
Appeared in the Proceedings of the ACM Sigmetrics Conference, May, 1994, pp. 241-251.

Scheduling Algorithms for Modern Disk Drives

Bruce L. W orthington, Gregory R. Ganger, Y ale N. Patt

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor 48109-2122

worthing@eecs.umich.edu

Abstract

Disk subsystem performance can be dramatically im-

proved by dynamically ordering, or scheduling, pending re-

quests. Via strongly validated simulation, we examine the

impact of complex logical-to-physical mappings and large

prefetching caches on scheduling e�ectiveness. Using both

synthetic workloads and traces captured from six di�er-

ent user environments, we arrive at three main conclusions:

(1) Incorporating complex mapping information into the

scheduler provides only a marginal (less than 2%) decrease in

response times for seek-reducing algorithms. (2) Algorithms

which e�ectively utilize prefetching disk caches provide sig-

ni�cant performance improvements for workloads with read

sequentiality. The cyclical scan algorithm (C-LOOK), which

always schedules requests in ascending logical order, achieves

the highest performance among seek-reducing algorithms for

such workloads. (3) Algorithms that reduce overall position-

ing delays produce the highest performance provided that

they recognize and exploit a prefetching cache.

1 Introduction

Disk subsystems must be carefully managed to compen-

sate for the growing performance disparity between process-

ing and storage components. Disk workloads are often char-

acterized by intense bursts of activity, creating long queues

of pending requests [McNu86, Ruem93]. The disk scheduler

is responsible for dynamically ordering the pending requests.

A signi�cant portion of request service time may be com-

prised of mechanical positioning delays, which are highly

dependent on the relative positions of the various request

blocks and the current disk arm position. By taking into

account the various delays associated with disk accesses, a

scheduler can minimize the total positioning overhead while

providing reasonable response times for individual requests.

Over the past 25 years, a variety of scheduling al-

gorithms have been proposed and implemented in both

0

academia and industry. Their relative merit is dependent on

the exact workload of disk requests, the scheduler's compu-

tational resources, and the available knowledge of disk drive

con�guration and current status. Most previous studies of

scheduling algorithms used simplistic disk models, lacking

several important features present in modern disk drives.

On-board logic has expanded to allow the mapping of logi-

cal data blocks to physical media to be hidden by a high-level

interface, making this information unavailable to any exter-

nal scheduling entity. Small speed-matching bu�ers have

been replaced with large prefetching caches. In this paper,

we investigate how these features a�ect the performance of

various scheduling algorithms.

In addition, previously published work has been limited

to synthetic workloads. Most of these studies assume that

request starting locations are uniformly distributed across

the entire disk. While much can be learned using such ran-

domworkloads, the validity of the results remains in question

until veri�ed using more \realistic" workloads. We use ran-

dom workloads to allow comparison with previous work, but

most of our experiments utilize extensive traces from various

real-world systems. The traces and synthetic workloads are

used to drive a very detailed, well-validated disk simulator.

Section 2 describes modern disk drives and how some
features can a�ect scheduling accuracy. Section 3 dis-

cusses previous scheduling research. Section 4 describes our

methodology, including our validation e�orts and the origins

of the six traces. Sections 5 and 6 present our results using

random workloads and traces, respectively. Section 7 sum-

marizes this work and suggests avenues for future research.

Additional data and descriptions, excluded due to space lim-

itations, can be found in [Wort94].

2 Modern Disk Drives

A disk drive contains a set of rapidly rotating platters

(on a common axis) coated on both sides with magnetic me-

dia. Data are written in circular tracks on each surface.
The minimum unit of data storage is usually a sector, which

commonly holds 512 bytes of data plus header/trailer infor-

mation (e.g., error correction data). A cylinder is a set of

tracks (one from each surface) equidistant from the center

of the disk. For example, the innermost cylinder contains

1

the innermost track of each surface. Therefore, a physical

media location is de�ned by its cylinder, surface, and sec-

tor. The disk arm holds a set of read/write heads that can

be positioned to access any cylinder. The heads are ganged

together such that a given disk arm position corresponds to

a speci�c cylinder. In most drives only one read/write head

is active at any given time.

Requests serviced by the disk drive may su�er one or

more mechanical delays. First, the disk arm must move

(seek) to the target cylinder. Second, rotational latency

is incurred while waiting for the target sectors to reach the

read/write head. After these delays, the data transfer be-

gins. Additional mechanical delays result if the desired data

spans multiple tracks or cylinders.

Current disk drives have several features that can di-
rectly a�ect the accuracy of scheduling algorithms. Some

are the result of of e�orts to make disks self-contained or
self-managed. Clever methods of increasing a disk drive's ca-

pacity and e�ective lifetime also have a major impact. One

goal of our work is to determine exactly how these charac-

teristics should factor into scheduling algorithms.

2.1 Host Interface

Most disks possess su�cient on-board logic and process-

ing power to present a relatively clean interface to the host

system. Such protocols as the Small Computer System In-

terface (SCSI) and the Intelligent Peripheral Interface (IPI)

are used by a wide variety of disk drive, adapter, and host

system manufacturers. The host or intermediate controller

presents a request to the disk drive in terms of the starting

logical block number (LBN) and total request size. The

details of the subsequent media access are typically hidden

from the host. This approach o�oads most of the man-

agement overhead associated with the actual data storage

from the host or controller to the disk drive electronics. On
the other hand, scheduling entities outside of the drive it-

self often have little or no knowledge of the data layout on

the media, the status of any on-board disk cache, and the

various overhead delays associated with each request.

2.2 Data Layout

Many systems use LBN-based approximations of seek-

reducing algorithms. LBN-based scheduling relies on the

sequentiality of logical block to physical block (LBN-to-

PBN) mappings. More aggressive algorithms may require

highly accurate knowledge of the data layout. As mentioned

above, such mappings may be unavailable or very di�cult

to obtain. The complexity of the mappings is increased by

zoned recording, track/cylinder skew, and defect manage-

ment [Ruem94, Wort94].

2.3 On-Board Cache

The use of memory within embedded disk drive control

logic has progressed from small, speed-matching bu�ers to

dynamically-controlled caches containing megabytes of stor-

age. The disk logic can automatically prefetch data into the

cache to more quickly satisfy sequential read requests. For

example, a disk might take 20 ms to service a read request

that requires media access. A subsequent sequential read

might take only 2 ms if the data has been prefetched into

the on-board disk cache.

The existence of an on-board cache a�ects scheduling

activities in several ways. First, if the disk is con�gured

to prefetch aggressively, the position of the read/write head

cannot necessarily be determined by knowledge of the most

recent request location and length. The disk will continue

reading beyond the end of a previous read request, possibly

switching read/write heads or seeking to the next cylinder.

Second, cached data can be accessed far more quickly than

data obtained from the disk media. Requests that can be

satis�ed by the cache could therefore be given higher priority.

3 Disk Scheduling Algorithms

Numerous studies have shown that a simple First Come

First Served (FCFS) disk scheduling policy often results in

suboptimal performance. Many scheduling algorithms have

been proposed that achieve higher performance by taking

into account information about individual requests and the

current state of the disk subsystem.

3.1 Seek Delay Reduction

Over 25 years ago, [Denn67] analyzed the advantages of

a Shortest Seek Time First (SSTF) policy. This algorithm

chooses the next request to service by selecting the pending

request that will incur the smallest seek delay. It is usu-

ally infeasible to predict exact seek times, but SSTF may be

closely approximated by using seek distances. SSTF reduces

the average response time over a wide range of workloads.

However, the potential for starvation of individual requests

increases with the disk utilization, resulting in excessive re-

sponse time variance. Given a heavy workload, the arm

tends to hover over a subset of the cylinders in an attempt

to exhaust all requests to that region, thereby starving any

requests outside of that space.

[Denn67] also examined the SCAN or \elevator" algo-

rithm, which provides a lower response time variance than

SSTF with only a marginal increase in the average response

time (for the random workloads studied). This algorithm

is named for the way the disk arm shuttles back and forth

across the entire range of cylinders, servicing all requests in

its path. It only changes direction at the innermost and out-

ermost cylinder. Because the disk arm passes over the center

region of the disk at more regular intervals than the edges,

requests to middle cylinders receive better service. However,

every cylinder is reached during both phases of the scan. As

a result, SCAN resists starvation more e�ectively (i.e., has

lower response time variance) than SSTF.

Several variations of the SCAN algorithm have been pro-

posed. The Cyclical SCAN algorithm (C-SCAN) replaces

the bidirectional scan with a single direction of arm travel

[Seam66]. When the arm reaches the last cylinder, a full-

stroke seek returns it to the �rst cylinder without servic-

ing any requests along the way. C-SCAN treats each cylin-

der equally, rather than favoring the center cylinders. The

LOOK algorithm, another SCAN variation, changes the

scanning direction if no pending requests exist in the cur-

rent direction of travel [Mert70]. C-SCAN and LOOK can

be combined, resulting in the C-LOOK algorithm.

VSCAN(R), proposed in [Geis87], creates a continuum

of algorithms between SSTF and LOOK. The R parameter

denotes how strongly biased the scheduler is towards main-

taining the current direction of travel. VSCAN(0.0) is equiv-

alent to SSTF, and VSCAN(1.0) reduces to LOOK. [Geis87]

suggests that VSCAN(0.2) provides a good balance between

average response time and starvation resistance.

3.2 Positioning Delay Reduction

Reducing the average seek delay only requires knowledge

about the relative seek distances between requested data. To

account for rotational latency, more complete information

about the actual mapping of data blocks onto the media is

necessary. In addition, the current physical location of the

active read/write head must be known. Given this infor-

mation, the scheduler can choose the request with the min-

imum positioning delay (i.e., combined seek and rotational

latency). This algorithm was denoted as Shortest Time First

(STF) in [Selt90] and Shortest Access Time First (SATF) in

[Jaco91], but we use the term Shortest Positioning Time

First (SPTF) to clarify the exact focus of the algorithm.

SPTF, like SSTF, su�ers from poor starvation resis-

tance. To reduce response time variance, priority can be

given to requests that have been in the pending queue for

excessive periods of time. The priority may slowly increase

as the request ages, or a time limit may be set after which

requests are given a higher priority [Selt90, Jaco91].

HP C2247 Disk Drive

Formatted Capacity 1.05 GB
RPM 5400

Data Surfaces 13
Cylinders 2051
Sectors 2054864
Zones 8

Sectors/Track 56-96
Interface SCSI-2

256 KB Cache, 1-4 Segments
Track Sparing/Reallocation

Table 1: HP C2247 Disk Drive Basic Parameters

4 Methodology and Validation

4.1 Disk simulator

We have developed a detailed, strongly validated disk

simulator to compare scheduling algorithms. The simula-

tor accurately models zoned recording, spare regions, defect

management, disk bu�ers and caches, various prefetch al-

gorithms, bus delays, and control and communication over-

heads. For this paper, the simulator was con�gured to model

the HP C2240 series of disk drives [HP92]. Table 1 lists some

basic speci�cations for the HP C2247. To accurately model

this drive, an extensive set of parameters was obtained from

published documentation and by monitoring the SCSI activ-

ity generated by this particular disk. We extracted a seek

curve, control and communication overheads, bus transfer

rates, and cache management strategies. We also determined

the exact LBN-to-PBN mappings for several of these disks,

which provided information about zoning, sparing, and ex-

isting defects. The validated simulator con�guration, in-

cluding values for all relevant parameters, is described in

[Wort94].

The simulator was validated by exercising an HP C2247

and capturing traces of all SCSI activity. Each traced re-

quest stream was run through the simulator, using the ob-

served request interarrival delays. This process was repeated

for several workloads with varying read/write ratios, interar-

rival times, request sizes, and degrees of sequentiality and lo-

cality. The average response times of the actual disk and the

simulator match to within 0.8% in all cases. Unpredictable

host delays partially account for this di�erence. Greater in-

sight can be achieved by comparing the response time distri-

butions [Ruem94]. Figure 1 shows measured and simulated

response time distributions for a sample validation workload.

As with most of our validation results, one can barely see

that two curves are present. [Ruem94] de�nes the root mean

square horizontal distance between the two distributions as

a demerit �gure for disk model calibration. The demerit �g-

ure for the validation run shown in �gure 1 is 0.07 ms, or

 Actual
 Simulation

|
0

|
5

|
10

|
15

|
20

|
25

|
30

|
35

|
40

|
45

|
50

|0.00

|0.25

|0.50

|0.75

|1.00

 Response Time Distribution (ms)

Figure 1: Validation Workload Response Time Distributions:

10K requests, 30% sequential, 30% local, 50% read, exponential

request size with 8KB mean, uniform interarrival of 0-22 ms

less than 0.5% of the average response time. The worst-case

demerit �gure observed over all validation runs was 1.9% of

the corresponding average response time.

4.2 Workloads

We use synthetically generated random workloads and

extensive traces captured from actual systems. We describe

the traces only briey as they have been described elsewhere

in more detail [Ruem93, Rama92]. The traced workloads

span a broad range of environments, and each is at least a

full workshift (8 hours) in length.

Two of the traces come from Hewlett-Packard systems

running HP-UXTM , a version of the UNIXTM operating sys-

tem [Ruem93]. Cello comes from a server at HP Labs used

for program development, simulation, mail, and news. Snake

is from a �le server at the University of California at Berke-

ley used primarily for compilation and editing. While these

traces are actually two months in length, we report data for

a single week-long snapshot (5/30/92 to 6/6/92).

The other four traces are from commercial VAXTM

systems running the VMSTM operating system [Rama92].

Air-Rsv is from a transaction processing environment in

which about 500 travel agents made airline and hotel reser-

vations. Sci-TS is from a scienti�c time-sharing environment

in which analytic modeling software and graphical and sta-

tistical packages were used. Order and Report are from a

machine parts distribution company. Order was collected

during daytime hours, representing an order entry and pro-

cessing workload. Report was collected at night, capturing

a batch environment in which reports of the day's activities

were generated.

4.3 Disks

We chose to simulate members of the HP C2240 series of
drives for two reasons. First, our simulator correctly mod-

els the behavior of this line of drives. Second, we do not

have detailed speci�cations for the disks used on the traced

systems, nor access to such disks in order to extract this

information.

This disk substitution leads to two signi�cant di�cul-

ties. First, our base disk (the HP C2247) has a di�erent

storage capacity than the disks used by the traced systems.

To better match the size of the simulated disks to those
in the traced systems, we modify the number of platters

(5 for Sci-TS, Order, and Report; and 9 for Cello, Snake,

and Air-Rsv) to create disks large enough to contain the ac-

tive data without excessive unused media. We feel that this
is a reasonable approach, as a production line of disks often

di�ers only in the number of physical platters.

The second and more important issue is that HP C2240

disks service requests at a di�erent rate than the disks used

in the traced systems. An ideal model would incorporate

feedback e�ects between request completions and subsequent

arrivals. Unfortunately, information about how individual

request arrivals depend upon previous completions is not

present in the traces. Developing a methodology for realis-

tically modeling such feedback e�ects is an area for future

research. The approach used in this work was to scale the

traced interarrival times to produce a range of average in-

terarrival rates. When the scale factor is one, the simulated

interarrival times match those traced. When the scale factor
is two, the traced interarrival times are halved (doubling the

average arrival rate). However, even with a identity scaling

factor the workload would undoubtedly have been di�erent

if the system traced were using HP C2240 disk drives. This

is a common problem with this type of trace-driven simula-

tion (which behaves as an open system), but we believe that

the qualitative results and insights are valid.

4.4 Metrics

The average response time (across all disks) is the pri-

mary metric used for comparing the various scheduling algo-

rithms. The squared coe�cient of variation (�2=�2) is also

used, as in [Teor72]. Given a constant average response time,

a decrease in the coe�cient of variation implies reduced re-

sponse time variance (i.e., improved starvation resistance).

5 Synthetic Workloads

Synthetically generated random workloads were used in

order to replicate previous work and to obtain a starting

point for further experiments. The request stream consisted

of 8 KB accesses (a typical �le system block size) uniformly

distributed across the available logical space. The request

interarrival times were exponentially distributed, with the

mean varied to generate lighter or heavier workloads. The

ratio of reads to writes was set to 2:1. Each data point is

the average of at least three separate runs of 250,000 disk

requests, corresponding to simulated workloads of 50 to 400

hours of activity. Unless otherwise noted, the disk model

was con�gured with 38 slipped tracks (matching the largest

defect list found in our experimental HP C2247 disk drives).

The results are partitioned into three groups based on

the level of information available to the scheduling algo-

rithms: scheduling based on LBN, scheduling given an accu-

rate LBN-to-PBN mapping, and scheduling with full knowl-

edge (including current disk head position, overhead delays,

cache contents, etc.).

5.1 Scheduling by Logical Block Number

Even if the scheduler has little or no knowledge of LBN-

to-PBN mappings, it can approximate seek delays via the

\distance" between logical block numbers for individual re-

quests. For example, if a request to logical block 100 has

just completed, an LBN-based C-LOOK scheduler will se-

lect a pending request for logical block 150 over one for log-

ical block 200. The accuracy of this approximation is deter-

mined by the scheduling algorithm, the variance in sectors

per track between zones, the defect management scheme,

and any cache prefetching activity.

Figure 2a graphs the average response times for FCFS,

LOOK, C-LOOK, SSTF and VSCAN(0.2) for a range of av-

erage arrival rates. As expected, FCFS quickly saturates as

the workload increases. Since C-LOOK is designed to reduce

the variance of response times (as well as the mean), its av-

erage response times run 5-10% higher than those of LOOK,

SSTF, and VSCAN(0.2) for medium and heavy workloads.

For sub-saturation workloads, SSTF provides a slightly lower

mean response time (up to 1% under VSCAN(0.2) and 2%

under LOOK). For workloads at the edge of saturation,

SSTF loses to VSCAN(0.2) and LOOK by similar margins.

Figure 2b shows the corresponding squared coe�cients

of variance. FCFS has the lowest coe�cient for lighter work-

loads. As FCFS begins to saturate and its response time

variance expands, C-LOOK emerges as the algorithm with

the best starvation resistance. SSTF, as expected, is highly

susceptible to starvation.

These results compare well with previous studies of

scheduling for random workloads [Geis87, Selt90, Teor72].

5.2 Scheduling with Known Mapping

If the scheduler has knowledge of LBN-to-PBN map-

pings, it can more accurately predict seek delays and thereby

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0

|50

|100

|150

|200

|250

 Mean Arrival Rate (Hz)

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

(a) Average Response Time

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

 Mean Arrival Rate (Hz)

 S
qu

ar
ed

 C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
ti

on

�

�

�

�

� �
�

�

�

�

�

�

� �

�

�

�

�

�

� �

(b) Squared Coe�cient of Variation (Response Times)

Figure 2: LBN-Based Scheduling of Random Workloads

produce better schedules. However, a heuristic for schedul-

ing requests within a cylinder must be chosen. We employ

a C-LOOK scheme in order to take advantage of the HP

C2247's prefetching cache (see section 6). Thus each al-

gorithm uses C-LOOK within a cylinder (until all requests

within the cylinder are satis�ed) and one of the experimental

algorithms when selecting the next cylinder to service.

The LBN-based and full-map versions of each algorithm

produce virtually identical performance, as measured by

both average response times and coe�cients of variation. As

random workloads contain few sequential requests, prefetch-

ing provides little or no performance improvement. The

cylinder heuristic also has little e�ect, as individual cylin-

ders rarely contain multiple pending requests.

To determine the inuence of excessive defects on the
scheduler's accuracy, we modi�ed the simulator to model an

HP C2247 with half of its spare tracks (450 out of 900) �lled

 FCFS
� � C-LOOK (LBN)

 SSTF (LBN)
� � ASPTF(30)
� � ASPTF (12)
� � ASPTF (6)
� � ASPTF (2)
� � SPTF

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0

|50

|100

|150

|200

|250

 Mean Arrival Rate (Hz)

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

(a) Average Response Time

 FCFS
� � C-LOOK (LBN)

 SSTF (LBN)
� � ASPTF(30)
� � ASPTF (12)
� � ASPTF (6)
� � ASPTF (2)
� � SPTF

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|0.00

|0.25

|0.50

|0.75

|1.00

|1.25

 Mean Arrival Rate (Hz)

 S
qu

ar
ed

 C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
ti

on

�

�

�

�

� �
�

�

�

�

�

� � � �

�

�

�

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

� �

(b) Squared Coe�cient of Variation (Response Times)

Figure 3: Full-Knowledge Scheduling of Random Workloads

due to randomly grown defects. To maximize the perturba-

tion in the LBN-to-PBN mapping, all of the defects were dy-

namically reallocated. Even with over 2% of the disk's tracks

remapped, full mapping information provides little improve-

ment in performance. SSTF, the algorithm most sensitive

to the LBN-to-PBN mapping, improves by less than 1%.

We conclude that maintaining a full LBN-to-PBN map-

ping is not justi�ed for seek-reducing algorithms when

scheduling random workloads.

5.3 Scheduling with Full Knowledge

Given su�cient computational resources, a full LBN-to-

PBN mapping, accurate values for various control and com-

munication overheads, and some indication of the drive's

current rotational position, the scheduler can select the

pending request which will incur the smallest total posi-

tioning delay (seek and rotational latency). As with SSTF,

Trace Length Disks Number of Avg Size
Name (hrs) Requests (KB)

Cello 168 8 3,262,824 6.3
Snake 168 3 1,133,663 6.7
Air-Rsv 9 16 2,106,704 5.1
Sci-TS 19.6 43 5,187,693 2.4
Order 12 22 12,236,433 3.1
Report 8 22 8,679,057 3.9

Table 2: Basic Characteristics of the Traces

SPTF is highly susceptible to request starvation. For this

reason, we also examined an aging algorithm based on SPTF.

Denoted as Aged Shortest Positioning Time First (ASPTF),

this algorithm is equivalent to the ASATF algorithm pro-

posed in [Jaco91]. ASPTF adjusts each positioning delay

prediction (Tpos) by subtracting a weighted value corre-

sponding to the amount of time the request has been waiting

for service (Twait). The resulting e�ective positioning delay

(Teff) is used in selecting the next request:

Teff = Tpos � (W � Twait)

The weight suggested in [Jaco91] translates approxi-

mately to ASPTF(6.3). Figures 3a and 3b show performance

data for values of W ranging from 0 (SPTF) to 30. As W in-

creases, the average response time slowly grows, but response

time variance drops signi�cantly. In all cases, the algorithms

that schedule based on positioning times have lower average

response times than those based only on seek times. With

higher values of W, ASPTF su�ers a sharp increase in aver-

age response time when the disk begins to saturate. For a

su�ciently large W, ASPTF degenerates into FCFS.

An appropriate aging factor may result in an algorithm

with SPTF's performance and C-LOOK's starvation resis-

tance. For example, ASPTF(6) and ASPTF(12) match the

performance of SPTF for all but the heaviest workloads, yet

have much better starvation resistance. In fact, ASPTF(12)

has lower response time variance than C-LOOK, even though

its coe�cient of variation is slightly higher.

Selecting the request with the smallest positioning delay

entails signi�cant computational e�ort (especially for large

queues). See [Jaco91] for further information on this topic.

6 Traced Workloads

To gain an understanding of how various scheduling

algorithms perform under actual user workloads, we used

traces of disk activity collected from systems in use at vari-

ous industry and research installations. Some basic charac-

teristics of the traces are shown in table 2. They vary widely

in read/write ratios, access sizes, interarrival rates, degrees

of sequentiality and burstiness.

Trace Scale C-LOOK LOOK VSCAN SSTF

Cello 1.5 134 129 129 128
Snake 1.25 71.5 73.7 73.7 73.6
Air-Rsv 2.5 44.2 51.2 51.2 53.9
Sci-TS 2.5 31.0 54.7 55.7 57.5
Order 1.0 29.6 51.7 51.1 51.3
Report 1.0 59.4 63.2 64.8 80.2

(a) Average Response Times (ms) with a Prefetching Cache

Trace Scale C-LOOK LOOK VSCAN SSTF

Cello 1.25 145 134 134 133
Snake 0.34 65.5 65.5 65.4 65.2
Air-Rsv 2.0 44.8 43.1 42.9 43.1
Sci-TS 1.69 92.6 64.4 63.6 61.8
Order 0.67 57.1 52.8 52.2 51.4
Report 0.71 60.2 55.3 55.5 54.6

(b) Average Response Times (ms) with a Speed-Matching Bu�er

Table 3: Average Response Times for LBN-Based Algorithms

(taken from the \knees" of the Average Response Time curves)

The performance of the algorithms is graphed over a

range of scaling factors for each trace. Note that the scaling

factor (the X-axis) is shown in log2 scale.

6.1 Scheduling by Logical Block Number

Figures 4-9 show the average response times for LBN-

based scheduling of the six traces. As expected, FCFS

scheduling performs poorly for all but the lightest workloads.

The relative performance of the other algorithms, however,

di�ers from that observed for the random workloads. The re-
sults indicate that the disk's prefetching cache plays a large

role in determining algorithm e�ectiveness. If requests arrive

at the disk in logically ascending order, some portion (or all)

of the data for each sequential read request may already be

in the prefetching cache when the request arrives. Therefore,

algorithms that preserve any existing read sequentiality may

achieve higher performance.

Table 3a lists a sample point from the knee of each av-

erage response time graph. The LBN-based C-LOOK al-

gorithm, which always schedules requests in logically as-

cending order, provides higher performance than LOOK,

VSCAN(0.2), and SSTF for all traces except Cello. LOOK

and VSCAN(0.2) generally outperform SSTF, as they sched-

ule sequential requests in logically ascending order during

the \ascending" half of the scan cycle. However, LOOK,

VSCAN(0.2), and SSTF all exhibit similar performance

when the last of a sequence of requests is scheduled before

the �rst. When this occurs, the requests are scheduled to

the disk in logically descending order, negating the perfor-

mance advantage of the prefetching cache.

For Cello, C-LOOK produces a higher average response

time than the other seek-reducing algorithms. The Cello en-

vironment is dominated by large bursts of write requests to

a single disk [Ruem93]. Almost half of the requests are ser-

viced by this disk, with maximum queue lengths approaching

1000 at the identity scaling factor. In addition, this trace

contains the smallest fraction of sequential read requests,

thus bene�ting the least from the prefetching cache.

Additional evidence of the bene�ts of optimizing for a

prefetching cache can be found by comparing tables 3a and

3b. The latter table lists sample points from experiments

with the disk \cache" used only as a speed-matching bu�er.

Under this restriction, the performance of C-LOOK drops

dramatically in relation to the other seek-reducing algo-

rithms. This is best seen in the Sci-TS workload: C-LOOK
decreases the average response time by better than 40%

over LOOK, VSCAN(0.2), and SSTF when the cache is en-

abled, but it increases the response time by over 40% when

the on-board memory is used as a simple bu�er.

For some traces, such as Report, the performance im-

provement of C-LOOK over LOOK and SSTF is greater than

would be expected from the improvement in cache hit rate.

The ascending order of scheduling maintained by C-LOOK

matches the prefetching nature of the disk. That is, the disk

continues reading data beyond the end of read requests, of-

ten moving the read/write head forward one or more surfaces

(or even to the next cylinder). So, requests which are log-

ically forward of an immediately previous read may su�er

shorter seek delays.

For all traces, C-LOOK provides the best or equivalent

starvation resistance (as evidenced by its squared coe�cient

of variation). This is not surprising, as C-LOOK was in-

vented for this purpose. Predictably, LOOK has the next

highest coe�cient, followed by VSCAN(0.2) and SSTF.

6.2 Scheduling with Known Mapping

Using full-map versions of the various algorithms, we ob-

serve performance improvements for LOOK, VSCAN(0.2),

and SSTF under all workloads except Cello. This is not

due to reduced seek times via better mapping information,

but rather is caused by the heuristic we used to schedule re-

quests within a single cylinder. As described in section 5.2,

the scheduler uses C-LOOK, LOOK, VSCAN(0.2), or SSTF

when moving between cylinders, but uses C-LOOK \within"

a cylinder. Therefore, the cylinder-based versions of LOOK,

VSCAN(0.2), and SSTF use the prefetching cache more ef-

fectively than their LBN-based counterparts.

To verify the importance of the C-LOOK heuristic rel-

ative to the full LBN-to-PBN mapping, we modi�ed the

scheduling algorithms to use a �xed number of sectors

per cylinder (1024) rather than the actual per-zone values.

The resulting performance for all traces and algorithms is

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

Figure 4: LBN-Based Scheduling of Cello

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

� � �
�

�

�

�

�

�

� � �
�

�

�

�

�

� � �
�

�

�

�

�

Figure 5: LBN-Based Scheduling of Snake

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

� �
�

�

�

�

�

�

� �
�

�

�

�

�

� �
�

�

�

�

�

Figure 6: LBN-Based Scheduling of Air-Rsv

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

� � � �
�
�

�

�

�

�

�

� � �
�

�

�

�

�

�

�

� � �
�

�

�

�

�

�

�

Figure 7: LBN-Based Scheduling of Sci-TS

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

Figure 8: LBN-Based Scheduling of Order

 FCFS
� � C-LOOK
� � LOOK
� � VSCAN(0.2)

 SSTF

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�
�

�
�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

Figure 9: LBN-Based Scheduling of Report

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

Figure 10: Full-Knowledge Scheduling of Cello

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

� � �
�

�

�

�

�

�

� � � �
�

�

�

� � �
��

�

�

�

� � � �
�

�

�

�

Figure 11: Full-Knowledge Scheduling of Snake

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

� �
�

�

�

�

�

�

� � �
�

�

�

�

�

�

� � �
�

�

�

�

�

�

� � �
�

�

�

�

�

Figure 12: Full-Knowledge Scheduling of Air-Rsv

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

� � � �
�
�

�

�

�

�

�

� � � � � � � � �
�

�

�

�

� � � � � � � � �
�

�

�

�

�

� � � � � � � � �
�

�

�

�

�

Figure 13: Full-Knowledge Scheduling of Sci-TS

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�
�

�

�

�

�

�

�

�

� � �
�

�
�

�

�

�

�

� � � �
�

�

�

�

�

� � � �
�

�

�

�

�

Figure 14: Full-Knowledge Scheduling of Order

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0

|50

|100

|150

|200

|250

 Trace Scaling Factor

 A
vg

 R
es

po
ns

e
T

im
e

(m
s)

�
�

�
�

�

�

�

�

�

�
� � �

�

�

�

�

�
� � �

�

�

�

�

�

�
� � �

�

�

�

�

�

�

Figure 15: Full-Knowledge Scheduling of Report

within 1% of the performance obtained using the actual map-

pings. We conclude, as was the case for random workloads,

that the complexity of maintaining a full LBN-to-PBN map-

ping is not justi�ed for seek-reducing algorithms.

The relative starvation characteristics of the full-map

algorithms generally match the results found for the LBN-

based schemes. By satisfying all requests within a cylinder

before moving to another cylinder, the algorithms become

slightly less resistant to starvation.

6.3 Scheduling with Full Knowledge

Figures 10-15 show average response times for the

SPTF-based algorithms described in section 5.3. Because

these algorithms do not recognize and exploit the cache di-

rectly, we also present data for modi�ed versions which track

the contents of the on-board cache and estimate a position-

ing time of zero for any request that can be satis�ed (at

least partially) from the cache. The resulting algorithms

are denoted as Shortest Positioning (w/Cache) Time First

(SPCTF) and Aged Shortest Positioning (w/Cache) Time

First (ASPCTF).

The SPTF-based algorithms have both a signi�cant ad-

vantage and disadvantage when compared to C-LOOK. The

advantage is the obvious improvement in positioning delay

prediction accuracy due to the inclusion of rotational la-

tency information. A full rotation for an HP C2240 series

disk takes approximately 11 ms, equivalent to a seek of over

550 cylinders or 27% of the maximum seek distance. The

disadvantage is that these algorithms have no inherent bias

towards servicing sequential reads in ascending order. Pend-

ing requests are selected based on their predicted positioning

delay, not their LBN or cylinder. Even when cache knowl-

edge is incorporated, only subsets of a sequential stream may

be serviced \in order." As a result, the prefetching cache is

less e�ectively utilized by SPTF-based algorithms.

This trade-o� a�ects response times to di�erent de-

grees for each of the six traces. For Cello, the SPTF-based

algorithms are clearly superior to the seek-reducing algo-

rithms. Cache knowledge (i.e., SPCTF and ASPCTF(6))

increases performance by 5-15% under the largest scaling

factors. For the other �ve workloads, the comparison is not

as clean. For these traces, SPTF and ASPTF(6) saturate

more quickly than C-LOOK. However, they do provide su-

perior performance for some sub-saturation workloads. For

Report, �gure 15 shows that SPTF and ASPTF(6) are signif-

icantly (up to 18%) better than C-LOOK in the 0.4-0.9 range

of scaling factors. Incorporating cache knowledge widens

the window where SPTF-based algorithms are superior to

C-LOOK. For Sci-TS, SPCTF and ASPCTF(6) provide in-

creased performance over all scaling factors studied.

Figures 16 and 17 present the squared coe�cients of

variation for two of the traces. Although ASPCTF(6) always

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0.0

|2.5

|5.0

|7.5

|10.0

|12.5

|15.0

|17.5

|20.0

 Trace Scaling Factor

 S
qu

ar
ed

 C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
ti

on

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

Figure 16: Full-Knowledge Scheduling of Cello:

Squared Coe�cient of Variation (Response Times)

 FCFS
� � C-LOOK (LBN)
� � SPTF
� � SPCTF

 ASPTF(6)
� � ASPCTF(6)

|
0.125

|
0.250

|
0.500

|
1.000

|
2.000

|
4.000

|0.25

|0.50

|1.00

|2.00

|4.00

|8.00

|16.00

|32.00

|64.00

 Trace Scaling Factor

 S
qu

ar
ed

 C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
ti

on
 -

 L
O

G
 S

C
A

L
E

!

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 17: Full-Knowledge Scheduling of Order:

Squared Coe�cient of Variation (Response Times)

has better starvation resistance than SPCTF, their relative

performance is workload dependent. For workloads with a

signi�cant fraction of sequential read requests, the aging fac-

tor can improve both starvation resistance and performance.

The aging factor helps to maintain the ordering of sequential

requests, provided they were issued in order.

We believe that a modi�ed version of ASPCTF which
speci�cally schedules sequential requests in ascending logical

order will increase performance beyond C-LOOK in all cases.

This represents another item for future research.

7 Conclusions and Future Work

Modern disk drives have several features which can af-
fect the ability of disk scheduling algorithms to produce good

schedules. Using strongly-validated simulation, we have re-

examined popular scheduling algorithms to determine the

importance of some of these features. Synthetic workloads

were used to allow comparisons with previous work. Ex-

tensive traces gathered from six di�erent environments were

used to represent more \realistic" workloads.

Features such as zoned recording, track/cylinder skew,

and defect reallocation complicate the translation of logical

block numbers into physical media locations. Although full

mapping knowledge may be required for the most complex

scheduling algorithms (e.g., SPTF), our results indicate that

it provides little or no performance improvement for seek-

reducing algorithms (less than 2%).

C-LOOK, which always schedules requests in logically

ascending order, best exploits the prefetching cache for work-

loads with signi�cant read sequentiality. For random work-

loads, C-LOOK has been shown (both in this work and in

previous studies) to provide slightly inferior performance to

other seek-reducing algorithms (e.g., SSTF and LOOK). For

�ve of the six real-world traces, however, C-LOOK achieves

the highest cache hit rates and lowest average response

times. In addition, the LBN-based C-LOOK algorithm is

straightforward and relatively simple to implement.

More powerful disk controllers can use variants of

the Shortest Positioning Time First (SPTF) algorithm to

achieve even higher performance. The use of such algorithms

requires thorough knowledge of the disk's current state as

well as the management schemes employed by the disk drive

�rmware. The computational cost (as indicated crudely by

our simulation times) is very high. Also, our results indicate

that it is critical for such an implementation to recognize the

existence of on-board disk caches and optimize for them.

We are currently pursuing several avenues of research in

scheduling. First, we are validating our results for other disk

drives. There are also drive characteristics which we have
not yet explored. Most modern disks can maintain a queue

of outstanding requests within their embedded controllers.

Scheduling algorithms for such on-board queues may di�er

in nature from those outside the disk drive package. In ad-

dition, most drives can signal completion as soon as write

request data have reached the on-board disk cache. The use

of such fast-writes may require new scheduling techniques

to maintain reliability guarantees and e�ectively utilize the

available cache storage.

Finally, we believe that scheduling decisions should be

based both on subsystem characteristics and system-level re-

quirements. By understanding the system performance con-

sequences of di�erent disk requests, one can design schedul-

ing algorithms optimized for overall system performance

[Gang93]. For example, a request that prevents a criti-

cal process from executing should be serviced before a low-

priority background request. Such goals must be tempered

with e�ective utilization of the storage resources, resulting

in a complicated set of trade-o�s which we plan to explore.

8 Acknowledgements

We thank Jim Browning, John Fordemwalt, David Ja�e,

Rama Karedla, Richie Lary, Mike Leonard, Joe Pasquale,

Rusty Ransford, Chris Ruemmler, and John Wilkes for their

insights on various I/O issues. In particular, we thank Chris

Ruemmler and John Wilkes (of HP Labs) and Richie Lary

and Rama Karedla (of DEC) for the traces. We also wish

to acknowledge the other members of our research group at

the University of Michigan. Finally, our research group is

very fortunate to have the �nancial and technical support

of several industrial partners, including NCR Corporation,

Intel, Motorola, SES, HaL, DEC, MTI and Hewlett-Packard.

References

[Denn67] P. J. Denning, \E�ects of scheduling on �le memory op-

erations", AFIPS Spring Joint Computer Conference, April

1967, pp. 9-21.

[Gang93] G. Ganger, Y. Patt, \The Process-Flow Model: Exam-

ining I/O Performance from the System's Point of View",

SIGMETRICS, 1993, pp. 86-97.

[Geis87] R. Geist, S. Daniel, \A Continuum of Disk Schedul-

ing Algorithms", ACM Transactions on Computer Systems,

February 1987, pp. 77-92.

[HP92] Hewlett-Packard Company, \HP C2240 Series 3.5-inch

SCSI-2 Disk Drive, Technical ReferenceManual", Part Num-

ber 5960-8346, Edition 2, April 1992.

[Jaco91] D. Jacobson, J. Wilkes, \Disk Scheduling Algorithms

Based on Rotational Position", Hewlett-Packard Technical

Report, HPL-CSP-91-7, Feb. 26, 1991.

[McNu86] B. McNutt, \An Empirical Study of Variations in

DASD Volume Activity", CMG, 1986, pp. 274-283.

[Mert70] A. G. Merten, \Some quantitative techniques for �le

organization", Ph.D. Thesis, Technical Report No. 15, U. of

Wisconsin Comput. Center, 1970.

[Rama92] K. Ramakrishnan, P. Biswas, R. Karedla, \Analysis of

File I/O Traces in Commercial Computing Environments",

ACM SIGMETRICS, 1992, pp. 78-90.

[Ruem93] C. Ruemmler, J. Wilkes, \UNIX Disk Access Pat-

terns",Winter USENIX, 1993.

[Ruem94] C. Ruemmler, J. Wilkes, \Modelling Disks", IEEE

Computer, March 1994.

[Seam66] P. H. Seaman, R. A. Lind, T. L. Wilson \An analysis

of auxiliary-storage activity", IBM System Journal, Vol. 5,

No. 3, 1966, pp. 158-170.

[Selt90] M. Seltzer, P. Chen, J. Ousterhout, \Disk Scheduling

Revisited",Winter USENIX, 1990, pp. 313-324.

[Teor72] T. Teorey, T. Pinkerton, \A Comparative Analysis of

Disk Scheduling Policies", Communications of the ACM,

March 1972, pp. 177-184.

[Wort94] B. Worthington, G. Ganger, Y. Patt, \Scheduling for

Modern Disk Drives and Non-Random Workloads", U. of

Michigan, Technical Report CSE-TR-194-94, 1994.

