MEMS in ECE at CMU Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890

fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

18-200 - September 23, 2004

What is MEMS?

- MEMS have mechanical components with
 dimensions measured in microns and
 - numbers measured from a few to millions
- MEMS is a way to make both mechanical and electrical components
- MEMS is manufacturing using integrated-circuit batch fabrication processes

Why work on MEMS?

- Miniaturization
 - portable and remote applications
 - Lighter, faster, lower power sensors and actuators
- Multiplicity of devices
 - More complexity allowed
 - arrayed systems (e.g., imagers) possible
 - Cost reduction possible
- Microelectronic integration
 - "smart" and "aware" systems on chip
 - Mixed electrical, mechanical, thermal, optical, fluidic, chemical, biochemical systems

MEMS in Embedded Systems

- Information systems are pervasive in our lives
- Trend is toward
 portability,
 - autonomy,
 - context awareness
- Creating demand for miniature sensor and actuation systems

 Ultimately, the embedded system is a MEMS

Bulk (Substrate) Micromachining

- Preferential etching of silicon, glass, and other substrates
- Examples:
 - Grooves for fiber-optic alignment
 - Membranes for pressure sensors, microphones
 - Nozzles for ink-jet printing, drug delivery

Surface (Thin Film) Micromachining

- Mechanics from thin films on surface
- Etching of sacrificial material under microstructure
- Suspended structures for inertial sensing, thermal sensing, resonators, optics, fluidics... anchor, suspended /

microstructure

electrically insulating layer

substrate

Micromechanical Structural Material

- Survives process steps
- Stiffness
- Yield strength
- Density
- Electrical conductivity or isolation
- Thermal conductivity or isolation
- Residual stress
- Residual stress gradient

structural

Example: Multi-level Polysilicon Processes

- "MUMPS"
 Process
- Bottom
 polysilicon
 interconnect
- Two
 movable
 polysilicon
 layers

anchored poly0

www.memscap.com

Post-CMOS Micromachining

- One focus of MEMS research in ECE at CMU
- Structures made starting from CMOS electronics

G. Fedder et al., Sensors & Actuators A, v.57, no.2, 1996

09/14/03 - Fedder - 9

Post-CMOS Micromachining – Oxide RIE

- Step 1: reactive-ion etch of dielectric layers
- Top metal layer acts as a mask & protects the

CMOS

Post-CMOS Micromachining – Si DRIE • Step 2: DRIE of silicon substrate

 Spacing between structures and silicon is defined

Post-CMOS Micromachining – Release

- Step 3: isotropic etch of silicon substrate
- Structures are undercut & released

CMOS MEMS Structures

- Made from CMOS
 interconnect layers
- Electronic integration
- Electrostatic and thermal actuation can be added
- Capacitive and resistive sensing can be added

H. Lakdawala, et al., JSSC Mar. 2002.

Lateral Low-G Accelerometer

- Low-G accelerometer to study noise sources in CMOS-MEMS
- Limit: air molecules hitting the structure!

sense fingers proof mass suspension

Electrothermal Actuators

- Electrically controllable motion on chip
- Microbeams are electrically heated (Power = I²R)
- Beams bend from material expansion

Electrothermal Comb-Finger Capacitor

- Tunable capacitor in 0.35 µm CMOS
- Dense comb array provides variable Electrothermal actuators

...... 100 µm kV Yoke for static fingers

A. Oz, G. K. Fedder, IEEE Transducers 2003 & MTT-S RFIC 2003, June 2003

Yoke for moving

fingers

Electrothermal Micromirrors

- 1 mm by 1 mm by
 25 µm-thick mirror
- Thermal actuation of 25° from 0 to 5 mA

H. Xie, Y. Pan, G. K. Fedder, IEEE MEMS 02 & Sensors & Actuators 02 H. Xie, A. Jain, T. Xie, Y. Pan, G. K. Fedder, CLEO 2003

Implantable Bone Stress Imager

- Applications:
 - Measure bone stress in fracture sites
 - Measure stress on implant interface
- Textured surface for osteointegration
- 100's of stress sensors for statistical data

The Bottom Line

- MEMS spans many levels
 - processing
 - physical transduction
 - devices
 - system-on-chip design
- Work merges ECE areas with other fields – e.g., mechanical, chemical, biology
- Emerging area in industry
 - lots of hype, lots of opportunity

Applied Physics – Device Sub-areas, Fall 04

Course Content (Abridged Version)

18-303 Engineering Electromagnetics I

Static electric and magnetic fields in free space and in materials; Maxwell's equations, boundary conditions and potential functions; Uniform plane waves, transmission lines, waveguides, radiation and antennas.

18-311 Semiconductor Devices I

P-N diodes, bipolar transistors, MOSFETs, photodiodes, LEDs and solar cells; Doping, electron and hole transport, and band diagrams.

• 18-401 Electromechanics

Electromechanical statics and dynamics;

Energy conversion in synchronous, induction, and commutator rotating machines, electromechanical relays, capacitive microphones and speakers, and magnetic levitation.

18-410 Physical Sensors, Transducers and Instrumentation Sensor physics, transducers, electronic detection, and signal conversion; Case study driven.

18-412 Semiconductor Devices II MOSFETs, JFETs, MESFETs, TFTs; Device scaling; CCD imagers; active matrix flat panel displays; digital and RF applications.