18-200

Introduction to
Computer Architecture at Carnegie Mellon Or
What are we doing with all these transistors?

Fall 2004
 Prof. Babak Falsafi

Associate Professor

Department of ECE \& CS CALCM
CSSI
http://www.ece.cmu.edu/~babak

Courses:

18-240 Fundamentals of Computer Engineering
18-447: Introduction to Computer Architecture
18-741: Advanced Computer Architecture
18-747: Advanced Topics in Microarchitecture

High-Perf. Memory Systems

Tempest (w/ Ailamaki)

- Streaming memory engine
- Correlate temporal data \& insts.
- Predict "when" to stream
- Bridge the CPU/memory perf. gap

Processor/memory performance gap will continue to increase!

SimFlex (w/Hoe \& Nowatzyk)

- Fast \& Accurate Simulation
- Using Statistical sampling
- Reduce time/benchmark from days to secs.

Nanoscale CMOS Systems

TRUSS (w/Hoe \& Nowatyk)

Failure trends:

- High chip density -> more error-prone
- High hard \& transient failure rate
- Downtime cost for brokerage operations: $\$ 6,450,000 / \mathrm{h}$ [Patterson, ROC keynote]

TRUSS = "RAID" for Computing

- Non-Stop Scalable Servers

Chiller (w/ Asheghi)

Dynamic HotSpot management

- Average heat much lower than peak
- But, designs target worst-case heat -> expensive + unreliable

Chiller processors:

- Identify HotSpots using nanosensors
Chill on the fly

Computers are Digital Systems

What's Inside a Computer

- Processor(s),

Microprocessor(s), or CPU(s)

- Memory subsystem
- I/O subsystem
a network, disk drives, keyboard, mouse, etc.

What is Computer Architecture?

- The science and art of selecting and interconnecting hardware components to create a computer that meets functional, performance and cost goals.

Selection process evolves because

- Technology changes
\rightarrow Enables new applications

Why Study Computer Architecture?

transistors

http://www.intel.com/research/silicon/mooreslaw.htm

Besides More Transistors....

Other aspects also improve

Technology	Annual Improvement
Transistor speed	$20 \%-25 \%$
Memory density	60%
Memory speed	4%
Disk density	25%
Disk speed	4%

Processor Performance

"Unmatched by any other industry" [John Crawford, Intel Fellow, 1993]

Doubling every 18 months (1982-1996): total of 800X

- Cars travel at 44,000 MPH; get 16,000 miles/gal.
- Air travel: L.A. to N.Y. in 22 seconds (MACH 800)
- Wheat yield: 80,000 bushels per acre

Doubling every 24 months (1970-1996): total of 9,000X

- Cars travel at 600,000 MPH; get 150,000 miles/gal.
- Air travel: L.A. to N.Y. in 2 seconds (MACH 9,000)
- Wheat yield: 900,000 bushels per acre

Exponential effect

User Requirements Change Too

- Types of applications today
- Scientific
- Weather prediction, crash analyșis, earthquake analysis, medical imaging, imaging of the earth (searching for oil)
- Business
- database, data mining, video
- General purpose
- Microsoft Word, Excel
- Real-time
- automated control systems
- Games
- Nintendo
- Mobile
- Tomorrow: you can think of one before leaving class today.....

A Historical Perspective - In the beginning...Eniac

Replacitg a led tube neent etooking enent EVIAC's 19.00 pessitilities.

5,000 additions in one second

Eniac

- Built at the University of Pennsylvania
- Lt Gillon, Eckert and Mauchley
- Initial contract for \$61,700, June 1943
- eventually cost $\$ 486,804.22$, in 1946
- Accumulator deployed in Jun 1944
- Accumulator, multiplier, divide and square root and 3 portable function tables completed in Fall 1945
- 200μ second cycle time for 1 add
- Internals
- 19K vacuum tubes, 1.5 K relays, 100K's of resistors, and inductors;

30 separate units; forced air cooling; Multiply's in base 10; just like a human

- Originally, no internal memory --> programmed w/cables and switches
- Designed to compute firing tables
- Differential equations of motion to compute trajectory in 15 seconds (same amount of computation took a human 20 hours)
- Power $=200 \mathrm{~K}$ Watts

Four Decades of Microprocessor

The Decade of the 1970's "Microprocessors"

- Single-Chip Microprocessors
- Personal Computers (PC)

The Decade of the 1980's "Quantitative Architecture"

- Instruction Pipelining
- Fast Cache Memories
- Workstations

The Decade of the 1990's "I nstruction-Level Parallelism"

- Superscalar Processors
- Low-Cost Desktop Supercomputing

The Decade of the 2000's
You will learn in 18-347/ 18-741/ 18-742/ 18-747

I ntel 4004, circa 1971

The first single chip CPU

- 4-bit processor for a calculator.
- 1K data memory
- 4K program memory
- 2,300 transistors
- 16-pin DIP package
- 740kHz (eight clock cycles per CPU cycle of 10.8 microseconds)
- $\sim 100 \mathrm{~K}$ OPs per second

Molecular Expressions: Chipshots

I ntel I tanium 2, circa 2002

Performance leader
in floating-point apps

- 64-bit processor
- 3 MByte on-chip memory!!
- 221 million transistor
- 1 GHz , issue up to 8 instruction per cycle

In ~30 years, about 100,000 fold growth in transistor count and performance!

Where Are Microprocessors?

- Right now...
- Supercomputers, workstations, PCs
- Set-Top boxes
- DVD players, CD players
- Cars (many per car)
- Modems, network cards
- Toasters, microwave ovens, fridges
- Soon...
- Your clothing, your glasses, your jewelry...
- Everywhere

"Non-computer" I Cs Have CPUs Too

Computer Architecture @ CMU: Curriculum

Computer Architecture Lab (CALCM)

- Pronounced "calcium"
- Architecture students \& faculty
- "At Carnegie Mellon" means ECE + CS + ...
- 10 faculty
- Lots of very stellar students (over 30 at last count)
- Over a dozen research projects
- Seminar on Tuesdays @ 4pm

What Are Hot Topics in Architecture? Topic \#1: Parallelism

Want to make programs go fast
Execute program in parallel

- Pipeline execution
- Superscalar \rightarrow multiple pipelines
- Like mult. lunch buffets Research:
- Independent exec?
- Program control flow?

Topic \#2: The Memory Wall

Processor/memory performance gap will continue to increase!

Today's Solution

- Hierarchy of memory levels
- Trade off capacity for speed
- Like fast short term memory
- When looking, CPU must wait

Recent research indicates

- Server running top 4 DB systems
- Half of the time, CPU is idle waiting for memory

Bigger Problem in Multiprocessors

Typical platforms:

1. Chips with multiple CPUs
2. Servers with multiple chips
3. Memory shared across

Memory access:

- Traverse multiple hierarchies

Current research:

- Track repetitive patterns

- Replay ahead of time to overlap latency

Topic \#3: Slow Design Evaluation Tools

> 7 trillion inst. in SPEC CPU benchmarks (www.spec.org)

Current research:

- Statistical sampling
- Accurate \& fast measurement

Full-benchmark simulation is not tractable

Topic \#4: Future CMOS Digital Systems

- In 2010, we will have chips with billions and billions of tiny but lousy transistors
- "Leak" power \rightarrow need cooling
- Lose information \rightarrow need protection
- Highly defective \rightarrow cost a lot
- Complex designs \rightarrow need verification
- Research:
- Circumvent trans. limitations

Reliability in Future CMOS Systems

- Highly-integrated chips
- more error-prone
- High rate of failure in future
a hard failure or bit flips due to cosmic rays
- High complexity designs

Reliability/availability is key in many important enterprise applications

- Downtime cost for brokerage operations: \$6,450,000/h [Patterson, ROC keynote]

Current research:

- Make systems "bullet-proof" for critical apps

Power in Future CMOS Systems

Power consumption is hitting the roof

- Chip power soon approaching 1KW
- Buildings \rightarrow Hundreds of multi-KW desktops/servers
- Battery is classic problem example
- You also run out of electricity \rightarrow e.g., California

But, heat density prohibitive in high-perf. systems!

- Heat adversely affects reliability (remember AMD?)
- Some rack-mounted blades are already heat-limited

Current research:

- Reduced energy/heat with minimal perf. impact

Topic \#5: Beyond CMOS

Molecular technology:

- Carbon nanotubes
- Act as both wires and switches
- Trillions, trillions of "transistors"

Quantum technology:

- At its very infancy

