Dependability Assessment of Operating Systems in Multi-core Architectures

Gabriela Jacques-Silva; Zbigniew Kalbarczyk, Ravishankar K. Iyer
Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign, IL 61801
{gjsilva, kalbar,rkiyer}@crhc.uiuc.edu

1 Introduction

The dependability of a service is directly influenced by
the reliability provided by the lower system layers, such as
the operating system and hardware. Due to device and volt-
age scaling, and the increasing complexity of digital sys-
tems, transient errors are forecast to be a problem for all fu-
ture digital systems [4]. When we consider large-scale ma-
chines, with many processors and cores, this phenomenon
is furthered exacerbated. Therefore, it is mandatory to eval-
uate the behavior of systems under such conditions.

In this context, understanding the way errors can mani-
fest and are handled by the platform operating system layer
gives an indication of the reliability of the system and also
how they affect the user-level applications.

The robustness and fault sensitivity of operating systems
have been extensively studied [2l 3| [1]. There are sev-
eral challenges in developing a fault injection framework
for multi-core systems: (i) it is likely that we have more
than one error at a time, possibly occurring in different pro-
cessors/cores; (ii) there is no direct control over where the
fault injector is going to be executed or where the work-
load is being placed by the operating system scheduler; (iii)
a fault that is injected in one processor can get manifested
in another processor. These issue make it difficult to accu-
rately measure dependability metrics, such as crash latency.
The use of standard techniques, such as using performance
counters, is not trivial, given that we would have to config-
ure the performance registers in all processors at the same
time. This scenario poses a new set of questions that have
not been addressed by the current approaches: is the error
behavior different with errors occurring in multiple proces-
sors/cores? How do latent errors influence the system? Do
errors propagate between different processors or cores?

In addressing these questions, this work describes the
development of an experimental environment that enables
fault injection based evaluation of operating systems, par-
ticularly Linux, for multi-core and multiprocessor architec-
tures.

*Sponsored by CAPES/Brazil

2 NFTAPE Operating System Injection

In this study we leverage the NFTAPE fault injection
testing environment [[1]. The current NFTAPE implementa-
tion for Operating System (OS) assessment consists of two
machines: (i) the target machine, which is a machine host-
ing the operating system under study. The process manager
application, which performs the actual fault injection, runs
on this machine; and (ii) a control host machine (different
from the target), which controls the experiment by issuing
commands to the target machine, via the process manager,
and collecting data about the injections.

The process of conducting an OS injection campaign,
there are two phases: (i) setting up the injection, and (ii)
performing the injection itself, i.e., executing instructions
that corrupt a specific value in memory or registers. Figure
[T depicts how the injection works. The control host issues a
request to inject a fault to the process manager. The process
manager invokes a injector program, which is a user level
program. This process receives the injection parameters,
and passes them to the NFTAPE kernel module. The ker-
nel module writes the parameters into kernel data structures,
added specially for fault injection. It injects faults by us-
ing breakpoint registers. When the module receives the ad-
dress of the target data/instruction for the injection, it writes
this value into the processor debug register. When the tar-
get data/instruction at this address is accessed/executed, the
kernel executes the breakpoint handler. The breakpoint han-
dler is instrumented with fault injection instructions, which
are used to corrupt the value according to a given fault mask.

Request from
Control Host

Process - kernel
@&
kernel text

write_
address 0xC0123456 debugReg(0xC0123456)
mask 0x00000010

invoke injector

Figure 1. Target machine procedure

2.1 Moving to Multiprocessor Systems

The current injection tools typically makes use of debug
registers to obtain fine-grained data about injection experi-
ments (e.g., if a fault is activated). In the case of multi-core
architecture, each CPU/core has its own register set. There-
fore, we have to find a way to set the debug registers in a
specific CPU and enable the fault injection triggering. We
have to select and force multiple CPUs to trigger a fault.
Since we want to emulate the occurrence of multiple faults,
we have to set different breakpoint addresses in different
CPUs. This means that we need to force the execution of
the injection process in different CPUs. Therefore, when
we invoke the kernel module it will set the registers in the
CPU that is executing the injection process.

To enforce fault triggering in multiple processors, we
take advantage of a set of system calls provided by the
Linux kernel. Linux allows a process to set and get a CPU
affinity mask. This affinity mask determines which CPUs a
process is allowed to run. The affinity is also passed along
to any forked child.

Figure [2] shows how we take advantage of such system
calls. When the process manager receives a injection re-
quest from the control host, it instantiates a core dispatcher.
Since the core dispatcher is forked by the process man-
ager, they execute in the same CPU. If the injection is tar-
geting processors 0 and 2, we add both processors to the
core dispatcher queue. It then forks a injection process in
CPUO. This process will set the appropriate debug registers
in CPUO by accessing the kernel module. After the injec-
tor is forked, the core dispatcher changes its CPU affinity
and relinquishes the current processor, forcing it to be exe-
cuted in another CPU (CPU2 in this case). In the next run
of core dispatcher, it will be running on CPU2, and it will
then dispatch the second injector process. This process sets
the appropriate debug registers in CPU2. To ensure that a
fault is not injected while the debug registers are being set,
we add a global kernel variable that is set only after all the
configuration has taken place. If a breakpoint exception oc-
curs while this variable is not set, it is ignored by the fault
injection instrumentation.

2.2 Fault model

The fault model that is currently being considered for the
multi-core injection is single/multiple bit flips. However,
here we assume that they can happen more than once during
a single experiment run. The current targets for injections
in the OS are the following:

Kernel Text - injection into kernel instructions. Since
in multiprocessor architectures the kernel code section is
shared, we can have two types of injections, depending on
the fault location: (i) a fault that occurs in memory and cor-
rupts a instruction, making the fault visible to all the pro-
cessors in the system, (i) a fault that occurs on the pipeline,

Request from
Control Host
|

Operating
System

queue 0
scheduler

injector

scheduler
queue 2

Core dispatcher

210

CPU2

scheduler

queue3 EL

Figure 2. Forcing breakpoint in different CPUs

bus or in the instruction cache of a particular processor, af-
fecting one processor only.

Kernel Stack - injection to a valid kernel stack range of
a process running on the target CPUs.

Global Kernel Data - injection to a global kernel data
structure, which is visible to all the processors in the system.

3 Future work

This fast abstract describes a first step towards a frame-
work to evaluate operating system behavior in multi-core
environment. In this scenario, we have to consider the pos-
sibility that more then one error can occur in a short period
of time. We aim at verifying if the failure behavior of op-
erating systems is different when running in environments
that are susceptible to higher rates of transient errors, such
as multi-core architectures. Other issues to be addressed are
the execution and distribution of workload in different pro-
cessors, and the collection of data for dependability metrics,
such as crash latency. Such metric is important for estimat-
ing error propagation.

References

[1] W. Gu, Z. Kalbarczyk, and R. K. Iyer. Error sensitivity of the
linux kernel executing on powerpc g4 and pentium 4 proces-
sors. In Proc. of DSN 2004, Washington, DC, USA, 2004.

[2] T. Jarboui, J. Arlat, Y. Crouzet., K. Kanoun, and T. Marteau.
Analysis of the effects of real and injected software faults:
Linux as a case study. In Proc. of PRDC2002, pages 51-58,
16-18 Dec. 2002.

[3] P. Koopman and J. DeVale. The exception handling effec-
tiveness of posix operating systems. /IEEE Trans. Softw. Eng.,
26(9):837-848, 2000.

[4] N.J. Wang and S. J. Patel. Restore: Symptom-based soft error
detection in microprocessors. IEEE Trans. Dependable Secur:
Comput., 3(3):188-201, 2006.

	Introduction
	NFTAPE Operating System Injection
	Moving to Multiprocessor Systems
	Fault model

	Future work

