

Greg Ganger

Associate Professor, ECE & CS Director, Parallel Data Lab http://www.ece.cmu.edu/~ganger/ ganger@ece.cmu.edu

Courses:

15-712: Adv. OS & Distributed Systems18-746: Storage Systems

Parallel Data Lab

Academia's premiere storage systems research center

MAJOR PROJECTS

- Self-* Storage
- Survivable Storage
- Self-Securing Devices
- Semantic File Systems
- Fates Database Storage
- Expressive Storage Interfaces

Self-* Storage

Self-managing, self-organizing, selfhealing, self-tuning, self-configuring, ...

- > architect with a clean slate
 - integrate self-admin into design
 - rather than after-the-fact tools
 - automate, automate, automate
 - people specify goals
 - system figures out mechanisms
- > and, we are actually building it
 - target: 1 PB for CMU researchers
 - goal: research in administration and survivability

Software Systems at CMU, and my main sub-area of Storage Systems

Plan for today

- Talking software systems
 - some examples and courses
- My sub-area: storage systems
 - what it's all about
 - example problems
 - my big research activity
- A few random thoughts
 - for what they're worth...

Example software systems

- Operating systems
 - Microsoft Windows, linux, etc.
- Distributed games
 - Quake, Xpilot, etc.
- Distributed storage systems
 - the Web (WWW), AFS, etc.
- Data processing systems
 - Quicken, Matlab, etc.
- … and many, many, many, others

These things are COMPLEX

- What do operating systems do?
 - Provide abstractions of system resources
 - processes, files, sockets, malloc, etc...
 - Isolate application writers from details and each other
- Why are they complex?
 - many objectives
 - performance, reliability, ease of use, security, maintainability, ...
 - desire for high utilization of resources
 - generality: support all applications well
- Also, the problem keeps changing
 - technology advances and new applications
- ... and combining multiple systems (the soul of distributed systems) complicates everything further

What makes software systems tough and interesting

Reality

- simplifying assumptions often don't hold up
 - people are rarely rational, arrivals are rarely Gaussian, environments are rarely clean, failures are rarely independent, etc...
- poorly done systems can be incredibly expensive
 - billions of dollars and even life&death
- Rapid changes in technology and applications
 - technology advances change the rules
 - new applications change the requirements
- Most generally: Complexity
 - coping with complexity is what almost all of it boils down to

Real examples of disasters (from J. Saltzer)

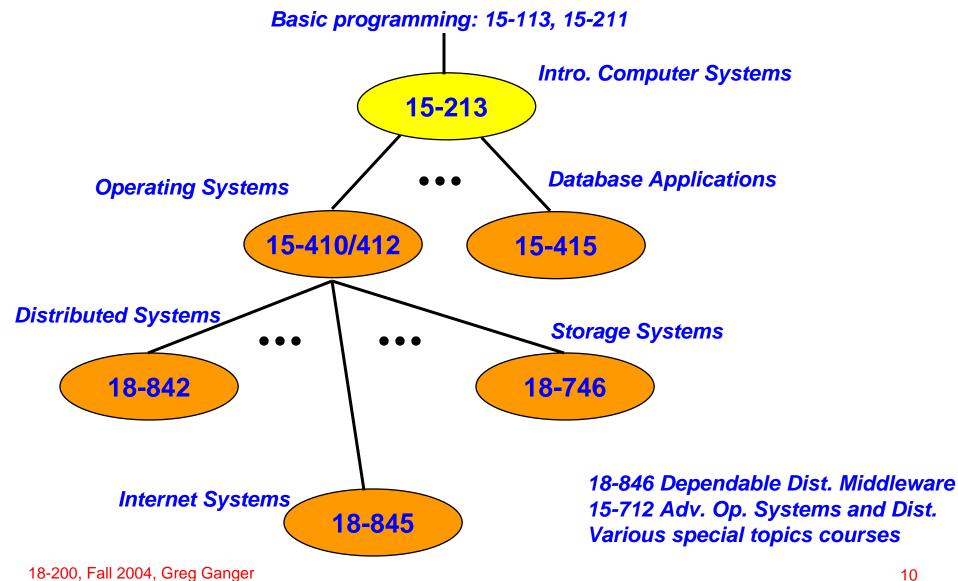
- Tax system modernization
 - U.S. Internal Revenue Service
 - tried to replace 27 aging systems
 - Started 1989, scrapped 1997, spent: \$4B
 - Causes: complexity
 - all-or-nothing massive upgrade
- Advanced automation system
 - U.S. Federal Aviation Administration
 - tried to replace 1972 Air Route Traffic Control System
 - Started 1982, scrapped 1994, spent: \$6B
 - Causes: complexity
 - changing specs, grandiose expectations, congressional meddling

More examples of disasters (from J. Saltzer)

Ambulance dispatching

- London ambulance service
 - automate dispatching and routing
- Started 1991, scrapped 1992, cost: 20 lives lost (and \$2.5M)
 - shut down after 2 days of operation
- Causes: complexity and poor management
 - unrealistic schedule (5 months), overambitious objectives, unidentifiable project manager, low bidder had no experience, no testing/overlap with old system, users not consulted during design

Automated DMV


- California department of motor vehicles
- Started 1987, scrapped 1994, spent: \$44M
- Causes: complexity and blame shedding
 - underestimated cost by 3X, slower than 1965 system, governor fired whistlerblower, DMV blames Tandem, Tandem blames DMV

Rapid pace of our field

Technology is a major driver

- Technology eliminates some problems and creates new ones (and enables new applications) over time
- Incommensurate scaling makes things interesting
- This means that one has to be on top of technology characteristics and trends
- New application requirements are another major driver
 - Changes the rules (assumptions), often forcing redesign
 - Example: video conferencing vs. best-effort networking
 - Example: mobile computing vs. file system caching
- Systems are complicated and consist of many parts
 - To do top-quality work, you must know about them all!
 - ... and their interactions too.

Software Systems Courses

What are "storage systems"?

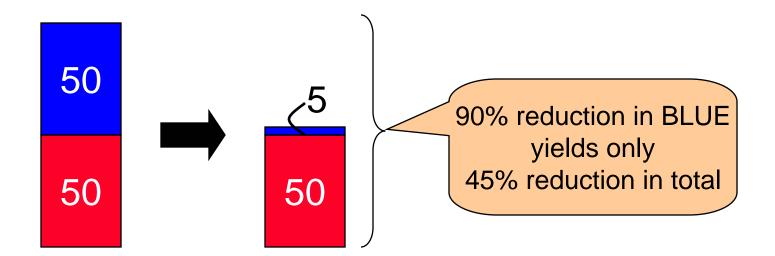
- Software, interconnects, and devices that collectively provide application writers with an infrastructure that retains persistent data and provides it on request
 - "storage" is where the data lives
 - "systems" are organized collections of components
- Storage systems are at the heart of the information age!
 - the foundation of modern computing
 - the Internet is a network, but the web is a storage system
 - digital libraries, bank accounts, e-commerce transactions, medial records, myriad databases, e-mail, & all your files...
 - EMC, Veritas, Google, NetApp, Oracle, IBM, HP, Sun, …

What makes storage systems so cool?

- 1. Combines so many topic areas:
 - hardware meets OS meets networking meets embedded systems meets distributed systems meets security...
 - so, it's just plain cool!

What makes storage systems so cool?

- 1. Combines so many topic areas
- 2. This is where great jobs are!
 - Designers and implementers still needed
 - not just testing
 - Continuing growth area for the future
 - The Internet is a network, but the web is a storage system
 - Strong existing companies: EMC, Veritas, NetApp, IBM, HP, ...
 - and still support for start-ups: Panasas, Spinnaker, and many others


What makes storage systems so cool?

- 1. Combines so many topic areas
- 2. Great careers
- 3. Still so much room to contribute:
 - performance actually matters here
 - in fact, it dominates system performance in many cases
 - storage management wide open

Amdahl's Law

Speedup limited to fraction improved

obvious, but fundamental, observation

Consequence for storage systems this has been going on for years!

Major goals/topics of 18-746

Deep, end-to-end understanding of storage systems

- key applications and technology trends
- major components and fitting them together
- storage management
- Major topics
 - disk operation, firmware, and disk arrays
 - storage interconnects and networking
 - file systems and database back-ends
 - distributed file systems and content delivery
 - virtualization and server farms
 - storage management, data protection, disaster recovery

history, alternate technologies, and trends

Some key "storage systems" challenges

- Mitigating the performance limitations of disks
 - often the bottleneck to overall system performance
- Understanding and integrating new technologies
 - how will systems change when...
- Helping users find desired info
 - as the web and growing disks enable info overload
- Robustness in the face of failures and malicious attacks
 - you understand, unless you've had your head in the sand
- Simplifying and automating storage administration
 - 4-8 dollars for every \$1 of hardware

