

Biologically Inspired Miniature Robots

Metin Sitti sitti@cmu.edu Mechanical Engineering Robotics Institute / Electrical Eng. / Biomedical Eng. Carnegie Mellon University

18-200 Lecture

Outline

- Introduction
- Bio-Inspired Adhesives
 - Climbing Robots
 - Endoscopic Capsule Robots
- Legged Locomotion on Water
 - Water-Walker
 - Water-Runner
- Conclusions

Micro/Nano-Robotics?

- Programmable assembly and manipulation of micro- and nanoscale entities
- Design and fabrication of miniature robots down to sub-millimeter sizes
 - Locomotion and dynamics dominated by the principles of micro/nano-physics
- Programming and coordination of large number of these robots

"Micro/Nano-Robotics" course in Spring 2002/3/4/5/6

Miniature Robots

Characteristics

- New physics and mechanisms
- Most unique: <u>Accessibility</u> to smaller spaces
- Smaller, faster, light weight, and cheaper
- Massively parallel, in large numbers, and distributed

Challenges

- Necessity of novel micro/nanoscale actuators, sensors, mechanisms, materials, control, manufacturing, etc. techniques
- Micro/Nanoscale physics
- Complexity and uncertainties
- Miniaturization limits on power sources

UC Berkeley, 2002

Robotics Field

- Involved basic disciplines:
 - Engineering: Electrical, computer, mechanical, and materials
 - Computer Science
- Depends on the size and applications, involves:
 - Basic Sciences (physics, biology, chemistry, and mathematics)
 - Medicine
 - Aeronautics (space)
 -

Biological Inspiration at Small Scales

- Biological systems
 - Just good-enough solutions to survive (sub-optimal)
 - Robust and adaptive
 - Highly maneuverable (agile)
 - Multi-functional
- Bio-inspired design
 - More to learn from nature at the small scales
 - Robust locomotion in unstructured environments
 - Starting point

Bio-Inspired Robust Adhesives and Climbing Robots

Temporary Attachment Mechanisms in Nature

- Mechanical interlocking (plants/velcro, insects, humans, etc.)
- Vacuum suction (octopus, salamander)

- Wet adhesion (muscles, ants, cockroaches, frogs, crickets, etc.)
- Dry adhesion (geckos, spider, kissing bug)

• HYBRID

Attachment Mechanisms for Rough Surface Adaptation

Biological Fibrillar Adhesives

Features of Gecko Foot-Hair Adhesion

- Hierarchical and multi length-scale structure and compliance (macro/micro/ nano) [different for many species]
 - Roughness adaptation
 - Enhanced adhesion and life-time

Other Features

- Generic principle: Dry adhesion using <u>intermolecular</u> forces such as van der Waals forces (10 N/cm² adhesion)
 - Sticking to almost any material in any environment (air/liquid/vacuum)
- Power efficient and fast attachment and detachment
 - Attaching in 10 ms (preloading) and detaching (peeling) in 16 ms (agility)
- Self-cleaning
 - Robustness against dirt and contamination
- Saucer type tip endings
 - Enhancing adhesion and pressure distribution

Synthetic Fibrillar Adhesive Design

- Functional Requirements
 - Strong adhesion and efficient detachment
 - Rough surface adaptability
 - Self cleaning
 - Durability
- Design Parameters
 - Fiber geometry (diameter and aspect ratio)
 - Hierarchy
 - Density
 - Tip shape
 - Young's modulus and tensile strength
 - Fiber orientation

Polyurethane Micro-Fibers by Molding a Silicon Micro-Channel Template

Polyurethane (2 GPa) 2 micron fibers 1:20 aspect ratio

PDMS (0.6 MPa) 2 micron fibers with tapered ends

PDMS 4 micron Fibers Lifting 300 gr

Angled Polyurethane Microfibers by Two-Step Molding

Contacting to a 12 mm diameter sphere

Optical Lithography based Micro-Fibers with Spatular Tips

S. Kim and M. Sitti, Applied Physics Letters, 2006 (in press).

Macroscale Microfiber Adhesion on a 12 mm Diameter Sphere

Adhesion enhancement due to microfibers with flat tips

Applications of Gecko Adhesives

Gripper Design for Space Shuttle Inspection Robots (NASA/Northop Gruman)

Miniature Climbing Robots

Tri-Legged design: Waalbot Gecko inspired design: Geckobot **Tank Climbing Robot**

Dimensions: 45 x 39 x 18 mm³ Mass: 10 gr Speed: 3.3 mm/s Power consumption: 65 mW (max) Battery life: 2.5 hours (min) *collaboration with EPFL*

Metin Sitti, CMU

Tri-Legged Design

Semi-autonomous
Non-tethered
Pre-programmed or teleoperated
100 grams; 13 cm long

Movies

M. Murphy and M. Sitti, *IEEE/ASME Trans. on Mechatronics*, 2006 (in press).

Current Waalbot II...

Geckobot

80 degrees slope Acrylic surface ~10 cm

O. Unver and M. Sitti, *IEEE Trans. on Robotics*, 2006 (under review).

Endoscopic Capsule Robots in the Digestive Tract

Pill Camera

Robotic Pill Camera

Given Imaging, Olympus, ...

- Increased controllability and performance

- Novel applications: biopsy, drug delivery, etc.

Funded by 21st Century Frontier Program, Korea

Camera Integrated Clamping Capsule Robot

Tests in a Plastic Tubing

Legged Locomotion on Water #1: Walking on Water

Water Striders in Nature

- Staying on water using surface tension
 - Surface tension $\propto L^1$

Buoyancy $\propto L^3$

- Super-hydrophobic legs using micro-hairs
 - One leg supports 15 times its body weight.
 - 0.1 mm diameter
 - Air pocket around the legs
- Very light (10-100 mg)
- 1-25 cm total length

Balancing Legs: Modeling Leg Lift Forces

$$\rho \cdot g \cdot h(x) := \gamma \cdot \left[\frac{\frac{d^2}{dx^2} h(x)}{\left[1 + \left(\frac{d}{dx} h(x)\right)^2 \right]^2} \right]^{\frac{3}{2}}$$

Young-Laplace equation: Δ P between surfaces = γ /R

Boundary conditions of *h*(*x*)

$$\frac{dh}{dx}(x_0) = \tan(\theta_c + \varphi - \pi)$$

$$h(\infty) = 0$$

$$\frac{dh}{dx}(\infty) = 0$$

How Deep Can the Leg Go? (When Does the Surface Break?)

Simulation of Maximum Lift Forces

Improved Supporting Legs

9.3 gr payload

Motorized Water Strider Robot

6.8 gr 5 cm/s 2 motors + poly-Li battery

Forward Motion

Rotation

Free Water-Walker...

Legged Locomotion on Water #2: Running on Water (Basilisk/Jesus Lizard)

Current Prototype

- Current specs:
 - 4 (and 2) legged
 - ~80 gr tethered
 - 6-10 rps
 - 50 g/W lift

Leonardo's Float Design...

For a 70 kg person: To walk on water: 10 km foot perimeter

To run on water:

10 m/s speed with 1 m² foot area

Conclusions

 Demonstrated miniature robots with various unique locomotion inspired by geckos, water striders, and basilisk lizards

Bio-inspired miniature robots

- Going beyond nature: Backward motion, more legs, etc.
- Designing and implementing robots inspired by nature, and understanding the nature better by the developed robots

• Enhancing the welfare of our society by applications in:

- Health-care, space, environmental monitoring, entertainment, education, homeland security, search and rescue, etc.
- Future Direction:
 - Autonomous, dynamic, agile, and all-terrain swarm of miniature robots