
System Support for Online Reconfiguration

Craig A. N. Soules
�

Jonathan Appavoo
�

Kevin Hui
�

Robert W. Wisniewski
�

Dilma Da Silva
�

Gregory R. Ganger
�

Orran Krieger
�

Michael Stumm
�

Marc Auslander
�

Michal Ostrowski
�

Bryan Rosenburg
�

Jimi Xenidis
�

Abstract

Online reconfiguration provides a way to extend and re-
place active operating system components. This pro-
vides administrators, developers, applications, and the
system itself with a way to update code, adapt to chang-
ing workloads, pinpoint performance problems, and per-
form a variety of other tasks while the system is running.
With generic support for interposition and hot-swapping,
a system allows active components to be wrapped with
additional functionality or replaced with different im-
plementations that have the same interfaces. This pa-
per describes support for online reconfiguration in the
K42 operating system and our initial experiences us-
ing it. It describes four base capabilities that are com-
bined to implement generic support for interposition and
hot-swapping. As examples of its utility, the paper de-
scribes some performance enhancements that have been
achieved with K42’s online reconfiguration mechanisms
including adaptive algorithms, common case optimiza-
tions, and workload specific specializations.

1 Introduction

Operating systems are big and complex. They are ex-
pected to serve many needs and work well under many
workloads. Often they are meant to be portable and work
well with varied hardware resources. As one would ex-
pect, this demanding set of requirements is difficult to
satisfy. As a result, patches, updates, and enhancements
are common. In addition, tuning activities (whether
automated or human-driven) often involve dynamically
adding monitoring capabilities and then reconfiguring
the system to better match the specific environment.

Common to all of the above requirements is a need to
modify system software after it has been deployed. In
some cases, shutting down the system, updating the soft-
ware, and restarting is sufficient. But, this approach
comes with a cost in system availability and (often) hu-
man administrative time. Also, restarting the system to
add monitoring generally clears the state of the system.
This can render the new monitoring code ineffective un-
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Figure 1: Online reconfiguration. This figure shows two online re-
configuration mechanisms: interposition and hot-swapping. (a) shows
an LRU page manager and an interposed profiler that can watch the
component’s calls/returns to see how it is performing. If it determines
that performance is poor, it may decide to switch the existing compo-
nent for another. (b) shows the LRU page manager as it is about to be
swapped with a FIFO page manager. Once the swap is complete, as
shown in (c), the LRU page manager can be deleted.

less the old state of the system can be reproduced.

Online reconfiguration can provide a useful foundation
for enhancement of deployed operating systems. With
generic support built into an OS’s core, activities that
require system modification could be addressed without
adding new complexity to individual subsystems. For
example, patches and updates could be applied to the
running system, avoiding down-time and associated hu-
man involvement. In addition, monitoring code could be
dynamically added and removed, gathering system mea-
surements when desired without common-case overhead.

Figure 1 illustrates two basic mechanisms for online re-
configuration: interposition and hot-swapping. Interpo-
sition wraps an active component, extending its func-
tionality with wrapper code that executes before and af-
ter each call to the component. Hot-swapping replaces
an active component with a new implementation. Both
modify an active component while maintaining availabil-
ity of the component’s functionality.
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To implement interposition and hot-swapping are imple-
mented using four capabilities. First, the system must be
able to identify and encapsulate the code and data for a
swappable component. Second, the system must be able
to quiesce a swappable component such that no external
references are actively using its code and data. Third,
the system must be able to transfer the internal state of
a swappable component to a replacement version of that
component. Fourth, the system must be able to modify
all external references (both data and code pointers) to
a swappable component. Hot-swapping consists of ex-
ercising the four capabilities in sequence. Interposition
relies mainly on the fourth capability to redirect external
references to the interposed code.

This paper discusses these four capabilities in detail, de-
scribes our initial prototype implementation of interposi-
tion and hot-swapping in the K42 operating system [32],
and discusses how online reconfiguration could be added
to more traditional operating systems. To explore some
of the flexibility and value of online reconfiguration, we
implemented a number of well-known dynamic perfor-
mance enhancements. These include common-case spe-
cialization, workload-based specialization, and scalabil-
ity specialization.

2 Why Online Reconfiguration

There are a variety of reasons for modifying a deployed
operating system. The most common examples are com-
ponent upgrades, particularly patches that fix discovered
security holes. Other examples include dynamic mon-
itoring, system specializations, adaptive performance
enhancements, and integration of third-party modules.
Usually, when they are supported, distinct case-by-case
mechanisms are used for each example.

This section motivates integrating into system software a
generic infrastructure for extending and replacing active
system components. First, it discusses two aspects of
online reconfiguration: interposition and hot-swapping.
Then, it discusses a number of common OS improve-
ments, and how interposition and hot-swapping can sim-
plify and enhance their implementation.

2.1 Online reconfiguration

Online reconfiguration support can simplify the dynamic
updates and changes wanted for many classes of system
enhancement. Thus, a generic infrastructure can avoid a
collection of similar reconfiguration mechanisms. Two
mechanisms that provide such a generic infrastructure
are interposition and hot-swapping.

Interposition wraps an active component’s interface, ex-
tending its functionality. Interposition wrappers may be

specific to a particular component or generic enough to
wrap any component. For example, a generic wrap-
per might measure the average time threads spend in
a given component. A component-specific wrapper for
the fault handler might count page faults and determine
when some threshold of sequential page faults has been
reached.

Hot-swapping replaces an active component with a new
component instance that provides the same interface and
functionality. To maintain availability and correctness of
the service provided, the new component picks up where
the old one left off. Any internal state from the old com-
ponent is transfered to the new, and any external refer-
ences are relinked. Thus, hot-swapping allows compo-
nent replacement without disrupting the rest of the sys-
tem and does not place additional requirements on the
clients of the component.

2.2 Applying online reconfiguration

Interposition and hot-swapping are general tools that can
provide a foundation for dynamic OS improvement. The
remainder of this section discusses how some common
OS enhancements map onto them.

Patches and updates: As security holes, bugs, and per-
formance anomalies are identified and fixed, deployed
systems must be repaired. With hot-swapping, a patch
can be applied to a system immediately without the need
for down-time (scheduled or otherwise). This capabil-
ity avoids a trade-off among availability and correctness,
security, and better performance.

Adaptive algorithms: For many OS resources, different
algorithms perform better or worse under different con-
ditions. Adaptive algorithms are designed to combine
the best attributes of different algorithms by monitoring
when a particular algorithm would be best and using the
correct algorithm at the correct time. Using online recon-
figuration, developers can create adaptive algorithms in a
modular fashion, using several separate components. Al-
though in some cases implementing such an adaptive al-
gorithm may be simple, this approach allows adaptive al-
gorithms to be updated and expanded while the system is
running. Each independent algorithm can be developed
as a separate component, hot-swapped in when appropri-
ate. Also, interposed code can perform the monitoring,
allowing easy upgrades to the monitoring methodology
and paying performance penalties only during sampling.
Section 6.3 evaluates using online reconfiguration to pro-
vide adaptive page replacement.

Specializing the common case: For many individual al-
gorithms, the common code path is simple and can be
implemented efficiently. However, supporting all of the
complex, uncommon cases often makes the implementa-



tion difficult. To handle these cases, a system with online
reconfiguration can hot-swap between a component spe-
cialized for the common case and the standard compo-
nent that handles all cases. Another way of getting this
behavior is with an IF statement at the top of a component
with both implementations. A hot-swapping approach
separates the two implementations, simplifying testing
by reducing internal states and increasing performance
by reducing negative cache effects of the uncommon case
code [40]. Section 6.3 evaluates the use of online recon-
figuration to specialize exclusive access to a file, while
still supporting full sharing semantics when necessary.

Dynamic monitoring: Instrumentation gives developers
and administrators useful information in the face of sys-
tem anomalies, but introduces overheads that are unnec-
essary during normal operation. To reduce this overhead,
systems provide “dynamic” monitoring using knobs to
turn instrumentation on and off. Interposition allows
monitoring and profiling instrumentation to be added
when and where it is needed, and removed when unnec-
essary. In addition to reducing overhead in normal op-
eration, interposition removes the need for developers to
guess where probes would be useful ahead of time. Fur-
ther, many probes are generic (e.g., timing each function
call, counting the number of parallel requests to a com-
ponent). Such probes can be implemented once, avoiding
code replication across components.

Application-specific optimizations: Application spe-
cializations are a well-known way of improving a partic-
ular application’s performance based on knowledge only
held by the application [18, 20, 22, 53]. Using online
reconfiguration, an application can provide a new spe-
cialized component and swap it with the existing com-
ponent implementation. This allows applications to op-
timize any component in the system without requiring
system developers to add explicit hooks to replace each
one.

Third-party modules: An increasingly common form
of online reconfiguration is loadable kernel modules.
Particularly with open-source OSes, such as Linux, it is
common to download modules from the web to provide
functionality for specialized hardware components. In
the case of Linux, the module concept also has a busi-
ness benefit, because a dynamically loaded module is not
affected by the GNU Public License. As businesses pro-
duce value-adding kernel modules (such as “hardened”
security modules [28, 48]), the Linux module interface
may evolve from its initial focus on supporting device
drivers toward providing a general API for hot-swapping
of code in Linux. The mechanisms described in this pa-
per are a natural endpoint of this evolution, and the tran-
sition has begun; we have worked with Linux develop-
ers to implement a kernel module removal scheme using

quiescence [36].

2.3 Summary

Online reconfiguration is a powerful tool that can provide
a number of useful benefits to developers, administra-
tors, applications, and the system itself. Each individual
example can be implemented in other ways. However,
generic support for interposition and hot-swapping can
support them all with a single infrastructure. By integrat-
ing this infrastructure into the core of an OS, one makes
it much more amenable to subsequent change.

3 Online Reconfiguration Support

This section discusses four main requirements of on-
line reconfiguration. First, components must have well-
defined interfaces that encapsulate their functionality and
data. Second, it must be possible to force an active com-
ponent into a quiescent state long enough to complete
state transfer. Third, there must be a way to transfer the
state of an existing component to a new component in-
stance. Fourth, it must be possible to update external
references to a component.

3.1 Component boundaries

Each system component must be self-contained with a
well-defined interface and functionality. Without clear
component boundaries, it is not possible to be sure that
a component is completely interposed or swapped. For
example, an interposed wrapper that counts active calls
within a component would not notice calls to unknown
interfaces. Similarly, any component that stores its state
externally cannot be safely swapped, because any un-
transferred external data would likely lead to improper
or unpredictable behavior.

Achieving clear component boundaries requires some
programming discipline and code modularity. Using an
object-oriented language can help. Components can be
implemented as objects, encapsulating functionality and
data behind a well-defined interface. Object boundaries
help prevent confusing code and data sharing, often re-
sulting in cleaner components and a more maintainable
code base. Although it may be possible to detect some
rule violations using code analysis [17], any solution still
relies on developer diligence and adherence to the pro-
gramming discipline.

3.2 Quiescent States

Before a component can be swapped, the system must
ensure that all active use of the state of the component
has concluded. Without such quiescence, active calls



could change state while it is being transfered, causing
unpredictable behavior.

Operating systems are often characterized as event
driven. The majority of activity in the OS can be repre-
sented and serviced as individual requests with any given
request having an identifiable start and end. This nature
can be leveraged to implement a number of interesting
synchronization algorithms. By associating idempotent
changes of system data structures with an epoch of re-
quests, one can identify states in which a data structure
is no longer being referenced. For example, to swing the
head pointer of a linked list from one chain of nodes to
another, one can divide the accesses to the list into two
epochs. The first epoch includes all threads in the system
that were active before the swing, and the second epoch
includes any new threads begun after the swing. Because
new threads will only be able to access the new chain of
nodes, nodes of the old chain are guaranteed to no longer
be in use once the threads in the first epoch have ended.
At this point, the old chain is quiescent and can be mod-
ified at will (including being deleted).

We have utilized this style of synchronization, termed
Read-Copy-Update(RCU), to implement a semi-
automatic garbage collector [21] and hot-swapping in
K42. Others have used it in PTX [37] and in Linux to
implement a number of optimization such as: lock-free
module loading and unloading [36, 44, 45].

The key to leveraging RCU techniques is being able to
divide the work of the system into short-lived “requests”
that have a cheaply identifiable start and end. In non-
preemptive systems such as PTX and Linux1, a number
of key points (e.g., system calls and context switches)
can be used to identify the start and end of requests.
K42 is preemptable and has been designed for the gen-
eral use of RCU techniques by ensuring that all system
requests are handled on short-lived system threads. As
such, thread creation and termination can be used to iden-
tify the start and end of requests. Section 4 describes how
K42’s thread generation mechanism is used to determine
quiescent states.

3.3 State transfer

State transfer synchronizes the state of a new component
instance with that of an existing component. To complete
a successful state transfer, all of the information required
for proper component functionality must be packaged,
transfered, and unpackaged. This requires that the old
and new component agree upon both a package format
and a transfer mechanism.

1Schemes for extending the current RCU support in Linux to pre-
emptive versions have been proposed[36].

There is not likely to be a single “catch-all” solution;
both the data set and data usage can vary from compo-
nent to component. Instead, there is likely to be a vari-
ety of packaging and transfer mechanisms suited to each
component. While it is impossible to predict what all of
these mechanisms will be, there are likely to be a few
common ones. For example, an upgraded component
will often understand the existing component in detail.
Transferring a reference to the old component should be
sufficient for the new component to extract the necessary
state.

Given that no single mechanism exists for state trans-
fer, a system can still provide two support mechanisms
to simplify its implementation. First, the hot-swapping
mechanism should provide a negotiation protocol that
helps components decide upon the most efficient transfer
mechanisms understood by both. Second, components
that share a common interface and functionality should
understand (at the least) a single, canonical data format.
By ensuring this, component developers need only im-
plement two state transfer functions to have a working
implementation: to and from the canonical form.

3.4 External references

Whenever a component is interposed or hot-swapped, its
external interface is redirected to a new piece of code
(the wrapper for interposition, the new component for
hot-swapping). Because all calls must be routed through
this new code, all external references to the original com-
ponent must be updated.

Reference counting and indirection are two common
ways to handle this. Reference counting, as is used in
garbage collection [6, 12, 26], tracks all references to
a component (even within a single client). If a compo-
nent changes, all tracked references are found and up-
dated. The drawback of reference counting is that its
overhead grows linearly with the number of component
references. On the other hand, indirection requires that
all references point to a single indirection pointer. To up-
date all of a client’s references to an object, the system
only needs to update the single indirection pointer for
that client. Similarly, if a globally accessible object is
being swapped, the indirection pointer of each client us-
ing the object must be updated. This is space and perfor-
mance efficient, with small constant overhead per com-
ponent used in each client. The drawback is that the pro-
grammer must be aware of the indirection and account
for it, while reference counting is handled transparently.

3.5 Orthogonal safety issues

The focus of this work is on the mechanics of online re-
configuration. There are orthogonal issues of safety and



security related to deciding which reconfigurations to
permit [7, 41] and containing suspect extensions [50, 52].
Other researchers have addressed these issues with sev-
eral different proposals. The implementation described
in Section 4 makes no guarantees about the safety of a
reconfiguration. However, most prior techniques for en-
suring safety (see Section 7) could be applied to this im-
plementation.

4 Online Reconfiguration in K42

This section describes the integration of online reconfig-
uration into the K42 operating system. It overviews K42,
describes the features used, and details the implementa-
tions of interposition and hot-swapping.

4.1 K42

K42 is an open-source research OS for cache-coherent
64-bit multiprocessor systems. It uses an object-oriented
design to achieve good performance, scalability, cus-
tomizability, and maintainability. K42 supports the
Linux API and ABI [3] allowing it to use unmodified
Linux applications and libraries. The system is fully
functional for 64-bit applications, and can run codes
ranging from scientific applications to complex bench-
marks like SDET to significant subsystems like Apache.

In K42, each virtual resource instance (e.g., a particular
file, open file instance, memory region) is implemented
by combining a set of (C++) objects [5]. For example,
there is no global page cache in K42; instead, for each
file, there is an independent object that caches the blocks
of that file. While we believe that online reconfiguration
is useful in general systems, the object-oriented nature of
K42 makes it a particularly good platform for exploring
fine-grained hot-swapping and interposition.

4.2 Support mechanisms

The four requirements of online reconfiguration are ad-
dressed as follows.

Component boundaries: K42’s object-oriented ap-
proach naturally maps each system component onto a
C++ language object. K42 requires that the external in-
terface of a component is defined as a virtual base class
for all implementations of the component. This program-
mer convention enforces the required component bound-
aries without significant burden on developers.

Quiescent States: K42 employs a technique similar to
that discussed in Section 3 to establish quiescent states
for an object. In K42, all system requests are serviced by
a new system thread. Hence, requests can be divided into
epochs by partitioning the threads. Specifically, it is pos-

sible to determine when all threads that were in existence
on a processor at a specific instance in time have termi-
nated. K42 maintains two thread generations to which
threads are assigned.2 Each generation records the num-
ber of threads that are active and assigned to it. At any
given time, one of the generations is identified as the cur-
rent generation and all new threads are assigned to it. To
determine when all the current threads have terminated,
the following algorithm is used:

i := 0
while (i < 2)

if (non-current generation’s count = 0)
make it the current generation

else
wait until it is zero and
make it the current generation

i := i+1

In K42, the process of switching the current generation
is called a generation swap. The above algorithm illus-
trates that two generation swaps are required to estab-
lish that the current set of threads have terminated. This
mechanism is timely and accurate even in the face of pre-
emption, because K42’s design does not use long-lived
system threads nor does it rely on blocking system-level
threads. Note that in the actual implementation, the wait
is implemented via a call-back mechanism, avoiding a
busy wait.

State transfer: K42 leaves the implementation of indi-
vidual state transfer methods up to the developer. How-
ever, to assist state transfer negotiation, K42’s online re-
configuration mechanism provides a transfer negotiation
protocol. For each set of functionally compatible com-
ponents, there must be a set of state transfer protocols
that form the union of all possible state transfers between
these components. For each component, the developers
must create a prioritized list of the state transfer protocols
that it supports. For example, it may be best to pass inter-
nal structures by memory reference, rather than copying
the entire structure; however, both components must un-
derstand the same structure for this to be possible. Before
initiating a hot-swap, K42 requests these two lists from
the old and new component instances. After determin-
ing the most desirable format based on the two lists, K42
requests the correct package format from the old com-
ponent and passes it to the new component. Once the
new component has unpackaged the data, the transfer is
complete.

External references: K42 uses the per-client object
translation table to provide a layer of indirection for ac-
cessing system components. When an object instance is

2The design supports an arbitrary number of generations but only
two are used currently.
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Figure 2: Component interposition. This figure shows the steps of component interposition. (a) shows how callers access components through
the object translation table. In this case, calls from the caller lookup the component in the object translation table, and then call the component
based on that indirection. (b) shows an interposed component. In this case, the caller’s indirection points the call at the generic interposer. The
interposer then makes three calls, first to the wrapper’s PRECALL, then the original component call, then the wrapper’s POSTCALL.

created, an entry for it is created in the object translation
table of clients that are accessing it, and all external calls
to the component are made through this reference. K42
can perform a hot-swap or interposition on this compo-
nent by updating the entry in the appropriate tables. Al-
though this incurs an extra pointer dereference per com-
ponent call, the object translation table has other benefits
(e.g., improved SMP scalability [21]) that outweigh this
overhead.

4.3 Online reconfiguration

The remainder of this section describes how K42 utilizes
the four system support features described above to pro-
vide interposition and hot-swapping.

4.3.1 Interposition

Object interposition interposes additional functionality
around all function calls to an existing object instance.
We partition interposed functionality into two pieces: a
wrapper object and a generic interposer. The wrapper
object contains the specific code that should be executed
before and/or after a call to an object. The generic in-
terposer wraps the interface of any object, transparently
calling the functions of a given wrapper object before
forwarding the call to the original object.

The wrapper object is a standard C++ object with two
calls: PRECALL and POSTCALL. As one might suspect,
the former is called before the original object’s func-
tion, and the latter is called after. In these calls, a wrap-
per can maintain state about each function call that is in
flight, collect statistical information, modify call param-
eters and return values, and so on.

To redirect calls from the original object to the generic
interposer, the interposer replaces itself for the object in
the object translation table. To handle arbitrary object
interfaces, K42’s interposer leverages the fact that ev-
ery external call goes through a virtual function table.
Once the generic interposer replaces the original object
in the object translation table, all calls go through the
interposer’s virtual function table. The interposer over-
loads the method pointers in its virtual function table to
point at a single interposition method, forcing all exter-
nal calls through this function. The interposition method
handles calls to the wrapper object’s methods as well as
calling the appropriate method of the original compo-
nent, as shown in Figure 2. It also determines which of
the original methods was called, allowing method spe-
cific wrappers.

To handle arbitrary call parameters and return values, the
interposer method must ensure that all register and stack
state is left untouched before the call is forwarded to the
original component. At odds with this requirement is
the need to store information normally kept on the stack
(e.g., the original return address, local variables). To re-
solve this conflict, the interposer allocates space for any
required information on the heap and keeps a pointer to it
in a callee-saved register. This register’s value is guaran-
teed to be preserved across function calls; when control
is returned to the interposer, it can retrieve any saved in-
formation. The information saved in the heap space must
include both the original return address and the original
value of the callee-saved register being used, because it
must be saved by the callee for the original caller.

The division of labor between the generic interposer and
the wrapper object was chosen because the interposi-
tion method can not make calls to the generic inter-
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Figure 3: Component hot-swapping. This figure shows the three phases of hot-swapping: forward, block, and transfer. In the forward phase,
new calls are tracked and forwarded while the system waits for untracked calls to complete. Although this phase must wait for all old threads in
the system to complete, all threads are allowed to make forward progress. In the block phase, new calls are blocked while the system waits for the
tracked calls to complete. By blocking only tracked calls into the component, this phase minimizes the blocking time. In the transfer phase, all calls
to the component have been blocked, and state transfer can take place. Once the transfer is complete, the blocked threads can proceed to the new
component and the old component can be garbage collected.

poser’s virtual function table. If the wrapper and in-
terposer were combined (using a parent interposer, and
inheriting for each specific case), then the interposition
method would have to locate the correct PRECALL and
POSTCALL from the specialized interposer’s internal in-
terfaces. Unfortunately, this is difficult, because they
would be in compiler-specified locations that are diffi-
cult to determine at run-time. By separating the wrapper,
we can avoid specializing the interposition method for
each wrapper, because the PRECALL and POSTCALL can
be located using the wrapper’s virtual function table.

To detach an interposed wrapper, the corresponding in-
terposer object replaces its object translation table entry
with a pointer to the original object. Once the object
translation table is updated, all incoming calls will be
sent directly to the original object. Garbage collection of
the interposer and wrapper can happen out-of-band, once
they quiesce.

4.3.2 Hot-swapping

K42’s object hot-swapping mechanism builds on inter-
position. The first step of hot-swapping from the current
object instance (X) to a new object instance (Y) is to in-
terpose X with a mediator. Before the mediator can swap
objects, it must ensure that there are no in-flight calls to
X (i.e., the component must be in a quiescent state). To
get to this state, the mediator goes through a three phase
process: forward, block, and transfer.

In the forward phase, the mediator tracks all threads
making calls to the component and forwards each call
to the original component. This phase continues until
all calls started before call tracking began have com-
pleted. To detect this, K42 relies on the thread generation
mechanism. When the forward phase begins, a request
to establish a quiescent state with respect to the current

threads is made to the generation mechanism. After two
generation swaps, the generation mechanism calls back,
because all current threads are guaranteed to have termi-
nated.

Figure 3a illustrates the forward phase. When the medi-
ator is interposed, there may already be calls in progress;
in this example, there is one such call marked as ?. While
waiting for a quiescent state, new calls a, b, and c are
tracked by the mediator. The next phase begins once the
generation mechanism indicates that a quiescent state has
been achieved.

The mediator begins the blocked phase once all calls in
the component are tracked. In this phase, the mediator
temporarily blocks all new incoming calls, while it waits
for the calls it has been tracking to complete. An ex-
ception must be made for incoming recursive calls, be-
cause blocking them would create deadlock. Once all
the tracked calls have completed, the component is in a
quiescent state, and the state transfer can begin.

Figure 3b illustrates the blocked phase. In this case,
thread b is in progress, and must complete before the
phase can complete. New calls d and e are blocked;
however, because blocking b during its recursive call
would create deadlock, it is allowed to continue.

Although it would be simpler to combine the forward
and blocked phase (blocking new calls immediately and
waiting for then generation mechanism to indicate a qui-
escent state), this would require blocking until all threads
in the system have completed. Due to K42’s event driven
model, thread lifetimes are guaranteed to be short; how-
ever, blocking an overloaded component while waiting
for every thread in the system to expire may reduce com-
ponent availability and overall system performance. By
separating the phases, blocking is only dependent upon
the lifetime of threads active in that component.



One tradeoff of K42’s event model is that cross-processor
and cross-address-space calls are done with new threads.
This means that a cyclic external call chain could result
in deadlock (because the recursion would not be caught).
Although developers should be careful never to create
these situations, the hot-swapping mechanism prevents
deadlock in these situations with a timeout and retry
mechanism. If this timeout is triggered enough times,
the hot-swap will return a failure.

After the component has entered a quiescent state, the
mediator begins the transfer phase. In this phase, the
mediator performs state transfer between the old and new
components, updates the object translation table entry to
point at the new component, and then allows blocked
calls to continue to the new component. Each set of func-
tionally compatible components share a set of up to 64
state transfer protocols. Acceptable protocols are spec-
ified using a bit vector that is returned from each com-
ponent. The intersection of these vectors gives the list
of potential protocols. The mediator determines the best
common format by requesting the protocol vector from
each component, and then choosing the protocol corre-
sponding to the highest common bit in the vector. Once a
protocol is decided upon, the mediator retrieves the pack-
aged state from the original component and passes it to
the new component.

Figure 3c illustrates the transfer phase. Once the old
component is quiescent, all state is transfered to the new
component. Once the unpackaging completes, threads d,
e, and f are unblocked and sent to the new component.
At this point, the mediator is detached and the old com-
ponent destroyed.

4.4 Summary

K42’s online reconfiguration mechanisms handle call in-
terception and mediation transparently to clients with ex-
ternal interfaces, and separates the complexities of swap-
time, in-flight call tracking and deadlock avoidance from
the implementation of the component itself. With the ex-
ception of component state transfer, the online reconfig-
uration process does not require support from the com-
ponent, simplifying the creation of components that wish
to take advantage of interposition or hot-swapping. Al-
though not described, considerable effort has gone into
ensuring that the interposition and hot-swapping mecha-
nisms are scalable and efficient on a multiprocessor; see
[4] for details.

5 Support in Other Systems

This section discusses generally how online reconfigu-
ration can be supported in systems other than K42 and
specifically the changes and additions that would be re-

quired to add support into Linux.

5.1 Supporting Online Reconfiguration

Many of the support mechanisms used to provide online
reconfiguration are useful for other reasons, and were
implemented in K42 before online reconfiguration was
considered. For similar reasons, many of these support
mechanisms already exist in many systems.

As is discussed in Section 3, an object-oriented de-
sign leads to better code structure, cleaner interfaces,
more maintainable code, and a more modular approach
that improves scalability. For this reason, modular ap-
proaches and object-oriented designs are becoming in-
creasingly common in operating systems (e.g., the VFS
layer in UNIX, shared libraries, plug-and-play device
drivers, loadable module support). As systems incremen-
tally add this modularity, more and more components in
the system can become eligible for online reconfigura-
tion.

PTX and Linux already have explicit support for RCU
techniques, as described in Section 3. Hence, estab-
lishing the quiescent state required for hot swapping is
straightforward. RCU support can be utilized to imple-
ment a number of lock-free synchronization algorithms
beyond just hot-swapping. In PTX and Linux RCU, sup-
port was added to facilitate several independent lock-free
optimizations. But, perhaps more importantly, the use of
RCU in PTX and Linux illustrates the fact that the RCU
approach used in K42 for hot-swapping generalizes and
is equally applicable in traditional systems. This is not
surprising, because the event-driven nature of operating
systems is widely accepted and is the fundamental prop-
erty on which RCU relies.

Because indirection leads to added flexibility, most sys-
tems have several points of indirection built-in. For ex-
ample, the indirection used in the VFS layer of many op-
erating systems abstracts the underlying file system im-
plementation from the rest of the system, isolating the
other components of the system from the internals of the
various file systems. Other examples of indirection in-
clude device drivers and virtual memory systems.

In K42, rather than having many different styles or points
of indirection, a standard level of indirection was in-
troduced in front of all objects. Directing every ob-
ject access through an indirection allows K42 to support
complex multiprocessor optimizations while preserving
a simple object-oriented model [21]. However, it also
has allowed us to entertain hot-swapping any instance
of an object. Although existing systems might not have
such a uniform model of indirection, hot-swapping could
first be applied to the components which do live behind
a level of indirection, such as VFS modules. If the flex-



ibility of an indirection proves to be useful, one would
expect more and more components to utilize it. In time,
perhaps standard support for accessing all components
behind a level of indirection, similar to K42, would be
employed.

Although the state transfer protocol has no clear addi-
tional benefits beyond online reconfiguration, this mech-
anism is not attached to any particular design of the sys-
tem. Adding this final support mechanism to any system
that wished to take advantage of online reconfiguration
should be as straightforward as adding it to K42 was.

5.2 Online Reconfiguration in Linux

This section examines each of the four requirements for
online reconfiguration and discusses how to use existing
mechanisms and add additional mechanisms to Linux to
support online reconfiguration.

Component boundaries: Although Linux is not strictly
modular in design, interface abstractions have been
added to support loadable modules in many places.
These well-defined abstractions could be used to provide
the component boundaries required by online reconfigu-
ration.

Quiescent States: Over the last few years, a number
of patches have been developed for Linux [36] to add
support for RCU mechanisms. This support has been
leveraged for a number of optimizations [44] including:
adding lock-free lookups of the dentry cache, support-
ing hot-plugging of CPUs, safe module loading and un-
loading, scalable file descriptor management, and lock-
free lookups in the IPV4 route cache. The Linux 2.5
kernel has recently integrated this support into the main
line version [45]. This same RCU infrastructure can be
utilized to identify the necessary quiescent state for hot-
swapping, as is done in K42.

State transfer: Although the boundaries for module
state are not as well-defined in Linux as they are in K42,
state transfer should be very similar. Also, the same
transfer negotiation protocol used by K42 could be ap-
plied to Linux.

External references: In Linux, the same module ab-
straction used to provide component boundaries could
also be used to handle external references. Because mod-
ules would lie behind a virtual interface, updating the
pointers behind this interface is all that is required to re-
place a given module. For example, replacing a file sys-
tem module (or individual pieces of file system function-
ality) could be done by replacing the appropriate function
pointers for that file system in the VFS layer.

6 Evaluation

In this section, we evaluate the flexibility and perfor-
mance of K42’s online reconfiguration. First, we quan-
tify the overheads and latencies of interposition and hot-
swapping. Second, we illustrate the flexibility of online
reconfiguration by using it to implement a number of
well-known dynamic performance enhancements.

6.1 Experimental setup

The experiments were run on two different machines.
Both of them were RS/6000 IBM PowerPC bus-based
cache-coherent multiprocessors. One was an S85 Enter-
prise Server with 24 600MHZ RS64-IV processors and
16GB of main memory. The other was a 270 Worksta-
tion with 4 375MHZ Power3 processors and 512MB of
main memory. Unless otherwise specified, all results are
from the S85 Enterprise Server.

Throughout the evaluation, we use two separate bench-
marks: Postmark and SDET.

Postmark was designed to model a combination of elec-
tronic mail, netnews, and web-based commerce transac-
tions [33]. It creates a large number of small, randomly-
sized files and performs a specified number of transac-
tions on them. Each transaction consists of a randomly
chosen pairing of file creation or deletion with file read
or append. All random biases, the number of files and
transactions, and the file size range can be specified via
parameter settings. Unless otherwise specified, we used
1000 files, 10,000 transactions, file sizes ranging from
128B to 8KB, and even biases.

SDET executes one or more scripts of user commands
designed to emulate a typical software-development en-
vironment (e.g., editing, compiling, and various UNIX
utilities). The scripts are generated from a predetermined
mix of commands,3 and are all executed concurrently.
It makes extensive use of the file system and memory-
management subsystems, making it useful for scalability
benchmarking. Throughout this section we will refer to
an “N-way SDET” which describes running N concur-
rent scripts on a machine configured with N processors.

6.2 Basic overheads

During normal operation, the only overhead of online re-
configuration is the indirection used to update external
references. In K42, this is done using the object trans-
lation table and C++ virtual function table. The over-
head of the object translation table is a single memory
load, and this data is likely to be cached for frequently

3We do not run the compile, assembly and link phases of SDET,
because, at the time of this paper, gcc executing on a 64-bit platform is
unable to generate correct 64-bit PowerPC code



Operation � seconds

Attach 17.84 (0.16)
Component call 1.40 (0.02)
Detach 4.23 (0.49)

Table 1: Interposer overhead. There are three costs of interposi-
tion: attach, call, and detach. Attaching the interposer involves initial-
izing the interposer and wrapper and updating the object translation ta-
ble. Calls to the component involve two additional method calls to the
wrapper object and a heap allocation. Detaching the interposer only
involves updating the object translation table, making the cost to com-
ponent callers zero (because they do not have any additional wait time);
however, the process performing the detach must pay the given over-
head for destroying the objects. The average cost of each operation is
listed in microseconds along with its standard deviation.

accessed objects. The overhead of dispatching a vir-
tual function call is approximately 10 cycles. The re-
mainder of the overheads for online reconfiguration are
from the specific implementations of interposition and
hot-swapping. These overheads were measured on the
270 Workstation.

Interposition: There are three performance costs for in-
terposition: attaching the wrapper, calling through the
wrapper (as opposed to instrumenting the component di-
rectly), and detaching the wrapper. To measure these
costs, we attached, called through, and detached an
empty wrapper 100,000 times, calculating the average
time for each of the three operations. Because the empty
wrapper performs no operations (simply returning from
the PRECALL and POSTCALL), all of the call overhead is
due to interposition.

Table 1 lists the costs of interposition. Attaching the in-
terposer is the most expensive operation, involving mem-
ory allocation and object initialization; however, at no
point during the attach are incoming calls blocked. Al-
though detaching the interposer only requires updating
the object translation table, the teardown of the inter-
poser and wrapper is listed as an overhead for the process
performing the detach. One simple optimization to com-
ponent calls is to skip the POSTCALL whenever possible.
Doing so removes the expensive memory allocation, be-
cause no state would be kept across the forwarded call
(control can be returned directly to the original caller).

Hot-swapping: K42’s file cache manager objects
(FCMs) track in-core pages for individual files in the
system. To determine the expected performance of hot-
swapping, we perform a “null” hot-swap of an FCM
(swapping it with itself) at points of high system con-
tention while running a 4-way SDET. Contention is de-
tected by many threads accessing an FCM concurrently.
Although high system contention is the worst time to
swap (because threads are likely to block, increasing the
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Figure 4: Null swap. This figure presents a histogram showing the
cost of performing a null-swap of the FCM module at contended points
of system execution. For each bin, there is a count of the number of
swaps with completion times that fell within that bin. On average, a
swap took 27.6 � s to complete, and no swap took longer than 132.6

� s.

duration of the mediation phases), it is important to un-
derstand this sort of “worst-case” swapping scenario.

During a single run of 4-way SDET the system detected
424 points of high contention. The average time to per-
form a hot-swap at these points was 27.6 � s with a 19.8

� s standard deviation, a 1.06 � s minimum and a 132.6
� s maximum. Hot-swapping while the system is not un-
der contention is more efficient, because the forward and
block phases are shorter. Performing random null hot-
swaps throughout a 4-way SDET run gave an average
hot-swap time of 10.8 � s. Because most of the time spent
doing a hot-swap is spent waiting for the generation to
advance (during which no threads are blocked) the affect
of these hot-swaps on the throughput of SDET is negli-
gible.

6.3 Reconfiguration for performance

This section evaluates online reconfiguration’s flexibility
by using it to implement four well-known adaptive per-
formance enhancements. Because these algorithms are
well-known, the focus of this section is not on how the
adaptive decisions were made, but rather the fact that on-
line reconfiguration can be used to quickly and efficiently
implement each of them.

Single v. Replicated FCMs: This experiment uses on-
line reconfiguration to hot-swap between different com-
ponent implementations for different workloads. We
use two FCM implementations, a single FCM designed
for uncontended use, and a replicated FCM designed to
scale well with the number of processors. Although a
single FCM uses less memory, it must pay a performance
penalty for cross-processor accesses. A replicated FCM
creates instances on each processor where it is accessed,
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Figure 5: Single v. Replicated FCMs. This figure shows two dif-
ferent FCM implementations run under different workloads. In post-
mark, the single-access FCM performs better because it has less mem-
ory overhead during the creation and deletion of files. Conversely, the
replicated FCM performs better under 24-way SDET because it scales
well to multiple processors.

but at the cost of using additional memory.

Figure 5 shows the performance of each FCM under both
Postmark (using 10,000 files, 50,000 transactions and file
sizes ranging from 512B to 16KB) and 24-way SDET.
Because Postmark is a single application that acts on a
large number of temporary files, the overhead of doing
additional memory allocations for each file with a repli-
cated FCM causes a 7% drop in performance. On the
other hand, using the replicated FCM in the concurrent
SDET benchmark gives performance improvements that
scale from 8% on a 4-way SDET to 101% on a 24-way
SDET. A replicated FCM helps SDET because each of
the scripts run on separate processors, but they share part
of their working set.

K42 detects when multiple threads are accessing a single
file and hot-swaps between FCM implementations when
appropriate. Using this approach, K42 achieves the best
performance under both workloads.

Exclusive v. Shared File Sessions: This experiment
uses online reconfiguration to swap between an efficient
non-shared component and a default shared component
for correctness. We used a file handle implementa-
tion that resides entirely within the application. While
this improves performance, it can only be used when
an application has exclusive access to the file. Once
file sharing begins, an in-server implementation must be
swapped in to maintain the shared state.

Figure 6 shows the performance of swapping in the
shared access version only when necessary in Postmark.
Because most of the accesses in Postmark are exclusive,
a 34% performance improvement is achieved.

Small v. Large Files: This experiment uses online re-
configuration to hot-swap between a specialized non-
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Figure 6: Common-case optimization. Using online reconfigura-
tion, K42 can cache exclusive file handles within the application and
swap to a shared implementation when necessary for correctness. A
further enhancement is to cache small, exclusive files within the appli-
cation’s address space. This figure compares these three system config-
urations (default, exclusive, and small file cache) using Postmark. Us-
ing online reconfiguration for the exclusive case shows a 34% perfor-
mance imrpovement, while the small file caching shows an additional
40% improvement beyond that.

shared component and a default shared component. In
general, file data is cached with the operating system;
however, access for small, exclusive files ( � 3 KB) can
be improved by also caching the file’s data within an ap-
plication’s address space. While this incurs a memory
overhead for double caching the file (once in the appli-
cation, once in the OS), this is acceptable for small files,
and it leads to improved performance.

Figure 6 shows the Postmark performance of three
schemes: the default configuration, the exclusive caching
scheme presented above, and application-side caching.
We found that hot-swapping between caching implemen-
tations gives an additional 40% performance improve-
ment over the exclusive access optimization.

Originally, K42 implemented this using a more tradi-
tional adaptive approach, hard-coding the decision pro-
cess and both implementations into a single component.
Anecdotally, we found that reimplementing this using
online reconfiguration simplified and clarified the code,
and it was less time-consuming to implement and debug.

Adaptive Page Replacement: This experiment uses
online reconfiguration to implement an adaptive page
replacement algorithm. An interposed wrapper object
watches an FCM for sequential page mappings. If a
sequence of more than 20 pages are requested, the ac-
cess is deemed sequential, and the system hot-swaps to
a sequentially optimized FCM that approximates MRU
page replacement. If this sequential behavior ends (more
than 10 non-sequential pages are requested), the FCM is
swapped back to the default FCM.

Figure 7 shows the performance of 1-way SDET in the
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Figure 7: Sequential page faults. One adaptive page replacement
algorithm performs MRU page replacement for sequential streams.
This reduces the amount of memory wasted by streams whose pages
will never be accessed again. Using online reconfiguration, K42 can
detect sequential streams and swap to a sequentially optimized FCM.
This figure compares the default page replacement to the adaptive algo-
rithm by running 1-way SDET concurrently with a number of stream-
ing applications. Using the adaptive page replacement, the system de-
grades more slowly, reducing the effect of streaming applications on
the performance of the entire system.

face of competing streaming applications all run over
NFS. These streaming applications access files signifi-
cantly larger than the 512MB of main memory available
in the 270 Workstation used in this experiment. Using the
default FCM, the streaming applications quickly fill the
page cache with useless pages, incurring the pager over-
head immediately. This ruins SDET performance. On
the other hand, using the adaptive approach, the sequen-
tial applications consume very little memory, because
they throw away pages shortly after using them. This
makes SDET performance degrade more slowly, mean-
ing more streaming applications can be run while achiev-
ing the same performance as with the default FCM.

7 Related Work

Modifying the code of a running system is a powerful
tool that has been explored in a variety of contexts. The
simplest and most common example of adding new code
to a running system is dynamic linking [24]. When a
shared library is updated, all programs dependent on the
library are automatically updated when they are next run.
It is also possible to update the code in running sys-
tems using shared libraries; however, the application it-
self must provide this support and handle all aspects of
the update beyond loading the code into memory.

Although several online reconfiguration methods exist
in the middleware community [34], many do not trasfer
well to the realm of OSes due to their increased con-
straints on timing and resources. Identifying and imple-
menting an online reconfiguration mechanism that works

well within an OS is one of the major contributions of
this work.

Hjálmtÿsson and Gray describe a mechanism for dy-
namic C++ objects [31]. These objects can be hot-
swapped, and they do so without creating a quiescent
state. To achieve this, they provide two options. First,
old objects continue to exist and service requests, while
all new requests go to the new object. This requires some
form of coordination of state between the two co-existing
objects. Second, if an object is destroyed, any active
threads within the object are lost. For this reason, clients
of an object must be able to detect this broken binding
and retry their request.

CORBA [8], DCE [42], RMI [46], and COM [13] are
all application architectures that support component re-
placement during program execution. However, these
architectures leave the problems of quiescence and state
transfer to the application, providing only the mechanism
for updating client references.

Pu, et al. describe a “replugging mechanism” for incre-
mental and optimistic specialization [43], but they as-
sume there can be at most one thread executing in a
swappable module at a time. In later work, that constraint
is relaxed but is non-scalable [38].

In addition to the work done in different reconfiguration
mechanisms, many groups have applied online reconfig-
uration to systems and achieved a variety of benefits.
Many different adaptive techniques have been imple-
mented to improve system performance [2, 25, 35]. Ex-
tensible operating systems have shown performance ben-
efits for a number of interesting applications [7, 19, 49].
Technologies such as compiler-directed I/O prefetch-
ing [10] and storage latency estimation descriptors [39]
improve application performance using detailed knowl-
edge about the state of system structures. Incremental
and optimistic specialization [43] can remove unneces-
sary logic for common-case accesses. K42’s online re-
configuration can simplify the implementation of these
improvements, removing the complicated task of instru-
menting the OS with the necessary hooks to do reconfig-
uration on a case-by-case basis.

K42 is not the first operating system to use an object ori-
ented design. Object-oriented designs have helped with
organization [27, 47], extensibility [11], reflection [54],
persistence [15], and decentralization [1, 51]. In addi-
tion, K42’s method of detecting a quiescent state is not
unique. Sequent’s NUMAQ used a similar mechanism
for detecting quiescent state [37], and recently, SuSE
Linux 7.3 has integrated a mechanism for detecting qui-
escence in kernel modules [36].



7.1 Open Issues

Although our prototype provides a solid base for numer-
ous OS enhancements, there are a number of open issues
that could expand the utility of K42’s online reconfigu-
ration. This section describes a number of these issues,
and how they have been addressed in other systems.

Object creation and management: When a perfor-
mance upgrade or security patch is released for a partic-
ular component implementation, every instance of that
component should be hot-swapped. Additionally, any
place where an instance of the component is created must
also be updated to create the new component type rather
than the old one. A common solution to this is an object
“factory” that is responsible for creating and managing
objects in the system. When an upgrade is requested, the
factory is responsible for locating and upgrading each in-
stance. Another similar solution is to use a garbage col-
lector to track and update objects [23].

Coordinated swapping: While hot-swapping individual
components can provide several benefits, there are times
when two or more components must be swapped to-
gether. For example, an architecture reconfiguration that
updates the interfaces between two objects must swap
the objects concurrently. Several different groups have
looked into how to perform this while ensuring correct-
ness [9, 14, 30].

Confirming component functionality: Although K42
requires that swapped components support the same in-
terface, it makes no guarantees that the functionality pro-
vided by the two components is the same. Although it
may be possible for components to provide annotations
about their functionality, or show type-safety [23], com-
ponent validity has been proven to be generally undecid-
able [29]. Because of this, systems must make a tradeoff
between flexibility and provable component correctness.

The most common method for improving component
correctness is through type safety. Unfortunately, this
generally reduces the flexibility or performance of po-
tential reconfigurations. Dynamic ML [23] provides type
safety guarantees for components with unchanging exter-
nal interfaces, but, its reliance upon a two-space copying
garbage collector makes it unreasonable for use in an op-
erating system environment. Hicks [30] provides type
safety guarantees for components with external data and
changing interfaces, but relies upon programmer defined
“safe” swap-points and requires that every instance of a
component be swapped (thus two versions of a compo-
nent cannot exist within the system at once).

Interface management: Currently, K42’s online recon-
figuration requires that swapped components support the
same interface. While it is straightforward to expand

these interfaces (because the old interface is a subset
of the new interface), it is currently not possible to re-
duce interfaces in K42; in particular, it is not possi-
ble to know if an active code path in the system relies
upon a particular part of the interface. Several systems
have looked into allowing interface changes using type-
safety and programmer defined safe-points for updates to
provide the necessary information about component us-
age [16, 23, 30].

Generic state transfer: K42’s hot-swapping mechanism
provides a protocol for negotiating the best common for-
mat for state transfer between objects. But, it relies upon
support from the components being swapped to com-
plete state transfer. Because this becomes increasingly
complex as the number of implementations increases, it
would be ideal if the infrastructure could perform the en-
tire state transfer, making hot-swapping entirely trans-
parent. While this goal may not be fully attainable, it
may be possible to provide more support than K42 cur-
rently does. For example, Hicks examines the possibil-
ity of automatically generating state transformation func-
tions for simple cases [30].

Avoiding quiescence: It may be possible to instantiate
the new object and have it start processing calls while
the old object completes calls that are still in-flight. In
some cases this would require a way to maintain coher-
ence between the states of the two objects; however, in
other cases it may be possible to do a lazy update of the
new object’s state after in-flight calls have completed.

8 Conclusions

Online reconfiguration provides an underlying mecha-
nism for component extension and replacement through
interposition and hot-swapping. These mechanisms can
be leveraged to provide a variety of dynamic OS en-
hancements. This paper identifies four support mecha-
nisms used for interposition and hot-swapping, and de-
scribes their implementation in the K42 operating sys-
tem. We demonstrate the flexibility of online reconfig-
uration by implementing an adaptive paging algorithm,
two common-case optimizations, and a workload spe-
cific specialization.
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