
C
ar

ne
gi

e
M

el
lo

n

Adaptive Mapping of Linear DSP Adaptive Mapping of Linear DSP
Algorithms to FixedAlgorithms to Fixed--Point ArithmeticPoint Arithmetic

Lawrence J. Chang
Inpyo Hong

Yevgen Voronenko
Markus Püschel

Department of Electrical & Computer Engineering
Carnegie Mellon University

Supported by NSF awards
ACR-0234293, SYS-0310941, and ITR/NGS-0325687

C
ar

ne
gi

e
M

el
lo

n
MotivationMotivation

Embedded DSP applications (SW and HW) typically use fixed-
point arithmetic for reduced power/area and better throughput

Typically DSP algorithms are manually mapped to fixed-point
implementation

time consuming, non-trivial task
difficult trade-off between range (to avoid overflow) and
precision
usually done using simulations (not an exact science)

Our goal: automatically generate overflow-proof, and accurate
fixed-point code (SW) for linear DSP kernels using the SPIRAL
code generator

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
Background: SPIRALBackground: SPIRAL

Generates fast, platform-adapted code for linear DSP
transforms (DFT, DCTs, DSTs, filters, DWT, …)
Adapts by searching in the algorithm space and
implementation space for the best match to the platform
Floating-point code only
Our goal: extend SPIRAL to generate overflow-proof,
accurate fixed-point code

DSP transform

Formula Generator

Formula Compiler
Se

ar
ch

 E
ng

in
e

S
P

I R
 A

 L

Performance Eval.

runtime

adapted
implementation

www.spiral.net

C
ar

ne
gi

e
M

el
lo

n
Background: Transform AlgorithmsBackground: Transform Algorithms

Reduce computation cost from O(n2) to O(n log n) or below
For every transform there are many algorithms
An algorithm can be represented as

Sparse matrix factorization

Data flow DAG (Directed Acyclic Graph) Program
t1 = a * x2

t2 = t1 + x0

t3 = -s * x1 + c * x3

y3 = t2 + t3

y0 = t2 – t3

… …

… …

Multiplication by constant s

addition

C
ar

ne
gi

e
M

el
lo

n
Background: FixedBackground: Fixed--Point ArithmeticPoint Arithmetic

Uses integers to represent fractional numbers:

Operations

Dynamic range:
-2IB ... 2IB-1
much smaller than in floating-point) risk of overflow

Problem: for a given application, choose IB (and thus FB) to avoid
overflow

We present an algorithm to automatically choose, application
dependent, “best” IB (and thus FB) for linear DSP kernels

integer bits fractional bitssign

register width: RW = 1 + IB + FB (typically 16 or 32)

IB FB

a+b

addition multiplication

Example (RW=9, IB=FB=4)
0011 00112 = 1011.01112 = 3.187510

a·b » fb

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
Overview of ApproachOverview of Approach

Extension of SPIRAL code generator
Fixed-point mapping: maps floating-point code into fixed-point
code, given the input range
Use SPIRAL to automatically search for the fixed-point
implementation

with highest accuracy, or
with fastest runtime DSP transform

Formula Generator

Formula Compiler

Se
ar

ch
 E

ng
in

e
Fixed-Point Mapping

Performance Ev
runtime accuracy

input
range

adapted
implementation

C
ar

ne
gi

e
M

el
lo

n
Tool: Affine ArithmeticTool: Affine Arithmetic

Basic idea: propagate ranges through the computation
(interval arithmetic, IA); each variable becomes an interval
Problem: leads to range overestimation, since correlations
between variables are not considered
Solution: affine arithmetic (AA) [1]

represents range as affine expression
captures correlations

IA: A(x) = [-M,M]
AA: A(x) = c0·E0 +c1·E1+…

Ei are ranges, e.g.,Ei=[-1,1]

[1] Fang Fang, Rob A. Rutenbar,
Markus Püschel, and Tsuhan Chen
Toward Efficient Static Analysis of Finite-
Precision Effects in DSP Applications via
Affine Arithmetic Modeling
Proc. DAC 2003, pp. 496-501

C
ar

ne
gi

e
M

el
lo

n
Algorithm 1 [Range Propagation]Algorithm 1 [Range Propagation]

Input: Program with additions and multiplications by
constants, ranges of inputs

Output: Ranges of outputs and intermediate results

Denote input ranges by xi with i2 [1, N]
We represent all variables v as affine expressions A:

Traverse all variables from input to output, and compute A:

where ci are constants

Variable ranges R=[Rmin,Rmax] are given by

C
ar

ne
gi

e
M

el
lo

n
ExampleExample

Affine Expressions
A(t1) = x1 + x2
A(t2) = x1 - x2

A(y1) = 1.2 x1 + 1.2 x2
A(y2) = -2.3 x1 + 2.3 x2
A(y3) = -1.1 x1 + 3.5 x2

Program
t1 = x1 + x2

t2 = x1 - x2

y1 = 1.2 * t1

y2 = -2.3 * t2

y3 = y1 + y2

Computed Ranges
R(t1) = [-2,2]
R(t2) = [-2,2]
R(y1) = [-2.4,2.4]
R(y2) = [-2.6,2.6]
R(y3) = [-4.6,4.6]

Given Ranges
R(x1) = [-1,1]
R(x2) = [-1,1]

ranges are exact (not worst cases)

C
ar

ne
gi

e
M

el
lo

n
Algorithm 2 [Error Propagation]Algorithm 2 [Error Propagation]

Input: Program with additions and multiplications by
constants, ranges of inputs

Output: Error bounds on outputs and intermediate results

Denote by εi in [-1,1] independent random error variables
We augment affine expressions A with error terms:

Traverse all variables from input to output, and compute Aε:

where fi are error
magnitude constants

f

new error variable introduced

Maximum error is given by

C
ar

ne
gi

e
M

el
lo

n
FixedFixed--Point MappingPoint Mapping

Input:

floating point program (straightline code) for linear transform

ranges of input

Output: fixed-point program

Algorithm:

Determine the affine expressions of all intermediate and output
variables; compute their maximal ranges

Mode 1: Global format

the largest range determines the fixed point format globally

Mode 2: Local format

allow different formats for all intermediate and output
variables

Convert floating-point constants into fixed-point constants

Convert floating-point operations into fixed-point operations

Output fixed-point code

C
ar

ne
gi

e
M

el
lo

n
Accuracy MeasureAccuracy Measure

Goal: evaluate a SPIRAL generated fixed-point program for
accuracy to enable search for best = most accurate algorithm
Choose input independent accuracy measure: matrix norm

∞− ||ˆ|| TT max row sum norm

matrix for exact
(floating-point) program

matrix for
fixed-point program

Note: can be used to derive input dependent error bounds

∞∞∞ −≤− ||||||ˆ||||ˆ|| xTTyy

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
Probabilistic AnalysisProbabilistic Analysis

Fixed point mapping chooses range conservatively, namely:

L++= 1100)(xcxcxA

leads to a range estimate of

⎥
⎦

⎤
⎢
⎣

⎡ ∑∑
i

ii
i

ii xcxc |)max(|||,|)min(|||

However: not all values in [-M,M] are equally likely

Analysis:
Assume xi are uniformly distributed, independent random
variables
Use Central Limit Theorem: A(x) is approximately Gaussian
Extend Fixed-Point Mapping to include a probabilistic mode
(range satisfied with given probability p)

C
ar

ne
gi

e
M

el
lo

n
Overestimation due to Central Limit TheoremOverestimation due to Central Limit Theorem

affine
expression

with:

4 terms

16 terms

64 terms

assuming input/error variables are independent

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
DCT, size 32

10,000 random algorithms
Spiral generated

Accuracy Histogram Accuracy Histogram

Spread 10x, most within 2x
Need for search

C
ar

ne
gi

e
M

el
lo

n
Global vs. Local ModeGlobal vs. Local Mode

several
transforms

several
transforms

local mode a factor of 1.5-2 better

C
ar

ne
gi

e
M

el
lo

n
Local vs. Gaussian Local ModeLocal vs. Gaussian Local Mode

99.99%
confidence

for each
variable

gain: about a factor of 2.5-4

C
ar

ne
gi

e
M

el
lo

n
SummarySummary

An automatic method to generate accurate, overflow-proof fixed-
point code for linear DSP kernels

Using SPIRAL to find the most accurate algorithm: 2x
Floating-point to fixed-point using affine arithmetic analysis
(global, local: 2x, probabilistic: 4x)
16x

Current work:
Extend approach to handle loop code and thus arbitrary size transforms
Refine probabilistic mode to get statements as:

prob(overflow) < p

Further down the road:
Fixed-point mapping compiler for more general numerical DSP
kernels/applications

www.spiral.net

