under the
computing research rug.

Editors: Robert R. Hoffman, Patrick J. Hayes, and Kenneth M. Ford
Institute for Human and Machine Cognition, University of West Florida
rhoffman@ai.uwf.edu

Work-around

We all have had to create and use a work-around at some
point to get a user-hostile computer to do our bidding. Doc-
umented evidence attests to the pervasiveness of work-
arounds.® Sometimes the work-around is inspired by a
friend’s hint; sometimes it’s spelled out in a help page on
the Web; sometimes it’s discovered by flailing around until
something just happens to work, more or less. Although
work-arounds might seem inherently ad hoc, in many situa-
tions they make the difference between success and failure.

The Concise Oxford Dictionary definition of work-
around is “a method for overcoming a problem or limi-
tation in a program or system.” (Neither the Oxford Un-
abridged Dictionary nor the Oxford Dictionary of
Computing lists “work-around,” but, ironically, the Con-
cise Oxford Dictionary does. Go figure.) This definition
doesn’t go far enough to pin down the concept so that it
might be more amenable for study. Does the “problem”
being overcome mean a design defect or something as sim-
ple as a component failure due to wear-out? Does “limita-
tion” mean an unimplemented (but clearly imaginable and
clearly useful) feature, an intentionally precluded action,
or an inability to use the tool to cope with an unanticipated
operating environment? And is the work-around method
written down, foreseen by designers, or made up on the
fly?

Wikipedia, a Web-based encyclopedia (www.wikipedia.
org), defines work-around as

A bypass of a recognized problem in a system. A workaround
is typically a temporary fix that implies that a genuine solution
to the problem is needed. Frequently workarounds are as cre-
ative as true solutions, involving out-of-the-box thinking in
their creation. A workaround is not a permanent solution. Typi-
cally they are considered brittle in that they will not respond
well to further pressure from a system beyond the original
design. In implementing a workaround it is important to flag
the change so as to later implement a proper solution. Placing
pressure on a workaround may result in later failures in the
system. For example, in computer programming workarounds
are often used to address a problem in a library, such as an
incorrect return value. When the library is changed, the
workaround may break the overall program functionality,
since it may expect the older, wrong behavior from the library.

70

1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Whatis.com, a Web-based glossary (http://
whatis.techtarget.com), defines work-
around as

A method, sometimes used temporarily, for
achieving a task or goal when the usual or
planned method isn’t working. In information
technology, a work-around is often used to
overcome hardware, programming, or com-
munication problems. Once a problem is
fixed, a work-around is usually abandoned.

This last statement seems to point to an empir-
ical base that, as far as we know, doesn’t exist.
Be that as it may, all three definitions seem
to capture the usual intuitive notion and are
all right as far as they go. However, they sug-
gest trying to unpack the different senses of
work-around might be useful.

Les Gasser defined three alternative senses
of what he termed adaptations: fitting, aug-
menting, and working around.* Fitting jobs
and work schedules to accommodate com-
puting-resource limits is an adaptation you
can make to avoid a computing-system fail-
ure due to overload. Augmenting involves
removing anomalies from the computing
environment to avoid triggering problems,
such as scrubbing data and training users to
avoid making certain types of mistakes.
Working around involves users altering input
data or procedures to compensate for system
shortcomings, or using backup systems.

When a work-around is not readily avail-
able, people might even change their goal to
something that they know the system can do.
For example, if sending a file as an email
attachment doesn’t work, a potential work-
around is putting it on an FTP or Web server
and just sending a pointer to the intended
recipient. However, we look at this solution
simply as a work-around taking place at the
next level up from a person’s interaction with
a computer. Gasser reported the common
practice of using informal processes based
on personal relationships to expedite organi-
zational processes, with computer-based
workflow activity backfilled after the actual
task has been performed. Gasser gives the
example of a purchasing manager handwrit-
ing a requisition to avoid delay and then hav-
ing the requisition entered into a computer
after the fact for tracking purposes.

We define the general sense of work-
around as follows:

When a path to a goal is blocked, people use
their knowledge to create and execute an
alternate path to that goal.

A block can occur when you don’t know
whether a path to your goal even exists
(that is, you’re working on a system with
invisible and therefore unknown function-
alities). A block can also occur when a
known path is confusing, laborious, bro-
ken, or otherwise hostile. In this case, you
might create a new path that you perceive
as either more user friendly (for example,
intuitive or transparent) or simpler and
hence better able to expedite the work. In
both cases, the method you create might or
might not actually be simpler than that
included in the existing functionality.

We propose grouping four alternative
senses of work-around, hinging on the
nature of the block:

A block can occur when you don't
know whether a path to your goal
even exists. A block can also

occur when a knotwn path is
conflsing, laborious, broken, or
othertwise hosfile.

* Completing tasks despite design flaws in
a computational tool

* Completing tasks despite component
failures

* Extending functionality to complete a
new task

 Intentionally evading designed limits in
an effort to overcome them

This set is based on the notion of a system
problem or limitation as expressed in the
dictionary definitions given earlier and on
Gasser’s emphasis on the intent of the per-
son exercising the work-around. Of course,
you can use the mechanisms for executing
a work-around for more than one of these
purposes, and we’ll discuss them as we go.

(We’ve heard of a fifth meaning of “work-
around,” as a personality trait. Trainers might
attribute this to their students, asserting that
some individuals seem prone to ignore what
they’re told. We don’t take seriously the idea
that “working-around” is a personality trait,
on par with, say, sociability.)

Sense 1: Completing tasks despite
design flaws

Work-around (1): A procedural change in
computer system use intended to compen-
sate for a design flaw, typically a software
behavior that is perceived to be a flaw.

Perhaps the most common experience of
a work-around with computers is getting
buggy programs to work well enough to
accomplish a task or achieve a goal. Soft-
ware companies often issue work-arounds to
help users cope with bugs. While you can
argue that almost any nontrivial software
will have defects, desktop office automation
software gets a lot of press for being plagued
with bugs. An example that came up on a
simple Web search was Microsoft Security
Bulletin MS02-027, which states in part,
“Customers using IE should implement the
work-around detailed in the FAQ.”® This
particular work-around is a set of steps the
user performs to reconfigure Internet
Explorer.

Some definitions (for example, in Whatis.
com) state that a work-around is a temporary
compensation until a defect can be corrected.
This is the meaning we also find in Eric Ray-
mond’s Jargon File.® MS02-027 is an exam-
ple. It involves disabling Gopher service until
a patch is released that eliminates a buffer
overrun security vulnerability. Also, some
work-arounds are only partial solutions. For
example, MS02-027 actually disables a ser-
vice and leaves users on their own if they
must use Gopher for something, but it does
improve the security of using IE for other
tasks.

Sometimes work-arounds are put in
place not because the software itself is
defective or is perceived to be defective but
because the software requirements or oper-
ating environment are inadequate. The
designer’s path through a system might be
so confusing, laborious, or otherwise hos-
tile that people create their own paths.
These paths might or might not be “right,”
but are at least perceived to be friendlier
(for example, intuitive or transparent), sim-
pler, or less time-consuming.

Generally you can think of a work-
around in Sense 1 as a situation in which a
user tries to follow a set of well-defined
steps to accomplish a particular goal, but
something goes wrong that blocks the user
from accomplishing those steps. For exam-
ple, the user might encounter some mind-

NOVEMBER/DECEMBER 2003

www.computer.org/intelligent

71

boggling complexity in the steps’ descrip-
tion or a software design flaw that prevents
completing those steps in a particular set of
circumstances. For instance, Stephan Poel-
mans describes work-arounds as deviations
from a defined workflow system, whether
to overcome problems or to improve user
experience.’

Sense 2: Completing tasks
despite component failures

Work-around (2): A procedural change to
using a computer system intended to compen-
sate for a hardware or component failure.

We can expect most computer systems
of reasonable complexity to suffer compo-
nent failures, sometimes regularly. Work-
arounds in such cases involve people diag-
nosing a failure or recognizing a pattern of
system misbehaviors and then executing an
alternate procedure to accomplish a goal.
The simplest work-around strategy in the
face of a component failure is to have a
backup system (computerized or manual)
you can use in a pinch, even though it
might have limited functionality.*

Component failure work-arounds are
similar to design defect work-arounds but
differ in a few key ways. First, a completely
redundant backup system is often helpful
for component failures, but it might well
have the same design defects as the primary
system and thus might not help with design
defects. Having heterogeneously designed
systems is a way to provide at least some
work-around capability for both design and
component failures—for example, having
both a Windows and a Unix desktop com-
puter, or installing multiple Web browsers
from competing vendors.

One good thing about component failures
compared to design failures is that it might
be possible to fix a component failure very
quickly, whereas corrections of design
problems can take a long time to create, and
work-arounds for them might require trial
and error. So, in some cases a simple adap-
tation strategy of rescheduling work hours
to wait for a repair might be possible
instead of using a bona fide work-around.

Sense 3: Extending functionality
Work-around (3): A new procedure that

uses a computer system in a way not origi-
nally envisioned to accomplish a task.

Some work-arounds are necessary
because the computer or software as origi-
nally designed simply doesn’t address the
problem or task at hand. This can be because
the task you’re trying to accomplish is
“new” and there hasn’t been time to make
software changes. In some cases you can
foresee this, and you can design work-
arounds for existing software as part of a
business process change. But at other times,
this might not be practical. Working-around
in Sense 3 is a common activity. An example
would be to use spreadsheet software to
compose an essay outline.

In the area of task analysis, Michael
Albers argued that goal-driven approaches

Users are left on their own fo
defermine a work-around because
the number of porential failure and

USe extension scenarios exceeds
the currently knotwn techniques
for analysis and documentation.

(that is, ad hoc activities) rather than a pre-
planned task analysis can be necessary when
there are failures or exceptional operating
conditions.® This reflects the fact that in
many instances users are left on their own to
determine a work-around because the great
number of potential failure and use exten-
sion scenarios exceeds currently known
techniques for analysis and documentation.

Sense 4: Users intentionally misleading
their computers

Work-around (4): A procedural deviation
to circumvent an intentionally designed-in
limit or constraint on computer system
operation.

Sometimes we use work-arounds to
evade a computer system’s designed-in
behavior. This can be because we’re trying
to use a computer to do something it wasn’t
intended to do, such as holding down the
shift key to defeat a music CD copy protec-

tion scheme.’ This differs from the other
types of work-arounds in that the user is
trying to do something that the system
designers specifically intended the user to
not do, or intended to prevent the user from
doing, rather than accommodating to a
design defect or gap in design requirements.

Some in the field of computer-aided
design define work-around in this way, as a
sort of subversion of a task:

In subversion [as a constraint negotiation
strategy], the user modifies the task approach
to take advantage of known weaknesses in the
tool, overriding the spirit but not the mecha-
nism by which the constraint is imposed (also
known as a “workaround”).m

Indeed, in the context of CAD, a circuit
design arrangement that exploits a loophole
in automated design-rule checkers will
likely result in a chip design that doesn’t
work. To increase productivity in safety-
critical systems and other critical applica-
tions, people might use work-arounds to
similarly evade safety features, but they do
so at a cost of increased risk. Donald Day
conducted a study of work-arounds in this
sense of subversion, based on results from
a questionnaire concerning the factors that
affect flexibility when working under soft-
ware-imposed constraints.'°
Approximately 200 professionals in com-
puter-aided systems engineering completed
the questionnaire. While most respondents
reported that they didn’t feel especially
encumbered by their software tools, most
also reported that they absolutely reserved
the right to override or work around soft-
ware-imposed constraints, assuming suffi-
cient justification exists (for instance, to
adhere to overriding professional standards
or to deal with an obvious software design
fault). Those who felt “controlled” by their
software tended to report lower levels of
satisfaction with it and a higher likelihood
of being subversive. Conversely, those who
felt that they were less controlled by their
software tended to report greater levels of
satisfaction with the software and a greater
likelihood of conforming to the constraints
that the software imposed.

By implication, Day is saying that evad-
ing design features is a constructive activ-
ity in some circumstances. Such instances
abound in the area of graphics software.
Alison Black studied how novice graphic
designers get “sucked in” to the conven-
tions and limitations of graphics software

72

www.computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

that was created without benefit of a user
needs analysis.'! She noted the work-
arounds that users created to cope with
awkward and inefficient commands in
graphics software (for example, the prob-
lem of filling in enclosed objects that are
created piecemeal).

Gasser interviewed approximately 60
professionals who worked at several manu-
facturing firms to study how they adapt to
computing resources.* He reported several
instances in which users “gamed” their
computer systems by entering data known
to be inaccurate, or otherwise not following
expected normal system use. But the prac-
titioners were able to get their systems to
yield usable results, ones that sometimes
were more “accurate” than those derived
by “following the rules.” An example of
this in everyday life is booking a confer-
ence room for a critical meeting for a time
block starting a half hour early on the
expectation that any preceding meeting
will run later than scheduled. Here’s an
example from Gasser’s report:

Engineering analysts working [at] a large
firm which designed and constructed chemi-
cal plants, learned which analyses could go
wrong in the package of complex analytical
programs they used, and how to correct for
untenable results. For example, they rou-
tinely input temperature coefficients for pipes
carrying hot fluids as though the pipes were
intended to operate cold, causing the analysis
program to disregard certain heating stress
calculations. Over years of experience with
this program, the engineers had learned that
entering the “correct” information would
lead to erroneous results and the pipes would
not work properly in the final design. They
worked around the technical problems of the
program by “running the hot pipes cold”
when using it.

The positive value of work-arounds is a
recurrent theme in all the empirical work
we found. One more example is a study
by Gary Parish and William Sollfrey,!?
who examined work-arounds’ effects on
unmanned spacecraft, including performing
reliability calculations that incorporated
the expected benefits of work-arounds.
They found that even the relatively primi-
tive satellites of that era benefited from
work-arounds, with 18 life-extending
work-arounds recorded for 25 satellites
studied. Their definition of the term
emphasized procedural and software
changes and specifically excluded built-in
redundancy.

Kludge

Webster’s Ninth Collegiate Dictionary
defines kludge as a system (especially com-
puters) made of components that are poorly
matched or were originally intended for
some other use. This source indicates that
the word has unknown origins but cites
1962 as the earliest recorded use. This
might refer to a paper in which Jackson
Granholm,'? his tongue firmly in his cheek,
suggested several rules of applied “kludge-
manship,” exemplified by a number of
ways in which hackers could create a vari-
ety of clever kludges. For example, when
using magnetic tape as a storage medium,
the “kludgeman” would use both odd and

Hludge and work-around are
related in thaf both originated
because an alrernalive solufion

tha is either more elegant or
more appropriate is for some
1eason unavailable.

even parity and as many widths as he could
find reels for.

We’ve seen the word spelled both “kluge”
and “kludge” and have heard it pronounced
both as “klooge”(as in “stooge”) and
“kludge” (as in “fudge”), with the former
being the pronunciation most people prefer.
Granholm traces the word to the German
“kluge” (pronounced “kloo-ga’), meaning
smart, witty, or clever. We wouldn’t be sur-
prised if the term was in fact an acronym
for “knowledge and learning used to derive
good effects.” Nor would we be surprised if
the term comes from the last name of an
absent-minded German professor who was
notorious for making electromagnets from
hairpins, old tractor batteries, and fence
wire. Raymond asserts that the term came
into use in the 1940s in reference to a
device called the Kluge Paper Feeder, a
“fiendishly complex assortment of cams,
belts, linkages ... devilishly difficult to
repair ... but oh, so clever.”®

The general difference between a

kludge and a work-around is that a kludge
is a set of design artifacts or elements, in
one of these forms:

¢ A fix that is awkward or clumsy but is at
least temporarily effective

* An overall design that is of questionable
elegance or downright ugly

On the other hand, a work-around is
generally considered to be a procedural
variation that a person creates and uses.
Raymond’s Jargon File sees a kludge as an
initial design approach and a work-around
as a temporary bug fix.® On the other hand,
most other sources, and our own experi-
ence, indicate that using “kludge” rather
than “work-around” is more appropriate
for temporary fixes. In any event, we feel
that the distinction of procedure versus
designed artifact is useful, one that accords
with most documented definitions. This
distinction seems largely consistent with
various documented usages in which
kludge applies only to hardware and work-
around applies to both procedures and
software.

Kludge and work-around are related in
that both originated because an alternative
solution that is either more elegant or more
appropriate is for some reason unavailable.'3
These concepts are also related in that they
are both, apparently, permanent residents of
the technology landscape:

Hardware and software products are some-
times the result of adding a new and basically
incompatible design to an original design
rather than redesigning the product completely.
Users often have a different opinion than the
designers do. To the extent that information
technology products are combinations of ele-
ments originating from a variety of design
philosophies and constraints, almost any prod-
uct is bound to contain some element of
kludginess.'*

Make-work

Make-work activities are repetitive, bor-
ing, time-consuming activities that some-
one must engage in to accomplish some-
thing that could not be accomplished using
a shortcut, or that one should be able to
easily accomplish but cannot. An example
is when a display of visualized scientific
data relies on screen sectoring to permit
the presentation of multiple data types or
fields. Sectoring, an attempt to overcome
screen real-estate limitations, places a great
burden on the user, requiring repetitive

NOVEMBER/DECEMBER 2003

www.computer.org/intelligent

73

point-click-and-drag minimization and
maximization to view individual data
fields. Another example is having to cut,
paste, cut, then “paste as” to get a clean
chart transfer from Excel to Corel Draw.

Opportunities

Now that our semantic deboning of the
triad has played itself out, you must be
asking just the sorts of questions that HCC
advocates would raise. We began this
essay with a reminder that human-cen-
tered systems differ from user-hostile sys-
tems in that user-hostile systems are often
based on a designer-centered approach.?
In this regard, Granholm was right on the
money when he pointed to some of the
reasons why kludges and work-arounds
are necessary:

Itis sad, but true, that a kludge cannot be
designed under just any old organizational
structure. One of the most helpful atmos-
pheres in which a kludge may arrive at full
flower is that of complete, massive, and
iron-bound compartmentalization. It is a
good idea if the I/0 men, say, are not only
not allowed to talk to the mainframe
designers, but also that they have, in fact,
never met them. Interface cross-talk should,
by all means, be done by edict and direc-
tive, and not by memo and design note.
After all, someone has to hew the line on
design philosoghy, or people will go off in
all directions.!

His sarcasm rings true. Day made a similar
point in a literal tone:

User dissatisfaction with some constraint
management techniques may be attributable
in part to a mismatch between builders’” and
users’ views of apgropriate and necessary
design practices.!

Rather than simply bemoaning this state
of affairs, we could see it as an opportunity.
This involves adopting the goal of Day’s'’
and Gasser’s*!3 empirical studies:

Instead of studying how to eliminate prob-
lems ... we are attempting to describe and
explain the dynamics of computer use over
time. This leads us to focus on how circum-
stances persist and evolve, rather than why
they exist in the first place.4

Might not research on work-around, kludg-
ing, and make-work (WKM) activities reveal
ways we could achieve human-centering?
Might it not suggest new methods for study-
ing or evaluating human-centeredness?

Also wide open for research are the

social and organizational aspects of work-
arounds. When and why do organizations
choose to ignore subversive, work-around
activities? Individuals aren’t the only ones
who create work-arounds. As Day pointed
out, teams and project managers also create
them. Why? When? Inspired by Parish and
Sollfrey,'? can we quantify the effects of
work-arounds on system dependability and
usability?

There’s no denying that WKMs will
exist as an enduring part of the computing
experience. But much software culture
today is based on the notion of trying to
achieve perfect software, which of course is
an in-your-face manifestation of designer-
centered design. Perhaps it’s time to start

Much software culfure foday is
based on the notion of trying o
achieve perfect soffware, Wwhich

of course is an in-your-face
manifestation of designer-
centered design.

treating WKMs as first-class citizens in
terms of research topics, development
efforts, and teaching. Gasser captured this
point beautifully:

A fundamental assumption of design-oriented
literature is that managers, designers, and
system proponents define what are “rational”
actions in dealing with a computing system
—rational procedures for using a system,
getting problems fixed, etc. From this view-
point, workers in our study who worked
around formal systems were “escaping” from
the constraints of the system, and acting
“irrationally” with respect to system goals
and managers’ expectations. But we have
discovered that, far from acting irrationally,
the informal practical actions of participants
actually make systems more usable locally.
Informal fitting, augmenting, and working
around are essential and locally rational parts
of system use. Appropriate and rational ac-
tion is defined by the demands of the work
situation and the institutional arrangements
surrounding computing, not by the ideologies
of managers or the presumed necessities of
system structure.*

This clearly places WKM behavior in
the legitimate arena of “adaptive design,”
in which users help to finish the system
design.'® Researchable topics abound for
studying the deliberate, systematic creation
and deployment of WKMs. It might be
useful to explore ways to build compensa-
tion mechanisms into software to make the
user-plus-software system more resilient—
that is, ways to make work-arounds easier
for users to create, document, and share.
For example, an online help system might
notice that a user is repeatedly getting a
particular error message and might offer
advice on work-arounds relevant to that
error. Help systems today assume that the
user is making a mistake and offer canned
tutorial advice, but typically do not con-
sider that the real problem might be a soft-
ware defect, limitation, or user hostility.
Users must search the Web or other data-
bases to find work-arounds, if they’re pub-
lished at all.

Although foreseeing all possible failure
modes might be impossible, it’s probably
useful to catch and represent likely failure
modes at design time. The only way to do
that is to empirically study the “envisioned
world”!7 and evaluate software for useful-
ness and usability. Indeed, safety-critical
systems use Failure Mode Effects and Crit-
icality Analysis'® to represent the effects of
hardware component failures and subsys-
tem functional failures. We can extend this
to look at the ways that users are blocked
and frustrated as they try to complete
sequences of steps.

In addition to possible practical applica-
tions, research along the lines we propose
might lead to a scientific understanding of
WXKM behavior and a formal representa-
tion of work-arounds and kludges.!°

WKMS are here to stay, perhaps even
after computer scientists take notions of
human-centering to heart. Intelligent and
human-centered systems do not blame or
punish users for making mistakes. Perhaps
it’s time for researchers and technologists
to start including WKMs more explicitly in
their agendas. IEEE Intelligent Systems
should be the home for that agenda. M

74

www.computer.org/intelligent

IEEE INTELLIGENT SYSTEMS

Acknowledgments

Phil Koopman’s contribution to this article was
supported in part by the General Motors Collabora-
tive Laboratory at Carnegie Mellon University.
Robert Hoffman’s contribution was supported
through his participation in the Advanced Decision
Architectures Collaborative Technology Alliance,
sponsored by the US Army Research Laboratory
under cooperative agreement DAAD19-01-2-0009.

References

1. R.R.Hoffman, G. Klein, and K.R. Laughery,
“The State of Cognitive Systems Engineer-
ing,” IEEE Intelligent Systems, vol. 17, no. 1,
Jan./Feb. 2002, pp. 73-75.

2. R.R. Hoffman et al., “A Rose by Any Other
Name ... Would Probably Be Given an
Acronym,” IEEE Intelligent Systems, vol. 17,
no. 4, July/Aug. 2002, pp. 72-80.

3. R.Kling and W. Scacchi, “Recurrent Dilem-
mas of Computer Use in Complex Organiza-
tions,” Proc. 1979 Nat’l Computer Conf.,
AFIPS Press, vol. 48, 1979, pp. 107-116.

4. L. Gasser, “The Integration of Computing and
Routine Work,” ACM Trans. Office Informa-
tion Systems, vol. 4, no. 3, July 1986, pp.
205-225.

5. “Microsoft Security Bulletin MS02-027,” 28
Feb. 2003, Microsoft, www.microsoft.com/
technet/security/bulletin/MS02-027.asp.

6. E.Raymond, The New Hacker’s Dictionary,
MIT Press, 1991.

7. S. Poelmans, “Workarounds and Distributed
Viscosity in a Workflow System: A Case
Study,” ACM SicGroup Bull., vol. 20, no. 3,
Dec. 1999, pp.11-12.

8. M. Albers, “Goal-Driven Task Analysis:
Improving Situation Awareness for Complex
Problem-Solving,” Proc. 16th Ann. Int’l Conf.
Computer Documentation, ACM Press, 1998,
pp. 234-242.

9. J.A.Halderman, “Analysis of the MediaMax
CD3 Copy-Prevention System,” tech. report
TR-679-03, Princeton Univ., Oct. 2003, http://
nestrl.cs.princeton.edu/expand.php?id=TR-
679-03.

10. D. Day, “User Responses to Constraints in
Computerized Design Tools: An Extended
Abstract,” Software Eng. Notes, vol. 21, no.
5, Sept. 1996, pp. 47-50.

11. A. Black, “Visible Planning on Paper and on
Screen: The Impact of Working Medium on
Decision-Making by Novice Graphic Design-
ers,” Behavior and Information Technology,
vol. 9, no. 4, 1990, pp. 283-296.

12. G. Parish and W. Sollfrey, Preliminary Analy-
sis of the Effect of Work-Arounds on Space

System Performance and Procurement Re-
quirements: A Proposal, Rand Corp. report
N-1260-AF, 1980.

13. J. Granholm, “How to Design a Kludge,”
Datamation, vol. 8, Feb. 1962, pp. 30-31.

14. L. Swanson and M.J. Warden, “Kludge,”
‘Whatis.com, 2003; http://whatis.techtarget. com.

arses, “The Constraint Satisfaction
15. Ep@oach to Design: A Psychological Inves-
tigation,” Acta Psychologica, vol. 78, 1991,

pp. 307-325.

16. D.D. Woods and S.W.A. Dekker, “Anticipat-
ing the Effects of Technological Change: A
New Era of Dynamics for Human Factors,”
Theoretical Issues in Ergonomic Science, vol.
1, no. 3, 2000, pp. 272-282.

17. S.W.A. Dekker, J.M. Nyce, and R.R. Hoff-
man, “From Contextual Inquiry to Designable
Futures: What Do We Need to Get There?
IEEE Intelligent Systems, vol. 18, no. 2,
Mar./Apr. 2003, pp. 74-77.

18. C. McCollin, “Working around Failure,”
Manufacturing Engineer, vol. 78, no. 1, Feb.
1999, pp. 37-40.

Addendum

The September/October 2003 install-
ment of this column was titled "The
Borg Hypothesis." Jane Abbate, histo-
rian of technology at the Chemical Her-
itage Foundation, points out to us that
the term cyborg was first introduced in
1960 by Manfred Clynes and Nathan
Kline (“Cyborgs and Space,” Astronau-
tics, vol. 5, pp. 26-27, 74-76). They had
a similar mission to that described in
our essay: preparing humankind for
space travel.

But this early vision of a cyborg fu-
ture did not include the crucial concept

Philip Koopman
is an associate pro-
fessor at Carnegie
Mellon University.
He is affiliated with
the Department of
Electrical and Com-
puter Engineering,
the Institute for
Software Research International, and the
Institute for Complex Engineered Systems.
Contact him at the ECE Dept., Carnegie
Mellon Univ., 5000 Forbes Ave., Pittsburgh,
PA 15213; koopman @cmu.edu.

Robert R. Hoffman is a research scientist
at the Institute for Human and Machine
Cognition. Contact him at the IHMC,

40 Alcaniz St., Pensacola, FL 32501;
rhoffman @ihmc.us.

19. C. Martin, Functional Fault Simulation for
Distributed Embedded Systems, master’s the-
sis, Electrical and Computer Eng. Dept.,
Carnegie Mellon Univ., 2001.

of fitting the human body with intelli-
gent technologies, as opposed to
merely adding cybernetic mechanisms
such as artificial limbs or even artificial
eyeballs. The notion that control theory
ala Norbert Wiener (that is, types of
feedback loops) is sufficient for intelli-
gence is at least arguable. The point of
our essay was to consider the integra-
tion of intelligent technologies into
humans and the implications this might
have for human evolution.

—Robert R. Hoffman
To be continued ...

members
save 25%

www.computer.org/join/

on all conferences
sponsored by the
IEEE Computer Society.

Not a member?
Join online today!

NOVEMBER/DECEMBER 2003

www.computer.org/intelligent

75

