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Abstract
System resource management for high-assurance appli-

cations such as the command and control of a battle group
is a complex problem. These applications often require
guaranteed computing services that must satisfy both hard
and soft deadlines. In addition, their resource demands can
vary significantly over time with bursts of high activity
amidst periods of inactivity. A traditional solution has been
to dedicate resources to critical application tasks and to
share resources among noncritical tasks. With the increas-
ing complexity of high-assurance applications and the
need to reduce system costs, dedicating resources is not a
satisfactory solution. The Amaranth Project at Carnegie
Mellon is researching and developing a framework for al-
locating shared resources to support multiple quality of
service (QoS) dimensions and to provide probabilistic as-
surances of service. This paper is an overview of the Ama-
ranth framework, the current results from applying the
framework, and the future research directions for the Am-
aranth project.

1. Introduction

High-assurance applications such as the command and
control of a naval battle group require the timely allocation
of resources to enable critical computing on demand. The
allocation of resources to support the various mission activ-
ities of a battle group is challenging because the necessary
processing and data communications of multiple surface
ships and aircraft are sporadic with periods of inactivity
and bursts of activity. Traditionally, system designers ded-
icate resources to the highly critical tasks and share other
resources among less critical tasks. This solution satisfies
high-assurance demands at the cost of potentially ineffici-
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ent use of resources, a situation which can also result in
unnecessary space and maintenance requirements. In addi-
tion, the integration of secure data and communications
among tasks operating on heterogeneous, distributed plat-
forms can be complex. Insufficient use of resources multi-
plies the problem.

A more cost efficient solution would be to share a set of
heterogeneous resources among the various distributed ap-
plication and system tasks. Using standardized communi-
cation protocols would simplify the design of tasks that can
reliably communicate across distributed computing nodes.
In particular, it is necessary to multiplex the network band-
width among soft versus hard real-time tasks and across
bursty versus steady-stream communications. System de-
signers seek to configure a set of resources that have the po-
tential to maximize the utility of application tasks while
minimizing system costs. 

Likewise, application designers want critical tasks to
operate with high assurance and less critical tasks to exe-
cute at performance levels that match the needs of the in-
tended users. User preferences can vary across QoS
features such as timeliness, dependability, security, and ap-
plication-specific performance. What is needed is an ap-
proach for managing resources across multiple QoS
dimensions in a way that maximizes their value across user
requests while providing some known level of guaranteed
service in the event of high resource demands or resource
failure.

The Amaranth solution is a user-centric framework for
analytically managing resource allocations along multiple
QoS dimensions and viewpoints. This paper overviews the
Amaranth framework as well as the analytical techniques
to support utility-based QoS management with probabilis-
tic guarantees. The authors define the target application as
well as the representative application used to validate the
Amaranth approach to QoS management. They describe
the Amaranth architecture and supporting theoretical foun-
dations. The paper concludes with a discussion of the pre-
liminary research results and future research directions.
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2. Target Application

The goal of the Amaranth research is to develop capabil-
ities to support the underlying distributed communication
and computation infrastructure that will become increasing-
ly important in future commercial and military systems.
The military units of the twenty-first century will be radical-
ly different from their predecessors. Their computer sys-
tems will support various types of computing from parallel
processing embedded in the twenty-first century surface-
combatant (SC-21) computing platform to distributed pro-
cessing embedded in tanks such as the M2 A1 Bradley
which is equipped with a missile subsystem. These systems
will run a collection of software agents embedded in a com-
munication and computing infrastructure that provides cog-
nitive support for the interconnection of soldiers, sailors,
and commanders through the “tactical internet” of the digi-
tal battlefield. As another example, the “soldier phone” ap-
plies wireless and multimedia communications to the
accomplishment of battlefield objectives [2].

A typical configuration, as shown in Figure 1, would be
a group of surface ships whose computing environment
consists of a set of heterogeneous computing nodes with
software to support mission-critical functions such as plan-
ning, communication, and missile tracking and deployment,
as well as “housekeeping” operations such as the manage-
ment of inventory and personnel records. The bandwidth
for a ship’s local network would be high, while the band-
width among ships would be limited. 

The mix of tasks utilizing bandwidth would consist of
both multimedia data streams and short, intermittent weap-
ons control data. Both types of traffic may experience long
periods of relative inactivity (e.g. minutes to hours) with
short, intense periods of high activity (e.g. milliseconds or
seconds). Though the bandwidth for the active periods of
the multimedia stream would most likely be greater than
that for the bursty weapons control communication, the
control data would be more critical to the mission of the bat-
tle group and also less resilient to degradations in QoS.
Many multimedia applications can perform effectively with
reduced rates of frame update and can employ compression
techniques to minimize bandwidth.

System designers cannot afford to size their systems for
the worst case expected application mix and behavior to
achieve maximum QoS for all task requests. Since many ap-
plications can function usefully at a degraded but accept-
able QoS for short periods of time, system designers can
reduce the system size accordingly. The “right” size system
can handle the critical tasks during peak periods of activity
with minimal periods of degraded service to the less critical
tasks during normal operations. The system resource man-
agement policies and mechanisms should be able to adapt to
variation in workload due to sudden bursts of new jobs such
as incoming mission-critical alarms. They should also be
able to provide a high degree of assurance that critical tasks
will function properly despite fluctuations in equipment
availability due to maintenance downtime and battle dam-
age.

The Amaranth framework is a resource management
strategy to enable system designers to scale their systems to
minimize cost and to maximize the utility of the system to
the anticipated set of users. Because we are not currently
able to replicate the exact application mix of the battle
group scenario described in the previous paragraphs, we
have chosen to simulate representative workloads in our
testbed. The representative application mix consists of a
video-conference application with periods of varying activ-
ity along with workload generators to simulate the bursti-
ness of critical missile activity. Though our approach for
maximizing utility scales to multiple resources, we are cur-
rently focusing on managing the allocation of network
bandwidth. 

3. Related Research

Earlier work focused on managing QoS across the layers
of the network protocol and on defining the meaning of QoS
from source to destination nodes (end-to-end QoS). The ad-
vent of multimedia workstations and high-speed networks
enabled a new class of applications demanding continuous
network bandwidth to support streams of data. Critical dis-
tributed control applications requiring reliability and guar-
anteed bounds on message latency, along with multimedia,
have demonstrated the inadequacy of best effort communi-
cations and thereby spurred research in the area of QoS
management of network resources. 

Campbell et al. formally define the concepts of flow and
flow management in a paper about the QoS-A architecture,
a layered architecture of services and mechanisms for QoS
management and control of continuous media flow in multi-
service networks [3]. Campbell et al. argue that meeting
QoS guarantees in distributed multimedia systems is funda-
mentally an application-to-application (end-to-end) issue.
The architectures that they review focus on QoS in the con-
text of individual layers of a network protocol [4]. 

Figure 1: Battle group communication among 
ships with missile tracking and interception 
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QoS management currently resides primarily in the pol-
icies and mechanisms to route packets of data. Noteworthy
is Nahrstedt and Smith’s QoS Broker, a model for specify-
ing application requirements and translating these require-
ments into negotiated resource allocations. The QoS Broker
acts as an intermediary between application processes and
the OS/network protocol subsystem to communicate the ap-
plication needs to the lower level services. The broker or-
chestrates network resources at the source and destination
nodes (end points of a network of computing resources) by
coordinating resource management across the communica-
tion layer boundaries within an end-point node [13]. 

More recently, Bashandy et al. have developed a proto-
col architecture to define distributed multimedia systems
from the application as well as the service providers’ points
of view. Formally defined as finite state machines, their ar-
chitecture consists of an application layer, a configuration
and synchronization layer, and network layers as well as a
database and computation backbone. Each layer consists of
independent functional units that communicate through a
standard framework of messages [1]. 

Current research also delineates QoS from multiple
viewpoints (e.g. user or application, system, and resource)
[19]. Sabata et al. outline a taxonomy for classifying QoS
parameters from different viewpoints. They specify QoS as
a combination of metrics and policies: metrics measure spe-
cific quantifiable attributes of the system components, and
policies dictate the behavior of the system components [18].
Researchers at SRI have outlined issues in managing re-
sources for complex distributed systems and have devel-
oped the Logical Application Stream Model (LASM) for
capturing a distributed application’s structure, resource re-
quirements, and relevant end-to-end QoS parameters. They
have also developed the Benefit Function (BF) model for
expressing user QoS preferences and for gracefully degrad-
ing an application’s QoS under certain conditions [5-6].

The Amaranth research differs from other work by em-
phasizing (1) QoS management across multiple QoS di-
mensions defined with respect to the needs of the client
applications, (2) QoS contracts with probabilistic assuranc-
es that users will receive contracted resources, (3) fault
monitoring to detect and predict resource failures in order to
help prevent QoS contract violations due to resource down-
time, and (4) monitoring of resource usage patterns and re-
serve capacity to preserve contracted resource allocations in
the event of bursts of task requests. The goal of the Ama-
ranth framework is to provide a flexible environment in
which system designers can deploy their own QoS manage-
ment policies. 

4.  Amaranth Terminology and Functionality

In this section, we present terminology that we used to
describe the Amaranth framework and to develop or select
mechanisms to communicate between applications and the
Amaranth QoS management system.

QoS Dimension:
User point of view - A QoS dimension is a domain-spe-

cific feature or application requirement whose performance
level can be observed or controlled. These features may be
functional such as application quality (e.g. frames per sec-
ond or resolution for a multimedia application) or type of
security (e.g. encryption). They may relate to execution be-
havior such as timeliness (e.g. latency and allowed lateness)
or dependability (e.g. availability and reliability). We mod-
el QoS as an n-dimensional space with utility values and re-
source requirements associated with each point in space.

System point of view - A QoS dimension helps to define
the QoS space in which each point corresponds to a specific
allocation of required resources and system services.

Application: 
User point of view - An application is a type of software

that can execute at differing levels of performance. The ap-
plication designer specifies the levels of service for each
QoS dimension. The application user specifies the mapping
between the points in the QoS space and their associated
utility values. The higher the assigned utility value, the
higher the usefulness or importance of the point in the QoS
space.

System point of view - An application is a class which,
when instantiated and executed, yields utility in return for
consumed resources. The application designer with the help
of the system determines the resources required to achieve
each point in the QoS space. The system then uses the utility
values specified by the user for the points in the QoS space
to map the utility of each point to the resources required to
achieve the associated level of QoS.

Session:
User point of view - A session is an instantiation of an ap-

plication with a contracted probability of assurance that the
system will provide resources sufficient to achieve an
agreed-upon level of service for the contracted interval of
time. The user associates the usefulness of the session with
the contracted QoS level.

System point of view - A session is an entity to which sys-
tem resources have been committed for a fixed interval of
time with a contracted probability of assurance that the re-
source allocation will not be reduced during the interval.

Session Request:
User point of view - A session request is a request to ne-

gotiate a QoS contract and to start an application.
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System point of view - A session request involves the ne-
gotiation of a QoS contract and a decision of whether or not
to provide contracted and guaranteed resource allocations
to a session.

Contract:
User point of view - A contract is a guarantee that within

a specific session the system will provide the necessary re-
sources to enable the associated application to perform at
the contracted QoS level with the contracted probabilistic
level of assurance.

System point of view - A contract is a commitment to al-
locate the resources necessary to enable the application to
perform at the contracted QoS level with the contracted
probabilistic level of assurance.

QoS Violation: 
User point of view - A state in which the application can-

not execute at the contracted QoS level because the system
has not provided the contracted service.

System point of view - A state in which the system does
not provide the resources necessary to support the contract-
ed QoS level of a session.

QoS Availability:
User point of view - The fraction of time over the dura-

tion of a session for which the application experienced no
QoS violations.

System point of view - The fraction of time over the du-
ration of a session for which the system actions resulted in
no QoS violations.1

QoS Reliability:
User point of view - The probability R{Qs}(t) that the ap-

plication has experienced no periods of QoS violation dur-
ing the time interval t beginning with the start of session s.

System point of view - The probability R{Qs}(t) that the
system actions resulted in no QoS violations during the time
interval t starting with the beginning of the session s.1

We anticipate the following users to interact with an
Amaranth system of resources: software application or
component developers, application users or clients, and sys-
tem architects. Each of these users would specify the QoS
parameters which relate to their roles. As discussed below,
these users would specify the QoS parameter values neces-
sary to contract a specified level of QoS (point in the QoS
space) and level of assurance for the duration of a session.

The Application or Component Developer would specify
application performance levels or QoS points for relevant
QoS dimensions such as application-specific, timing, de-
pendability, and security requirements. The following are
examples of application-specific and timing requirements. 
1A system action such as degrading the resource allocation of a particular
session due to resource shortages could result in a QoS violation.

• Mathematical model of task arrivals.
• Acceptable time delay between task arrivals and

completions (used to calculate deadlines).
• Tolerance to lateness or a function which specifies

how the value of the task degrades with respect to the
time by which a deadline is missed.

• Mapping between the QoS space and resource
consumption.

• Probabilistic model of resource consumption for a
particular application.

The Application User or Client would provide the map-
ping between the QoS space and the utility or “desirability”
of each point in the space.

The System Architect would specify the weighting or
priority of each application or user registered with the sys-
tem and the system size needed to guarantee minimum ac-
ceptable QoS for all critical applications in the event of the
worst case load of application requests.

Following the UML use case notation, we model a user's
interaction with an Amaranth system as shown in Figure 2
on the next page. For demonstration purposes, the user is a
human. In practice, the user may be an application program
contracting with the Amaranth system for a specified level
of resource allocation.

The major functions of the Amaranth QoS management
system are as follows.

1. To receive, process, and admit/reject session requests.
2. To contract, for each session request, levels of QoS

and assurance that serve to maximize system goals as
specified by the active policies.

3. To allocate resources according to session contracts.
4. To monitor system parameters such as the following:

• resource usage across sessions
• current resource usage per session
• resource usage per session over time
• system resource capacity instantaneously 

and over time.
5. To adjust the resource allocations when necessary to

satisfy the session contracts while adhering to active
system policies and reacting in a timely manner to
resource failures and other system disturbances.

6. To monitor and notify the session planner of pending,
likely, or actual resource failures and expected
downtimes.

7. To enable the human user to visually and tactilely
interact with the system to enter session requests and
monitor session behavior.

8. To enable the human user to simulate session requests
without the use of the actual resources.

In the next section, we will discuss the Amaranth sys-
tem architecture and the scenario of events and component
interactions when a request is made to run an application
within a session of contracted resources.
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5. Architecture and Session Management

The Amaranth architecture consists of the following pri-
mary components, each of which contributes to the Ama-
ranth QoS management as described. Figure 3 illustrates the
layered interconnections between the components.

• DMOD (Dependability Module) - Uses historical
information about past computing node failures to
estimate resource availability and to predict node
failures.

• FRUM (Forecasted Resource Usage Module) - Uses
historical trends to predict future resource usage.

• Q-RAM (QoS Resource Allocation Model) -
Determines resource allocations that optimize total
system utility across all application requests for
resources while satisfying resource constraints.

• RTQM (Real-Time Queueing Modeler) - Given
arrival and servicing models, estimates the
distribution of tasks which would be late due to system
resource constraints. Further discussion of real-time
queueing appears later.

• RPM (Resource Priority Multiplexing) - Given
resource usage profiles, validates assurance levels and
computes scheduling parameters.

• RPM Scheduler (Resource Priority Multiplexing
Scheduling Mechanism) - Implements resource
priority multiplexing.

• SesCo (Session Coordinator) - Receives and processes
session requests; queries the monitoring modules
DMOD and FRUM as well as the policy advisor
modules Q-RAM, RPM, and RTQM to make resource
allocation decisions; and controls low-level
mechanisms to implement resource allocations.

• Synthetic Workload Generator - Generates artificial
session requests and workloads to stress the testbed.

• Visualizer - Assists users in making QoS/resource
trade-offs. Visualizer currently displays the network
routes utilized by one or more application sessions and
enables the user to examine how they interact. In the
future, the visualizer will use dynamic aggregation
techniques to simplify information about large
networks of more than 100 nodes into manageable
maps.

The Darwin Scheduler is a resource management mech-
anism to support application-specific handling of network
traffic and sharing of resources between cooperating traffic
streams [15]. Amaranth uses Darwin to reserve network re-
sources and to enforce the bandwidth allocations.

Network
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Figure 3: Amaranth architecture 

Q
-R

A
M

A
m

ar
an

th

Applications
and

Synthetic
Workload

Generators

session
request
interface

and

mechanisms

(SesCo) 

O
th

er
 

R
T

Q
M

R
P

M

C
O

T
S

Figure 2: Amaranth use case diagram

Request
session start.

 Request
 session end.

Request
session status.

Request
contract info.

Request list
of sessions.Request contract

change.

Systems Architect

Request load(s)
on resource(s)
at time t.

Request mean
time to specified
resource failure.

Request load(s)
on resource(s)
for specified app.
at time t (e.g. for
calibration).

Determ ine
RQ(t).

“uses” Application or
Component Developer

Application
Users



IEEE Fourth International High-Assurance Systems Engineering Symposium (HASE’99), 
IEEE Computer Society Press, Los Alamitos, CA, Nov. 17-19, 1999, pp. 207-216.

6

Timeliness is an important quality dimension for the
types of applications targeted for Amaranth QoS manage-
ment. For example, the system may need to provide support
for real-time control systems in which the control loops
have hard timing constraints as well as for voice and video
packets which have constraints on latency. Real-time re-
source management is fairly well understood for the classi-
cal periodic task model, but Amaranth must handle tasks
with more stochastic behavior and must strive to achieve
high levels of resource utilization while providing as high a
QoS level as possible to all the applications. The stochastic
behavior of tasks makes it difficult to ensure that the system
will behave properly with respect to real-time requirements.
A new approach to this problem, called real-time queueing
theory, provides a set of analysis techniques which offer the
ability to combine the system predictability associated with
hard real-time scheduling theory and the generality of sto-
chastic task behaviors associated with queueing models [9-
12].

 Figure 4 demonstrates the scenario of component inter-
actions that enable the session coordinator SesCo to process
a session request. SesCo directly controls those components
within the dotted line. In the event that the requesting appli-
cation would like to communicate with another application
running on a node outside the set of nodes managed locally,

the local SesCo calls a global SesCo Coordinator to com-
municate with the SesCo that manages the network in which
the target node is located.

The session coordinator component (SesCo) is responsi-
ble for receiving and processing session requests to achieve
the goals of the active system policies. These policies are
embodied in the system components such as Q-RAM and
RPM whose respective goals are to maximize system utility
across application requests and to validate the probabilistic
assurance that a given session will receive the resources that
it contracts. System utility is a weighted measure of the
user-defined utilities associated with the levels of service
(points in the QoS space) of the active applications and of
the new requests. RPM analyzes the resources allocated
across sessions and uses their probabilistic resource re-
quirements to determine the probability that each session
will receive its contracted resources. Using arrival, servic-
ing, and resource availability models, RTQM provides
SesCo information about the expected distribution of appli-
cation tasks which will not be able to meet their deadlines. 

In an Amaranth-managed system, FRUM and DMOD
execute on each computing node to track usage and failure
patterns. SesCo executes along with its policy advisors
(currently Q-RAM, RPM, and RTQM) on the network rout-
ing nodes. The Darwin Scheduler executes on the routing
nodes to enforce network reservations [15]. Visualizer runs
on the user nodes, and the workload generators execute on
nodes which system experimenters are using to perturb the
system. The testbed in the Amaranth laboratory consists of
interior routing nodes running FreeBSD (a version of Unix)
and exterior user nodes executing Microsoft’s Windows
NT. 

Component interactions across nodes are made via
CORBA calls [14], while communications on the same
node occur as standard procedure calls. The Visualizer is
implemented as a Java application, while the other compo-
nents are implemented as C++ modules. In the next three
sections, we will briefly overview the Amaranth theoretical
framework for utility-based resource management, probabi-
listic guarantees of QoS levels, and the use of reserve capac-
ity to control session admission and resource allocation. We
are currently exploring the utility and reserve capacity ap-
proaches to resource allocation independently. 

6. Utility-Based Resource Management

The goal of the Amaranth QoS management is to allo-
cate the system resources in such a way that user applica-
tions can operate effectively according to each application’s
requirement for assured resource allocations without having
to under utilize or dedicate resources. This goal motivates
the Q-RAM policy: the maximization of system utility with
respect to application utility across multiple performance
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levels for each QoS dimension. The feasible combinations
of performance levels across the relevant QoS dimensions
form an n-dimensional space of QoS points where n is the
number of QoS dimensions. The user can specify utility or
“desirability” values for individual QoS points or define a
function that will assign utility values to a domain of points.

The Amaranth advisor Q-RAM determines a near opti-
mal allocation of resources to maximize the system utility
across applications without exceeding the available re-
sources. The system allocates to each admitted application
task an amount of resources that is within the minimum and
maximum amounts requested by the task. The Q-RAM ad-
visor provides polynomial-time algorithms to determine re-
source allocations which achieve near optimal utility for
systems consisting of a single resource and multiple inde-
pendent QoS dimensions or multiple independent resources
and a single QoS dimension [8,16-17]. 

The Q-RAM advisor also includes a local search tech-
nique that provides an approximate solution to the NP-Hard
problem of maximizing utility for multiple resources and
multiple QoS dimensions. The Q-RAM solution is several
orders of magnitude faster than the optimal dynamic pro-
gramming and mixed integer programming solutions. The
approximation algorithm allows the user to trade-off near-
ness to the optimal solution versus performance [7]. The pa-
pers referenced in this section describe in detail the Q-RAM
algorithmic solutions for determining near-optimal alloca-
tion of resources across QoS dimensions. 

7. Contracts and Probabilistic Guarantees

An Amaranth QoS contract is an agreement between the
user and the system that the resources necessary to support
the given QoS level will be provided for the duration of the
session with a given probability. Ideally, the fixed QoS lev-
el would map to a fixed resource demand. But this is not the
case for many real world applications such as video confer-
encing. Due to the effects of compression and dependent
upon the amount of motion in the scene, the bandwidth re-
quirements for a video stream may vary over time. Band-
width requirements are highest when the camera is panning
or zooming and are lowest when the camera is focused on a
low motion scene such as people sitting at a conference ta-
ble. Network flows having these characteristics are often
called Variable Bit Rate (VBR) flows.

In a system based on hard reservations, it is difficult to
achieve high resource utilization due to the worst case as-
sumptions that must be made for sessions with VBR flows.
Therefore, Amaranth provides probabilistic guarantees for
sessions with VBR flows. A session’s guarantee is ex-
pressed as a lower bound on the expected value, , of the
session's QoS Availability. Hard reservation and best
effort  are special cases of a probabilistic guarantee.

The RPM policy module and RPM kernel-level mecha-
nisms implement the probabilistic guarantees in Amaranth.
To enforce the probabilistic guarantees, the RPM kernel
mechanisms maintain a set of priority modes. Each priority
mode is a strict ordering of the managed sessions. When
there is an overflow of packets in a router’s queue, the sys-
tem drops packets of the low priority session associated
with the active priority mode. By time multiplexing through
the priority modes, the QoS Availability delivered to each
of the sessions can be controlled by varying the mode hold-
ing times. 

The RPM policy module evaluates session requests to
determine if sufficient resources are available and computes
the set of mode holding time parameters needed by the ker-
nel-level mechanisms to enforce the requested guarantee of
service. One can represent the bandwidth resources re-
quired by a session as a Markov model with each state char-
acterized by a probability and an instantaneous resource
demand. Given the system priority modes and the Markov
model for each session, one can form a linear program to
determine the mode holding times. If the linear program is
feasible, the solution will be the set of mode holding times.
If it is not feasible, then the system cannot meet the request-
ed guarantees. The system must then refuse the session re-
quest. The mathematical details of the admission algorithm
will appear in a future publication. 

Probabilistic guarantees can result in significant gains in
resource utilization. For example, consider a 100 Mbps link
over which we would like to carry a number of video con-
ference flows. Suppose that each flow requires 1.5 Mbps
55% of the time, 2.7 Mbps 37% of the time and 5 Mbps 8%
of the time. Figure 5 shows the number of flows that can be
admitted on the link as a function of the QoS Unavailability
(one minus the QoS Availability) for each of the flows. To
provide hard guarantees on the flows, we could admit no
more than 20 flows (100 Mbps/5 Mpbs). But with probabi-
listic guarantees, we can admit nearly double the number of
flows.
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8. Reserve Capacity Approach to Admission 
Control and Resource Allocation 

The Amaranth admission goal is to provide the maxi-
mum possible utility consistent with honoring contracted
assurance probabilities for QoS violation rates. To accom-
plish this goal, Amaranth researchers are experimenting
with holding resources in reserve to handle random, but sta-
tistically likely, bursts of task requests. Using ideas bor-
rowed from control theory, the system attempts to maintain
reserve capacity at or near a predetermined value (the set
point). The system compares the amount of actual reserve
capacity against the setpoint and, under the guidance of a
control policy, determines the QoS level offered to new task
admissions.

The admission control system works in two steps. First,
the system admits the session if there are sufficient resourc-
es available for the application’s minimum QoS require-
ment. Then the system uses the admission/resource
allocation control parameters to determine the actual
amount of resources to be allocated to the incoming task.
Current experiments deal solely with network bandwidth
allocations and with several policies for determining the
amount to be allocated to an incoming request. Two sim-
plistic policies are (1) to always allocate the maximum
bandwidth possible (a “greedy” strategy that exploits a best
effort evaluation scenario) and (2) to always allocate the
minimum requested bandwidth (attempting to provide hard
reservations in a worst case evaluation scenario). In all cas-
es, the system rejects a task if there is insufficient band-
width to admit the task even with its lowest acceptable QoS.
Additionally, we have considered three common control
theory policies: Bang-bang control, Proportional control,
and Proportional-Integral-Differential (PID) control. 

Figure 6 shows simulation results for the five control
policies applied across a range of task inter-arrival times.
The task interarrival times (means shown in Figure 6 by
dashed lines) as well as the durations (mean of 10 minutes
for all experiments) of the simulated tasks are exponentially
distributed. The resource demand is uniformly distributed
with minimum and maximum bandwidth demands of [1,4)
Mbps and (4,7] Mbps, respectively. The reserve capacity
set point is 10 Mbps, and the total available bandwidth is
100 Mbps (i.e., the desired goal is to maintain 10% reserve
capacity). A mean interarrival time of 20 seconds represents
a heavily loaded resource, while 60 seconds represents a
lightly loaded resource. While these experimental parame-
ters are merely exemplary values, they do provide an exam-
ple of a system’s response across a range of loading levels.

While many approaches are possible to minimizing QoS
violation rates, the simplest approach is to permit no viola-
tions for admitted tasks and instead reject new task arrivals
(resulting in a conceptually immediate QoS violation for

each task that is denied admission). Figure 6 therefore
shows the task rejection ratio versus the average satisfaction
of admitted tasks. The average task satisfaction is comput-
ed, for example purposes, as ,
where alloc is the allocated bandwidth, min is the minimum
acceptable bandwidth, and max is the maximum requested
bandwidth. 

There are five solid curves in Figure 6 corresponding to
the performance of various control policies. The dashed
lines represent different levels of system load (different
mean task inter-arrival rates). For any given contracted as-
surance level, one can use the graph to indicate viable con-
trol policies and their expected average satisfactions (utility
values under these simplified assumptions). This is done by
considering portions of dashed lines below the task rejec-
tion ratio having the value of (1-contracted assurance level).
For example, the system can achieve an assurance level of
99% with a mean arrival rate of 40 seconds by using propor-
tional control, PID control, and hard reservations. Propor-
tional control provides the best average satisfaction in this
scenario (bang-bang control provides higher satisfaction
but has too high a task rejection ratio compared to the re-
quirement of 0.01 for a 99% assurance level).

In general, the trade-off seen in these results is the ex-
pected one of lower rejection levels coming at the price of
lower satisfaction levels. However, the use of admission
policies based on control theory provides intermediate
trade-off points beyond those available with either hard res-
ervations or best effort policies. In particular, the more so-
phisticated control policies seem able to anticipate future
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problems caused by aggressive QoS allocation and to
achieve lower rejection ratios for a given task arrival rate
than the simplistic bang-bang control policy.

9. Results and Conclusions

Prototypes for most of the components are complete, and
we have tested many of the component interactions. Those
interactions involving components under development
(such as RPM and RTQM) are forthcoming. The Amaranth
simulator is complete, and we have used it to simulate the
RPM scheduler as well as user sessions and Amaranth-con-
trolled network allocations and routing. D-MOD is able to
detect and predict node failures, and FRUM is able to track
and record resource usage patterns on nodes and their con-
nected network links. The local SesCo is functional as well
as a prototype of the Q-RAM adviser module.

The theoretical models for Q-RAM, RPM, and RTQM
have been developed and validated manually or via simula-
tion. For high-assurance computing in which all application
task arrivals are guaranteed at least minimum QoS, the sys-
tem designer can use the application and resource models to
size the system to have sufficient resources to satisfy the
worst case arrival of tasks with each task receiving at least
its minimum required resources. Alternatively the system
designer can size the system to handle the worst case arrival
of critical tasks. The critical tasks would receive at least
minimum QoS, while the noncritical tasks whose total
weighted utility maximizes the overall system utility with-
out exceeding the available resources would receive re-
source allocations. In such high-assurance systems, QoS
violations would comprise degrading previously admitted
tasks to minimum QoS rather than denying admission to
critical tasks.

10. Summary and Future Research

In this paper, we have discussed the Amaranth frame-
work for providing utility-based QoS management with
probabilistic guarantees that the QoS contract will be up-
held. We have described our target battle group application,
which requires a high degree of assurance that necessary
system resources will be allocated to critical mission activ-
ities while maximizing the utilization of the system resourc-
es. We have discussed the required functionality for the
Amaranth QoS management system and then presented a
diagram of the Amaranth system architecture. We have ex-
plained how each system component contributes to the
overall system management goals. Lastly, we have over-
viewed the Amaranth theory with respect to utility-based
QoS management, contracts and probabilistic guarantees,
and admission control. 

In addition to the utility-based QoS management policy,
we plan to study alternative policies for managing resources
from the user as well as the system viewpoints. Likewise,
we are exploring a way to integrate the utility and reserve
capacity based approaches to resource allocation. We will
implement and validate the RPM method for providing
probabilistic guarantees and work on the integration of real-
time queueing theory with the determination of optimal util-
ity across current application requests. Later, we will design
the Global SesCo Coordinator to scale to interconnected
LANs and WANs with local sets of nodes and links man-
aged by local SesCos. The Amaranth architecture will en-
able the system manager to employ innovative resource
management policies while maintaining probabilistic QoS
guarantees and dependable communications.
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